港口非线性波浪耦合计算模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别以Boussinesq方程,二维和三维Laplace方程,欧拉方程和牛顿第二定律作为基本控制方程,分别从非耦合非线性波浪计算模型(指单独采用一个计算模型:本文指Boussinesq方程,或边界元法解Laplace方程,或有限元法解Laplace方程)、Boussinesq方程与Laplace方程耦合计算模型、Boussinesq方程与欧拉方程耦合计算模型三个方面对港口非线性波浪计算模型展开了研究。
     非耦合非线性波浪计算模型:1) 根据造波板做椭圆余弦运动或正弦运动速度,推导出数值模拟波浪水槽时固定入射边界上的二阶波浪入射边界条件,数值计算结果和实验结果的对比表明采用二阶入射边界条件对波面升高的预报比采用一阶入射边界条件对波面升高的预报更为精确;2) 推导了波浪水槽造波板做正弦运动所产生波浪的高阶Boussinesq方程摄动展开解析解,讨论了该解析解的适用范围;3) 对整个波浪水槽应用边界元方法数值模拟了波浪对物体的非线性作用;4) 用有限元法求解三维Laplace方程模拟了三维完全非线性波浪水槽。
     Boussinesq方程与Laplace方程耦合计算模型:1) 建立了外域用有限差分法求解Boussinesq方程、内域用边界元法求解Laplace方程的二维耦合计算模型。研究了耦合计算的匹配条件、耦合求解过程和公共区域长度的确定,讨论了内域自由表面条件分别采用半拉格朗日法和拉格朗日法时的区别:用半拉格朗日法的计算效率要比用拉格朗日法的计算效率高,但计算结果精度差别不大;2) 提出了用最小二乘拟合法求Boussinesq方程的二阶、四阶水平速度公式中水深平均速度对水平坐标二阶、四阶的导数,讨论了Boussinesq方程的二阶水平速度公式相对四阶水平速度公式的适用范围:在Kh<1.26(K是波数,h是静水深)时,它们之间的最大误差不超过4%,因此可以用Boussinesq方程的二阶水平速度公式代替Boussinesq方程的四阶水平速度公式计算水平速度沿水深的分布;3) 建立了外域用有限差分法求解Boussinesq方程、内域用有限元法求解Laplace方程的三维耦合计算模型。
     Boussinesq方程与欧拉方程耦合计算模型:1) 建立了外域用有限差分法求解Boussinesq方程、内域也用有限差分法求解欧拉方程的二维、三维耦合计算模型。讨论了耦合计算的匹配条件、耦合求解过程。对比了内域用欧拉方程的二维、三维耦合计算模型和内域用Laplace方程的二维、三维耦合计算模型的优缺点:内域用欧拉方程的二维、三维耦合计算模型内域数值求解、整个耦合过程简单,计算效率高,但适用范围窄(只适用于船体为箱体)。2) 对直立码头前固定箱体引起的非线性波浪运动,建立了外域用Boussinesq方程、内域用牛顿第二定律的
    
    港口非线性波浪祸合计算模刑
    二维祸合计算模型。推导了箱体与海底和直立码头之间流体运动的自振频率,从
    实验和数值两方面研究了间隙内流体运动的共振现象:当入射波浪的基频或高频
    与间隙内流体运动的自振频率接近时,将会激发起间隙内流体运动的共振现象,
    使直立码头前物体所受水平力比没有码头时船所受水平增大约一倍。
     关键词:有限差分法,边界元法,有限元法,Boussinesq方程,Laplaee方
    程,欧拉方程,牛顿第二定律,非线性波浪祸合模型
The numerical model of non-linear wave in harbor, including the non-coupled and non-linear wave numerical model (only one numerical model), the numerical model combined Boussinesq equations with Laplace equation and the coupled numerical model combined Boussinesq equations with Euler's equations, are studied.The studies on non-coupled and non-linear wave numerical model are following. 1) Second order incident boundary condition on fixed incident boundary is derived for numerical simulations, based on the cnoidal or sinusoidal motions of wave maker paddle, which shows that the prediction with second order incident boundary condition is more accurate than the prediction with first order incident boundary condition. 2) The analytical solution for higher-order Boussinesq equations is derived and its applicable range is discussed. 3) A 2-D fully non-linear numerical model using boundary element method is developed to obtain wave forces acting on rectangular obstacle. 4) The three-dimensional fully non-linear waves are studied in a numerical wave tank using finite element method.The studies on the coupled numerical model combined Boussinesq equations with Laplace equation are following. 1) A 2-D coupled numerical model, which is the combination Boussinesq equations solved by finite difference method with Laplace equation solved by boundary element method, is established. The matching conditions, the procedure of coupled solution, the length of common domain are discussed. The sem-Lagrangian and the Lagrangian are used to track the free surface. It is shown the computational efficiency of sem-Lagrangian is higher than that of Lagrangian and the accuracy is almost identical. 2) Least Square Method is adopted to calculate second and fourth derivative of depth-averaged horizontal velocity to horizontal coordinate. The maximum error between two and four order formula of horizontal velocity is less than 4% while Kh < 1.26 (K is wave number, h is water depth), herein two order formula of horizontal velocity can be used to calculate the distribution of the horizontal velocity along water depth. 3) A 3-D coupled numerical model combined Boussinesq equations solved by finite difference method with Laplace equation solved by finite element method is developed.The studies on the coupled numerical model combined Boussinesq equations with Euler's equations are following. 1) The 2-D and 3-D coupled numerical models
    
    are established, which are the combination of Boussinesq equations with Euler's equations solved respectively by finite difference method. Compared with the coupled model that inner domain is governed by Laplace equation, the coupled model that the inner domain is governed by Euler's equations has simple procedure of coupled solution and higher computational efficiency, but limited applicable range.2) A 2-D coupled numerical model, combined Boussinesq equations with Newton's Second Law, is established to calculate the nonlinear wave forces acting on rectangular obstacle against vertical quay in a harbor. The natural frequency of the fluid motions in the gap between rectangular obstacle, seabed and vertical quay wall is derived. It is shown that by the experimental data and numerical results the resonance waves in the gap are induced by the first or higher harmonics of incident waves and the first or higher order horizontal wave forces on rectangular obstacle against vertical quay wall increase largely when the frequency of the harmonics of incident waves is close to the natural frequency of fluid motions in the gap.
引文
[1] 缪国平,刘应中.水波及其与结构物相互作用—新时期海洋高科技中的水波动力学问题之一.水动力学研究与进展,2000,6,156-161.
    [2] Eatock Taylor R, Hung S M. Second-order diffraction forces on a vertical cylinder in regular waves. App. Ocean Res., 1987, 9(1), 19-30.
    [3] Eato5ck Taylor R, Hung S M, Chau F P. On the distribution of second order pressure on a vertical circular cylinder: App. Ocean Res., 1989, 11(4), 183-193.
    [4] Huang J B, Eatock Taylor R. Semi-analytical solution for second-order wave diffraction by a truncated circular cylinder in monochromatic waves. Jour. Fluid Mech., 1996, 319, 171-196.
    [5] Kim M H, Yue D K P. The complete second-order diffraction solution for an axisymmetric body. Part 1. Monochromatic incident waves. Jour. Fluid Mech., 1989, 200, 235-264.
    [6] Kim M H, Yue D K P. The complete second-order diffraction solution for an axisymmetric body. Part 2. Bochromatic incident wavesand body motions. Jour. Fluid Mech., 1990, 211, 557-593.
    [7] 缪国平,刘应中.大直径圆柱上的二阶波浪力.中国造船,1987,98.
    [8] Newman J N. Second-harmonic wave diffraction at large depths. Jour. Fluid Mech., 1985, 213, 59-70.
    [9] Wu G X, Eatock Taylor R. The second order diffraction force on a horizontal cylinder in finite water depth. App. Ocean Res., 1990, 12(3), 106-111.
    [10] 邹志利,戴遗山.回转体二阶绕射压力和绕射力.中国造船,1992,166.
    [11] Malenica S, Molin B. Third-harmonic wave diffraction by a vertical cylinder. Jour. Fluid Mech., 1995, 302, 203-229.
    [12] Teng B, Li Y C, Dong G H. A method for third order force on axisymmetric bodieds. Jour. of Hydrodynamics, 1999, Ser. B, 11(4), 109-117.
    [13] 邹志利.水波理论及其应用.北京:科学出版社,2005.
    [14] Bowers B C. Harbour resonance due to set-down beneath wave groups. J. Fluid Mech, 1997, 79(1).
    [15] Weng W K, Yim John Z and Chou C R. Ship motions near harbor caused by wave actions. Computer Modeling in Ocean Engineering 92, A. A. Balkema, Rotterdam, Brookfiekd, 1991, 443-453.
    [16] Shashikala A P, Sundaravadivelu R and Ganapathy C. Dynamics of a moored barge under regular and random waves. Ocean Engng, 1997, 24, 401-430.
    
    [17] PARK J C, KIM M H. Fully nonlinear wave-current-body interaction by a 3D viscous numerical wave tank[A]. Proceedings of the Eighth International Offshore and Polar Engineering Conference[C], Montreal, Canada, 1998.
    [18] Hirt C W, Nichols B D and Romero N C. SOLA-A numerical solution algorithm for transient fluid flows. Los Alamos Scientific Laboratory Report LA-5852, 1975.
    [19] Nichols B D, Hirt C W. Volume of Fluid method for the dynamics of free boundaries. Journal of Computational Physics, 1981, 39, 201-225.
    [20] Wang Y X, Sy T C. Numerical simulation of breaking waves against vertical wall. Proc of 2nd Int of offshore and Polar Eng Conf, San Francisco, Calif: 1992, 139-145.
    [21] 王永学.VOF方法数值直墙式建筑物前的波浪破碎过程.自然科学进展—国家重点实验室通讯,1993,3,553-559.
    [22] 王永学.无反射造波数值波浪水槽.水动力学研究与进展,1994,9,205-214.
    [23] Wang Yongxue. A study on periodic wave breaking by absorbed numerical wave channel. Preceeding of the Fourth International Offshore and Polar Engineering Conference, Osaka, Japan, 1994, 32-36.
    [24] 王永学,任冰.波浪冲击过程的湍流数值模拟.水动力学研究与进展,1999,13,409-417.
    [25] 邹志利,邱大洪,王永学.VOF方法模拟波浪槽中二维非线性波.水动力学研究与进展,1996,11(1):93-103.
    [26] 万德成,缪国平.数值模拟波浪翻越直立方柱[J].水动力学研究与进展,1998,13(3):363-370.
    [27] Iwata K, Kawasaki K and Kim D S. Breaking limit, breaking and post-breaking wave deformation due to submerged structures. Coastal Engineering, 1996, 181, 2338-2351.
    [28] Kawasaki K. Numerical simulation of breaking and post-breaking wave deformation process around a submerged breakwater. Coastal Engineering Journal, 1999, 41,201-223.
    [29] Boussinesq J. Theorie des ondes et de ramous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu darts ce canal des vitesses sensiblement parelleles de la surface au fond. J. Math. Pures et Appliquees (Lionvilles, France), 1872, 17:55-108.
    [30] Peregrine D H. Long waves on a beach. J. Fluid Mech, 1967, 27,815-827.
    [31] Madsen P A, Murray R, Sorensen O R.. A new form of the Boussinesq equations with improved linear dispersion characteristics. Coast. Eng, 1991, 15,371-388.
    [32] Madsen P A, Soresen O R. A new form of Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry. Coast. Eng, 1992, 18, 183-204.
    
    [33] Nwogu O. Alternative form of Boussinesq equations for nearshore wave propagation. J. Waterway Port Coastal Ocean Eng, 1993,119, 618-638.
    [34] Beji S, Battjes J A. Numerical simulation of nonlinear waves over a bar. Coastal Engineering, 1994, 19, 151-162.
    [35] Wei G, Kirby J T, Sinha A. A fully nonlinear Boussinesq model for surface waves: Part 1 Highly nonlinear unsteady waves. J. Fluid Mech, 1995, 294, 71-92.
    [36] Wei G, Kirby J T. Time-dependent numerical code for extended Boussinesq equations. J. Waterway Port Coastal and Ocean Engineering, ASCE, 1995, 121,251-261.
    [37] Kaihatu J M, Kirby J T. Two-dimensional parabolic modeling of extended Boussinesq equations. J. Waterway Port Coastal and Ocean Engineering, ASCE, 1998, 124, 57-67.
    [38] Gobbi M F, Kirby J T. Wave evolution over submerged sills: tests of a high-order Boussinesq model. Coastal Engineering, 1999, 37, 57-96.
    [39] 邹志利.高阶Boussinesq水波方程.中国科学(E辑),1997,27,460-473.
    [40] 邹志利.高阶Boussinesq水波方程的改进.中国科学(E辑),1999,29,87-96.
    [41] Zou Z L. Higher order Boussinesq equations. Ocean Engineering, 1999, 26, 767-792.
    [42] Zou Z L. A new form higher order Boussinesq equations. Ocean Engineering, 2000, 27, 557-575.
    [43] 邹志利.适合复杂地形的高阶Boussinesq水波方程.海洋学报,2001,22,114-124.
    [44] Longuet-Higgins M S, Cokelet C D. The deformation of steep surface waves on water: I-A numerical method of computation. Proceedings of the Royal Society of London, Ser.A, 350, 1-26.
    [45] Yang C, Ertekin R C. Numerical simulation of nonlinear wave diffraction by a vertical cylinder. Journal of offshore mechanics and arctic engineering, 1992, 114, 36-44.
    [46] Buchmann B, Skourup J, Cheung K F. Run-up on a structure due to second-order waves and a current in a numerical wave tank. Applied Ocean Research, 1998, 20, 297-308.
    [47] Buchmann B, Ferrant P, Skourup J. Run-up on a body in waves and current. Fully nonlinear and finite-order calculations. Applied Ocean Research, 2000, 22, 349-360.
    [48] Isaacson M, Cheung K F. Second order wave diffraction around two-dimensional bodies by time-domain method. Applied Ocean Research, 1991; 13, 175-186.
    [49] Isaacson M, Cheung K F. Time-domain second-order wave diffraction in three dimensions. Journal of Waterway, Port, Coastal & Ocean Engineering, 1992, 118,496-516.
    [50] Isaacson M, Ng J Y T. Time -domain second-order wave radiation in two dimensions. Journal of Ship Reseaarch, 1993, 37, 25-33.
    [51] Cheung K F, Isaacson M, Ng J Y T. Time-domain solution for second-order wave radiation. Marine Sructures, 1993, 6, 241-258.
    
    [52] Cheung K F, Isaacson M, Lee J W. Wave diffraction around three-dimensional bodies in a current. Journal of Offshore Mechanics and Artic Engineering, 1996, 118, 247-252.
    [53] Kim D J, Kim M H. Wave-current-body interaction by a time-domain high-order boundary element method. Proc 7th Int Offshore and Polar Eng Conf, Honolulu, ISOPE, 1997, 3, 107-115.
    [54] Skourup J, Cheung K F, Bingham H B. Loads on a 3D body due to second-order waves and a current. Ocean Engineering, 2000, 27, 707-727.
    [55] Bai W, Teng B. Second-order wave diffraction around 3-D bodies by a time-domain method. China Ocean Engineering, 2001, 15, 73-85.
    [56] Grilli S T, Vogelmann S, Svendsen I A. An efficient boundary element for nonlinear water waves. Engineering Analysis with Boundary Elements, 1989, 6, 97-107.
    [57] Tanizawa K. A nonlinear simulation method of 3-D body motions in waves. Journal of Society of Naval Architecture in Japan, 1995, 178, 179-191.
    [58] Tanizawa K. Long time fully nonlinear simulation of floating body motions with artificial damping zone. Journal of Society of Naval Architecture in Japan, 1996, 180, 311-319.
    [59] Boo S Y, Kim C H, Kim M H. A numerical wave tank for nonlinear irregular waves by 3D HOBEM. Journal of Computational Physics, 1994, 4, 265-272.
    [60] Boo S Y. Linear and nonlinear irregular waves and forces in a numerical wave tank. Ocean Engineering, 2002, 29,475-493.
    [61] Koo W, Kim M H. Fully nonlinear wave-body interactions with fully submerged dual cylinders. Proceedings of the Thirteenth International Offshore and Polar Engineering Conference, Honolulu, Hawaii, 2003, 25-30.
    [62] 孙大鹏,李玉成.数值水槽内的阻尼消波和波浪变形计算.海洋工程,2000,18(1),1-6.
    [63] 刘桦,林怡若,张灼等.基于高阶边界元的三维数值波浪港池.海洋工程,2004,22(2),1-6.
    [64] 张晓兔.三维完全非线性数值波浪水槽的模拟研究:(博士后出站报告).大连:大连理工大学,2004.
    [65] Wu G X, Eatock Taylor R. Finite element analysis of two-dimensional non-linear transient water waves. Applied Ocean Research, 1994, 16, 363-372.
    [66] Wu G X, Eatock Taylor R. Time stepping solutions of the two-dimensional nonlinear wave radiation problem. Ocean Engng, 1995, 22, 785-798.
    [67] Turnbull M S, Borthwick A G L, Eatock Taylor R. Wave-structure interaction using coupled structured-unstructured finite element meshes.
    
    [68] Guignard S, Grilli S, Marcer R, Rey V. Computation of shoaling and breaking waves in nearshore areas by the coupling of BEM nad VOF methods. Proceedings of the Ninth International Offshore and Polar Engineering Conference, Brest, France, 1999.
    [69] Takagi K, Naito S, Hirota K. Hydrodynamic force acting on a floating body in a habour of arbitrary geometry. Proc. 3nd Int. Offshore and Polar Engineering Conference, 1993, 192-199.
    [70] Jiang T. Investigation of waves generated by ships in shallow water. Proceedings of the 22th Symposium on Naval Hydrodynamics, Washington, DC, USA, 1998.
    [71] Bingham H B. A Hybrid Boussinesq-panel method for predicting the motion of a moored ship. Coastal Engineering, 2000, 40, 21-38.
    [72] 齐鹏,王永学,邹志利.非线性波时域计算的二维耦合模型.辽宁省海洋学会第五届理事会会议暨学术年会,辽宁,1998.
    [73] 齐鹏,王永学,邹志利,邱大洪.非线性波浪时域计算的三维耦合模型.海洋学报,2000,22,102-109.
    [74] Qi Peng, Wang Yong-xue, Zou Zhi-li. 2-D composite model for numerical simulation of nonlinear waves[J]. China Ocean Engineering, 2000, 14, 113-120.
    [75] Qi Peng, Zou Zhi-li, Wang Yong-xue. A 3-D composite model for numerical simulation of nonlinear waves. Proceedings of the Tenth International Offshore and Polar Engineering Conference, Seattle, USA, 2000, 68-73.
    [76] 梅强中.水波动力学[M].北京,科学出版社,1984.
    [77] Madsen P A, Sφrensen O R. Bound waves and triad interactions in shallow water [J]. Ocean Engng, 1993, 20: 369-388.
    [78] ZOU Zhi-li, XU Ben-he. Numerical model for solving Boussinesq-type equations: comparison and validation[J]. Acta Oceanologica Sinica, 1998, 17(3): 375-386.
    [79] Chapalain G, Cointe R, Temperville A. Observed and modeled resonantly interacting progressive water-waves [J]. Coastal Engineering, 1992, 16: 267-300.
    [80] Boczar-Karakiewicz B, Bona J L, Cohen D L. Transformation of wave profile in shallow water [J]. Fourier analysis. Arch Hydrotech, 1972, 19: 197-209.
    [81] Dold W J, Peregrine D H. An efficient boundary-integral method for steep unsteady waves.
    [82] Longuet-Giggins M S, Cokelet E D. The deformation of steep surface waves on water; 1. A numerical method of computation. Proc. Roy. Soc .Lond. 1976, 350: 1-26.
    [83] New A L, Mciver P and Peregrine D H. Computations of overturning waves[J]. J. Fluid Mech, 1985, 150: 233-252.
    [84] Baker G R, Meiron D I and Orszag S A. Generalised vortex methods for free-surface flow problems. J. Fluid Mech, 1982, 123: 477-501.
    [85] Roberts A J. A stable and accurate numerical method to calculate the motion of a sharp interface between fluids. IMA Jnl. Appl. Math, 1983, 31: 13-36.
    
    [86] Vinje T, Brevig P. Numerical simulation of breaking waves. Adv Water Resources, 1981, 4:77-82.
    [87] Lin W M, Newman, J N, Yue D K. Nonlinear forced motion of floating bodies. Proc. 15th Symp. on Naval Hydrodynamics, Hamburg, Germany, 1984, 33-47.
    [88] 章本照.流本力学中的有限元方法.北京:机械工业出版社,1986.
    [89] Lin Peng-zhi, Li C W. A σ-coordinate three-dimensional numerical model for surface wave propagation. International Journal for Numerical Methods in Fluids, 2002, 38, 1045-1068.
    [90] Wei G, Kirby T. Time-dependent numerical code for extended Boussinesq equation. J. Waterway, Port, Coast. And Oc. Eng. ASCE, 1995, 121, 618-261.
    [91] 柳淑学,俞聿修,赖国璋,李毓湘.数值求解Boussinesq方程的有限元法.水动力学研究与进展,2000,15,399-410.
    [92] Celebi M S, Kim M H, Beck R E Fully Nonlinear 3-D Numerical Wave Tank Simulation. Journal of Ship Research, 1998, 42(1): 33-45.
    [93] 徐士良.RORTRAN常用算法程序集.清华大学出版社.北京,1991.
    [94] ZOU Zhi-li. Higher order Boussinesq equations[J]. Ocean Engineering, 1999, 26: 767-79.
    [95] Weng W K, Yim John Z and Chou C R. Ship motions near harbor caused by wave actions. Computer Modeling in Ocean Engineering 92, A. A. Balkema, Rotterdam, Brookfiekd, 1991, 443-453.
    [96] Shashikala A P, Sundaravadivelu R and Ganapathy C. Dynamics of a moored barge under regular and random waves. Ocean Engng, 1997, 24, 401-430.
    [97] 齐鹏,王永学,贺五洲.港口内靠码头系泊船波浪力时域模型.清华大学学报,2003,43,262-265.
    [98] 金忠青.N-S方程的数值解和紊流模型[M].南京:河海大学出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700