基于可拓控制策略的材料试验机电液比例控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文根据目前国内外材料试验机控制系统的现状,确立了“基于可拓控制策略的材料试验机电液比例控制系统的研究”这一研究课题,围绕材料试验机电液比例控制系统这一研究对象,进行了具有创新性、基础性、工程性及系统性的研究工作,获得了许多重要结论。
     针对国内外材料试验机主要采用电液伺服控制系统,存在能耗大、温升、成本高、维护困难等问题,本课题提出了基于可拓控制策略的材料试验机电比例负载适应控制系统这一新型研究方案,通过开发新型试验机主机系统、液压缸系统、数字式微小流量电液比例流量阀及电控系统,实现了材料试验机电液比例负载适应控制,为我国材料试验机自动控制系统的产业化打下了基础。
     针对国内材料试验机存在控制测量精度低、稳定性差,而国外试验机测量控制系统结构复杂、成本高、维护使用困难等问题,本课题研究开发了一种基于ISA总线的高性能、低成本的全数字式材料试验机测控系统,该测控系统的各项技术指标均达到并超过了国外先进同类产品的性能指标,对我国高性能材料试验机行业的发展具有重要意义。
     针对试样刚度变化对负载刚度的影响问题,进行了负载刚度变化对控制系统影响的理论分析和仿真研究,从理论上分析了材料拉伸试样进入屈服阶段时试验过程产生震荡的原因,并研究开发了相应的可拓智能控制策略的解决办法,解决了国内外材料试验机工程界长期未解决的问题。
     针对目前国内外材料试验机适用范围窄,各种控制方式不能灵活组合等问题,论文首次总结并提出了一套适合整个试验机行业的控制方式及约束推理条件,首次提出了一种新型CAPIES软件结构设计方法,实现了各种控制模式之间平滑、稳定切换,扩大了材料试验机的适用范围,为整个试验机行业的自动控制系统的设计提供了依据和参考。
     本课题首次提出了一种基于图形库的测量器具动态特性求解新方法,该方法可以克服测量器具物理建模和数学建模时的相关误差,具有简便易行,准确度高,适用范围广等特点。可用于各种测量器具及各种控制系统的动态特性求解。
     全文分八章。
     第一章阐述了研究意义以及目前国内外材料试验机技术现状,介绍了材料试验机的基本组成及应用场合,分析了材料试验机的主要特点、典型控制方案和目前存在的问题。最后提出了作者的研究方案及方法。
     第二章介绍了材料试验机负载适应控制系统的总体设计方案,详细介绍了本课题研究开发的主机系统、液压控制系统及电控系统。
     第三章给出了材料试验机负载适应控制系统的数学模型,并针对不同的负载类型,对试验力控制系统、位置控制系统及变形控制系统进行了详细的理论分析及计算机仿真,并对理论分析和仿真结果作了讨论和总结。
     第四章介绍了材料试验机CAPIES软件系统,详细介绍了CAPIES软件的组成原理和实现方法。
     第五章介绍了可拓智能控制的原理,在此基础上,给出了材料试验机负载适应控制系统的可拓智能控制策略,实验证明,这种新型控制策略能够解决材料试验机结构参数变化问题,并能够实现各种控制模式之间的平滑切换。
    
     第六章介绍了本课题的实验及结果,大量的实验证明,本课题的设计方案是完善而先进
    的,可拓控制策略的引入进一步提高了系统的控制性能及鲁棒性,CAP工ES软件系统的设计
    使得试验机能够适应各种不同的试验标准,大大提高了系统的适用性,具有较高的工程应用
    价值。
     第七章提出了一种基于图形库的测量器具动态特性求解方法,该方法利用图象处理技术
    与识别技术首先将测量器具实验曲线与图形库中的标准曲线相比较,得到与实验曲线相匹配
    的标准特性函数,然后改变标准特性函数中参数,逐次迭代计算与实验曲线的相关函数,直
    至大于规定阂值,从而给出表示测量器具动态特性的算子表达式。该方法准确度高,适用范
    围广,适合于计算机自动求解各种不同系统的动态特性。
     第八章对课题进行了总结和展望,给出了论文的研究成果,指出了进一步研究方向。
Based on studies on current developments of the material testing machine control system, a new project about electro-hydraulic proportional control system for material testing machine based on extension control strategy is proposed. After a lot of creative projective basic and systematic study on control system of material testing machine, many important conclusions have been drawn.
    In order to solve the problems that large energy consumption, temperature variation, high, cost trouble maintenance in current electro-hydraulic servo control system for material testing machine, a new design scheme that electro-hydraulic proportional control system for material testing machine based on extension control strategy is proposed. The design scheme is successful by means of designing new main frame system, hydraulic cylinder system, digital electro-hydraulic micro-fluid proportional valve and electrical control system, and its results lay a foundation for material testing machine industries in our country.
    In order to solve the problems of low accuracy and stability in domestic material testing machine and complicate structure, high cost and trouble maintenance in foreign material testing machine, a high quality and low cost digital measure and control system for material testing machine based on ISA bus has been presented in this thesis and its performance indexes have been achieved and overachieved comparing with foreign advanced products, and it is important for the development of material testing machine industries in our country.
    As the variable stiffness of testing specimen affects load stiffness, the theoretical analysis and simulation study of the effect of variable load stiffness on the system are done. The degree and tendency of the effect of variable load stiffness on the control quality and accuracy are given, furthermore, a new extension control algorithm for material testing machine is presented in this thesis. By these algorithm, the problem existed and confused in testing machine engineering in a long term can be solved completely.
    In order to solve the problems of narrow application range and unwieldy control mode in current material testing machine, a set of control modes and constraint conditions fitting whole material testing machine industries have been proposed for the first time, furthermore, a new software CARIES, which shows new design method for material testing machine, has been developed, and it submits reference for the automatic control system design of material testing machine industries.
    A new method with high accuracy and wide application solving the dynamic characteristic of measurement system based on graph bank is proposed for the first time and it is suitable for automatic solving dynamic characteristic various system with computer.
    The thesis includes eight chapters.
    Chapter 1 is a survey. The current development of material testing machine is expounded. The basic component and application of material testing machine are introduced. Main characteristics and several typical design schemes of material testing machine are analyzed. In the last part of the chapter, the research method of the overall thesis is proposed.
    In chapter 2,the overall design scheme of electro-hydraulic proportional control
    
    
    
    system of material testing machine is introduced. Main frame system, hydraulic control system and electronic controller design method are presented in detail.
    In chapter 3,the precious mathematics model about electro-hydraulic proportional control system of material testing machine is proposed. The digital simulation and theoretical analysis of load control system, position control system and extension control system are discussed according to various load type.
    In chapter 4, the CAPIES of material testing machine is introduced. The organization and realization method of CAPIES software system are presented in detail.
    In chapter 5, the design principle of extension control is introduced, and the extension control algorithm of electro-hydraulic proportional control sys
引文
[1] 吴根茂,邱敏秀,王庆丰等.实用电液比例技术.杭州:浙江大学出版社,1993
    [2] 骆涵秀著.试验机的电液控制系统.北京:机械工业出版社,1991
    [3] 余仲芳,陈小平.关于刚性试验机的刚度设计.计量技术,1996(7):19~22
    [4] 任杰,对岛津AG-METAL软件所得出结果进行后处理的程序.物理测试,1998(4):24~27
    [5] 刘大安,潘长良等.INSTRON试验机高速加载试验控制软件开发.岩石力学与工程学报,1993(3):70~73
    [6] 王俊普著.智能控制.北京:中国科学技术大学出版社,1996。
    [7] 赵光锵.INSTRON1251试验机电液伺服装置的改进.五钢科技,1997(5):47~52
    [8] Iwata Hido, Sato Chiaki, Ikegami Kozo, Measurement of Strength of Micro Bonded Parts by a New Testing Machine of Micro Combined Loads. Journal of the Society of Materials Science, 1998,47(9): 971~977
    [9] Penummadu Dayakar, Mandeville Douglas. PID Controlled Combined Axial Torsional Testing System for Cohesive Soil. Geotechnical Special Publication. 2000(106): 1~15
    [10] Xiaoming Wu, Yiqun Wang. Research on Using Parallel Pipe to Improve Response Capacity of Electro-hydraulic Speed Control System. Chinese Journal of Mechanical Engineering, 1999,12(3):178~182
    [11] Cho S H, Edg K A. Adaptive Slide Mode Tracking Control of Hydraulic Servo-system with Unknown Non-linear Friction and Modelling Error. Proceedings of the Institution of Mechanical Engineers. Part Ⅰ: Journal of Systems and Control Engineering, 2000, 214(4): 247~257
    [12] He Y B, Zhao H etc. Neural Network Self-learning Variable-robustness Tracking Control. Proceedings of the International Symposium on Test and Measurement 1999. Int Acad Publ, Beijing, China :489~492
    [13] Harvey Shane, Harvey Reg. Introduction to Artificial Intelligence. Appita Journal 1998, 51(1): 20~24
    [14] Huang Hsiao-Ping, Lee Ming-Wei, Chen Cheng-Liang. Inverse-based Design for a PID Controller. Journal of the Chinese Institute of Chemical Engineering, 2000,31(3): 225~236
    [15] Woo Zhi-Wei, Chung Hung-Yuan etc. PID Type Fuzzy Controller with Self-tuning Scaling Factors. Fuzzy Sets and Systems, 2000, 115(2):321~326
    [16] Tao Gang. Adaptive Compensation for Actuator Imperfections. Proceedings of the American Control Conference 1997,6:3788~3792
    [17] Hadjili Mohanmed Laid, Wertz Vincent, Scorletti Gerard. Fuzzy Model-Based Predictive Control. Proceedings of the IEEE Conference on Decision and Control, 1998(3): 2927~2929
    [18] Conticelli F, Allota B. Dynamic Extension and Sliding Control in Image-based Visual Servoing. IEEE Conference on Control Application, 1998(1): 237~241
    [19] O' Leafy, Daniel E. Knowledge Acquisition from Multiple Expert: An Empirical
    
    Study. Management Science 1998,44(8): 1049~1058
    [20] Grove, Ralph. Internet-Based Expert Systems. Expert Systems, 2000,17(3): 129~135
    [21] Sidqway T. Integrating Hardness into Quality Control. Heat Treatment of Metals, 1995, 22(4): 89~90
    [22] Eduardo Zalama, Paola Gaudiano, and Juan Lopez Coronado. A Real-Time, Unsupervised Neural Network for the Low-Level Control of a Mobil Robot in a Nonstationary Environment. Neural Networks, Vol. 8, No. 1
    [23] Koive and J.T. Tanttu. Tuning of PID Controllers, Survey of SI SO and MIMO Technques. IEE Trans Control systems Technology, Vol.3 No. 1.1995
    [24] Devanthan. Expert Self-Tuning PI(D) Controller. IFAC Intelligent Tuning and Adaptive Control, Singapore 1991
    [25] W.T. Miller at al. Real-Time Dynamic Control of an Industrial Manipulator Using a Neural-Network-Based learning Controller. IEEE Trans. on Robotics and Automation, Vol. 6(1), 1990
    [26] S.R. Lee, K. Srinivation. On-Line Identification of Process Model In Closed-loop Material Testing, ASEM Trans. of Journal of Dynamic Systems Measurement and Control 1989(111):172~178
    [27] S.R. Lee, K. Srinivation. Self-Tuning Control Application to Closed-loop Servo-hydraulic Material test. ASEM Trans. of Journal of Dynamic Systems Measurement and Control 1990(112): 880~888
    [28] 钟绵新.液压万能试验机数字式电液比例控制系统的研究:[硕士论文].杭州:浙江大学流体传动及控制研究所,1989
    [29] 陈申.MTS材料试验机计算机适时控制系统的主要特点.试验机与材料试验,1984(6)
    [30] 何晓喻,陈申.材料试验机控制状态的自动切换.试验与材料试验,1986(3):24~28
    [31] 宋玉泉,程永春,侯垒.恒应变速率拉伸试验机的控制系统.中国机械工程,1999(7):782~784
    [32] 周景振,韩曾晋.日本模糊控制理论与应用研究的进展.控制理论与应用,1997(4)
    [33] 张文进.PWM数控宽速比微小流量比例阀及其控制器的研究:[硕士论文].杭州:浙江大学流体传动及控制研究所,1994
    [34] 季尚勇,黄勇.静态电液伺服数字控制系统.试验技术与试验机,1999(1、2):5~6
    [35] 任真.WAW-500kN电液伺服万能试验机测、控系统的结构特点及其改进.试验技术与试验机,1998(1、2):20~21
    [36] 李时伦.PWM型数控电液比例微小流量阀组及其应用.机床与液压,1996(2):33~35
    [37] 姜伟,杨继隆等.数字微小流量阀的试验研究.机床与液压,1998(1):22~23
    [38] 刘永胜,金喜平.ZY-A型全自动压力试验机的设计.沈阳工业大学学报,1994(9):132~138
    [39] 何玉彬,徐立勤等.电液伺服协调加载系统的神经网络自学习PSD控制.机床与液压,1998(3):4~6
    [40] Sung Su Whan, Lee In-Beum, Lee Jietae, New Process Identification Method for Automatic Design of PID Control. Automatica, 1998,34(4):513~520
    [41] Wang Yinsong, Shang Guocai, Variable Parameters PID Control for the Real Power of the Hydraulic Turbogenerators. Automation of Electric Power Systems,
    
    1998,22(1): 45~48
    [42] INSTRUCTION MANUAL SHIMAZU AUTOGRAPH AG—E SINGLE MODE SOFTWARE
    [43] DOLI APPLICATION SOFTWARE FOR WINDOWS 1999
    [44] EDC USER MANUAL
    [45] Tsai Ch-Ch, Lu Ch_H, Fuzzy Supervisory Predictive PID Control of a Plastics Extruder Barrel. Journal of Chinese Institute ofEngineers, 1998,21(5): 619~624
    [46] User Manual for EDC DIVE AMPLIFIER DDA04, DDA05(10SV, 11' 14A), DDA06(150V, 15/20A)
    [47] Li Guomin, Tsang K M, Ho S L, Novel Model-Following Scheme with Simple Structure for Electrical Position Servo Systems. International Journal of Systems Science, 1998,29(9): 959~969
    [48] 许宏,骆涵秀.脉宽调制(PWM)数控比例方向阀的研究.机床与液压,1989(3)
    [49] 王旭东,骆涵秀,李世伦,赵建王.电液伺服力控制系统的智能PID控制策略研究.机床与液压,1995(5)
    [50] 钟绵新.液压万能试验机PWM型电液比例控制系统.浙江大学学报,1993增刊
    [51] 叶树明等.液压机电液比例计算机控制.浙江大学学报,1993增刊
    [52] 廖俊等.神经网络在流体传动及控制中的应用现状及展望.浙江大学学报,1998增刊
    [53] 刘白雁,丁崇生,一阶系统的模型跟随输出自适应控制.机床与液,1989(1):28~29
    [54] 陈以平,电液伺服板簧试验机模型参考自适应控制.[硕士论文].杭州:浙江大学,1988
    [55] 许宏,骆涵秀.脉冲调制型数控电液比例阀.浙江大学学报增刊,1992(2)
    [56] 路甬祥等.电液比例控制技术.北京:机械工业出版社,1988
    [57] 中华人民共和国国家标准.金属拉力试验方法.GB228-87,1987
    [58] 马世尼.恒应速率控制的实践与研究.试验技术与试验机,1992(3)
    [59] 钟绵新,骆涵秀,李世伦.自动控制液压万能试验机拉伸控制方式的设计与实现.试验技术与试验机,1994(4):21~24
    [60] 葛修润、周伯海等.电液伺服自适应控制岩石力学试验机极其对岩石力学某些问题研究的意义,岩土力学,1991(9):8~12
    [61] 杨善军.材料试验机自动控制中关键问题的探讨.物理测试,1994(4):42~44
    [62] 杨宗发.全数字化伺服液压试验机—介绍Instron 8500系列试验机.新技术新工艺,1991(5):43~44
    [63] 吕小东、李新军、周应科.MTS材料试验机智能控制系统.实验技术与管理,1995(4):51~52
    [64] 李新军,常和生,孙世长.万能材料试验机的微机自动化.航空制造工程,1993(3):29~31
    [65] 左藤正,刘丽雯.材料试验机发展新动向.中国仪器仪表,1993(2):23~24
    [66] 杨宗发.新一代Instron 5500系列新型材料试验机.现代科学仪器,1993(3):37~38
    [67] 朱启建,钱均波等.材料试验机液压控制系统CAD.液压与汽动,1994(5):13~18
    [68] 陈英建.ZYY-1000系列智能型液压万能试验机机简介.理化检验:物理分册,1995(1):57~58
    [69] 李小杰.CSS-2200系列电子万能试验机.试验技术与试验机.1996(3.4):3~7
    [70] 姜殿鑫,丁国龙.CSS-280系列电液伺服试验机系统.试验技术与试验机,
    
    1996(3.4):7~9
    [71] 李长森,李晓杰,董惠仁.微机控制电子液压万能试验机.试验技术与试验机,1996(3.4):12~14
    [72] 蔡文著.物元模型及其应用.北京:科学技术文献出版社,1993
    [73] 蔡文著.物元分析.广州:广东高等教育出版社,1987
    [74] 蔡文,杨春燕,林伟初著.可拓工程方法.北京:科学出版社,1997
    [75] 姚锡凡,陈统坚.新技术革命与智能制造技术.中国机械工程,1997(6):50~52
    [76] 赵卫东,盛昭翰,李旗号,杜雪寒.面向复杂性的人机智能决策支持系统.系统工程,1999(5):51~55
    [77] 刘金琨,王树青.基于Agent技术的人机智能决策支持系统研究.系统工程理论与实践,2000(2):15~20
    [78] Hewitt C, Open Information Systems Semantics for Distributed Artificial Intelligence, Artificial Intelligence, 1991,47(1)。
    [79] 肖人彬,周济,查建中.智能设计:概念、发展与实践.中国机械工程,1997(2):74~75
    [80] 秦小虎、涂亚庆.人机智能系统思考.自动化仪器仪表,1999(2):1~3
    [81] 姚新胜,黄洪钟.基于现代设计方法学的专家系统构造技术.起重运输机械,2000(2):21~25
    [82] 李京,黄涛,冯玉琳.对象行为约束的描述和推理.中国科学技术大学学报,1995(3):287~292
    [83] 都军民,丁承民,褚启勤.综合智能系统框架的研究及其实现.系统工程与电子技术,1997(6):68~75
    [84] 吴斌,王秉钦.反启发函数的监督学习算法.吉林大学自然科学学报,2000(3):27~30
    [85] 郁惟镛,胡炎.具有专家功能的专家系统的设计.电力系统及其自动化学报,1999(4)
    [86] 傅荣,罗键.产生式知识表示的Petri网模型及其推理规则.厦门大学学报(自然科学版),2000(6):748~752
    [87] 李龙澍,程慧霞.基于约束对象的知识表示研究.电子科技大学学报,1998(4):411~414
    [88] 尹一春,柳诚飞,邵志清.面向对象数据模型的形式化描述.计算机学报,1995(7)
    [89] 奚建清,王能斌.限制的对象表示和计算.软件学报,1996(1)
    [90] 方明,李天太,杨军全,黄炜.基于实例的软件原型化方法研究.计算机工程与应用,1999(7):53~54
    [91] 李健,王行愚.一种新型的专家系统——可拓专家系统.华东化工学院学报,1993(10):617~622
    [92] 王行愚,李健.论可拓控制.国家教委科技委员会第二届第二次自动控制学科组专题报告,No.1:125~128
    [93] 戈文英,李凡东.液压万能材料试验机微机控制系统研制.理化检验——物理分册,2000(10):450~452
    [94] 胡绍诚.液压万能材料试验机微机控制系统.现代计量测试。1998(5):42~44
    [95] 金萍.WE系列液压万能材料试验机的微机控制系统.机电工程,1999(5):236~237
    [96] 中华人民共和国国家标准.金属材料拉伸试验.ISO6892-1984,1984
    [97] 中华人民共和国国家标准.金属材料拉伸试验方法,GB228-87
    [98] 王星学.12MN锚链拉力试验机液压施力系统.机电设备,1999(2):45~48
    
    
    [99] 熊诗波,梁焱.微机测控技术在电液伺服材料试验机系统中的应用.山西机械,1996(2):21~24
    [100] 何晓佳,王大庆,丁崇生,李孔语.板弹簧与电液伺服试验机系统.机床与液压,1998(6):27~29
    [101] 黄勇,王大庆,丁崇生,葛思华.电液伺服试验机控制方式平滑切换的研究.机床与液压,1999(2):33~35
    [102] 阳林,吴黎明,黄爱华.可拓控制的物元模型及其控制算法.系统工程理论与实践,2000(5):126~130
    [123] 潘东,金以慧.可拓控制的探索与研究.控制理论与应用,1996(6):305~311
    [124] CHEN Zhen Yuan, WENG Qing Chang, A Simple PI-Extension Controller. Journal of Guangdong University of Technology ,2001(1): 37~40
    [125] 魏中俊,杨益明.物元场与类控制.安徽机电学院学报,vol.16 No.1:6~10
    [126] 蔡国梁,罗伟,康丙欣.可拓学与人工神经网络.天中学刊,1998(5):9~12
    [127] 徐顺喜,王行愚.连续生产综合自动化系统功能集成的可拓控制模型.系统工程理论与实践,1998(2):110~113
    [128] 黄勇,丁崇生,史维祥.电液伺服试验机中负载刚度问题的研究.机床与液压,1999(1):9~11
    [129] 马武福,徐茂茹.金属圆棒拉伸试样σ p0.2值在WAW-Y500试验机上的简易测量法.理化检验—物理分册,2000(8):349~351
    [130] 李青松.WAW-Y500微机控制电液伺服万能试验机的应用.理化检验—物理分册,2000(9):408~411
    [131] 张新丽.拉伸速率对盘条力学性能影响的探讨.理化检验—物理分册,1995(6):42~43
    [132] 陶永华,尹怡欣 葛芦生著.新型PID控制及其应用.北京:机械工业出版社,1998
    [133] 黄勇.电液伺服试验机控制系统的研究与实现:[博士论文].西安:西安交通大学,1998
    [134] 张庆喜,王筱柔.WEW系列微机控制液压万能试验机.试验技术与试验机,1992(3):32~35
    [136] 张静渊.WAW—Y500型微机控制电液伺服万能试验机.试验技术与试验机,1991(5):33~39
    [137] 李士勇著.模糊控制.神经控制和智能控制论.哈尔滨:哈尔滨工业大学出版社,1998
    [138] Ndumu D T, Colis J C, Nwana H S, Towards Desktop Person Travel Agent. BT Technology Journal 1998,16(3): 69~78
    [139] W Cai, the extension set and incompatible problem[J].J, of Scientfic Exploration, 1983(1):81~93
    [140] J L Chen, Extension Decision[A].Proceeding of From Matter element Analysis to Extension[C],1995:217~224
    [141] Li Jian, Wang Shienyn, Primary Research on Extension Control, Pro. of International Conference on Information and Systems. AMSE 1991, Hangzhou, chana. 1991 (1): 392~395
    [142] Chen Wei, Hu Guangrui, Wang Yaping, Learning Mechanism in Fault Diagnosis Expert System. Journal of Shanghai Jiaotong University, 1999, 33(9): 1100~1102
    [143] Lim Jae-Yoon, Kim Jeung_Hoon, Kim Jin-O, Singh Chanan, Application of Expert System to Load Composition Rate Estimation Algorithm, IEEE Transactions on
    
    Power System, 1999, 14(3): 1137~1143
    [146] Wang Haidong, Jiang Bo, Expert System for Controlling the State of Singtering Process. Journal of Central South University of Technology, 1999,6(1): 41~42
    [147] Ruel Michel, PID Tuning and Process Optimization Increased Performance and Efficiency of a Paper Machine. ISA TECH/EXPO Technology Update Conference Proceedings, 2000(399): 185~190
    [148] Shigimasa Takash, Pitts James, Kamiya Akimoto, Orchard George, New Optimal Coordinated Control System for Distributed Utility Plants by Using Two Degrees of Freedom PID Control and Optimization Techniques. ISA TECH/EXPO Technology Update Conference Proceedings, 2000(399): 175~184
    [149] Grassi Elena, Tsakalis Kostas, PID Controller Tuning by Frequency Loop-shaping: Application Furnace Temperature Control. IEEE Transactions on Control Systems Technology, 2000, 8(5): 842~847
    [150] 徐科军,陈荣保,张崇巍著.自动检测和仪表中的共性技术.北京:清华大学出版社,2000
    [151] 郎文鹏,赵维琴著.智能自动化仪表及装置.上海:上海大学出版社,1999
    [152] Qian XiangYu, Yin Yilin, Research on the Application of the Intelligent PID Controller to Photoelectric Theodolite System. Opto-Electric Engineering, 2000,27(1): 25~28
    [153] Ertur David, Li Yugang, Rahn Christopher D. Adaptive Vibration Isolation Structures. Journal of Vibration and Acoustics, Transactions of ASME, 1999,121(4): 440~445
    [154] Zhang Qin. Hydraulic Linear Actuator Velocity Control Using a Feedforward-Plus-PID Control. International Journal of Flexible Automation and Integrated Manufacturing. 1999,7(3): 277~292
    [155] Liu Jinling, Wang XianKui, Wu Dan etc. Fuzzy-reasoning Based Self-tuning Control for Servo Drive in Linear Motor. Journal of Tsinghua University, 1998, 38(2): 44~46
    [156] Oubrahim R, Leonard F, PID Tuning by a Composed Structure. IEE Conference Publication , 1998, 455(2): 1333~1338
    [157] Yan Jei, Adaptive PID Control of Electro-hydraulic Servo Loading System. Journal of Northwestern Polytechnical University, 1998, 16(1): 56~60
    [158] 董世田.国外部分试验机行业的发展.试验技术与试验机,1992(4)
    [159] 车忠远,王绪山.电液伺服动静万能试验机液压系统原理介绍.试验技术与试验机,2000(3.4):49~50
    [160] 李青松.WAW-Y500微机控制电液伺服万能试验机的应用.理化检验—物理分册,2000(9):408~411
    [161] 樊斌.试验机智能数显仪的研制.铁道师院学报,1999(4):63~66
    [162] 罗元文.用MTS试验机进行动刚度测试的试验研究.湖北工学院学报,1997(1):55~58
    [164] 经克.试验机加荷系统负荷特性分析研究.检验检疫科学,1999(4):22~25
    [165] 周勇军,钱维联.小流量高压爆破试验机.实验技术与管理,1997(3):27~28
    
    
    [167] 庄传晶,马秋荣.MTS万能材料试验机在石油管材止裂韧性测试中的应用.理化检验——物理分册,1999(1):21~24
    [168] 徐锡中.压力试验机加荷速率指示装置及其控制的分析.仪器与控制,1999.No.38:37~39
    [169] 史济建,俞瑞利.专家系统实现技术.杭州:浙江大学出版社,1995
    [170] 刘延年,忻欣,冯纯伯.基于神经网络的一类非线性连续系统的稳定适应控制.控制理论与应用,1996(2)
    [171] 贾志勇,林廷圻等.基于CMAC的高精度泵控马达位置伺服系统研究.机床与液压,1998(3)
    [172] 赵亚伟,杨严军.CAD技术在液压式万能试验机中的应用.计算机应用,2000(4):54~55
    [173] 桑杰.材料试验机的发展趋势.塑料加工应用,1998(3):38~39
    [174] 蔡增生,王海勇,王从贤.金属拉伸试验方法的关键及其对策.实验力学,2000(6):224~232
    [175] 王执铨,李军,孙金生.模糊控制在高速、高精度数字伺服系统中的实现.自动化学报,1994(7)
    [176] 唐志贵.电液伺服疲劳试验机过程中控制方式的转换.试验机与材料试验,1985(1):50~55
    [177] 赵容椿.数字图象处理导论.西安:西北工业大学出版社,2000
    [178] 邬显义,施纪泽.试验机的负荷与位移测量系统.北京:机械工业出版社,1985
    [179] 冯纯伯,费树岷.非线性控制系统分析与设计.北京:电子工业出版社,1997
    [180] 陈晶涛,牛刚,王志军.国产应变规在MTS材料试验机上的应用.气轮机技术,1997(12):378~280
    [181] 李文明,张丽芳,任宝林.万能试验机与计算机接口及数据处理.材料导报,1996(1):5~6
    [182] 杨端生,杨开菊.智能型液压万能试验机数据处理与采集系统.湖南大学学报,2002(6):47~50
    [183] 李友成,王华昌.万能材料试验机通用微机测试系统.实验技术与管理,1996(3):39~42
    [184] 施一丰,高飞,于治水.基于MFC的多线程编程技术在插销试验机微机控制系统中的应用.船舶工程,1999(6):18~20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700