关于可积系统与超可积系统某些问题的探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究可积系统的可积耦合、超可积系统的自相容源及守恒律、分数阶超可积系统及Bell多项式的应用.
     第一章作为绪论,重点介绍可积系统、孤子方程的求解、符号计算的背景与发展现状,阐明本论文的主要工作.
     第二章研究可积方程族的两种不同类型的可积耦合.通过构造新的扩展李代数及相应的loop李代数,以其为基元构造新的等谱问题,得到可积方程族,进而求得可积方程族的可积耦合与相应的Hamilton结构;从耦合李代数出发,构造方程族耦合的可积耦合,利用二次型恒等式得到其Hamilton结构.
     第三章研究超可积系统的自相容源和守恒律.从loop李超代数得到的超KN可积方程族出发,利用源生成理论导出带自相容源的超KN可积方程族及无穷守恒律,然后用同样的方法导出超JM可积方程族的自相容源和守恒律.
     第四章以分数阶导数与微分为基础,应用修正的Riemann-Liouville导数给出分数阶超可积系统的生成理论.由此导出分数阶超AKNS方程族,利用分数阶超迹恒等式得到其相应的分数阶超Hamilton结构.
     第五章讨论Bell多项式和相关可积性.利用Bell多项式方法和符号计算,通过参数选择将广义KdV方程转化为两类双线性导数方程,从而推得广义KdV方程的N孤子解、双线性Backlund变换、Lax对、Darboux协变Lax对和无穷守恒律,以揭示其相应的可积性质.同时借助Hirota双线性方法和Riemann theta函数得到该方程的拟周期波解.
In this paper, the integrable coupling of integrable hierarchy, the conservation laws and self-consistent sources of the super integrable systems, fractional super integrable systems and the application of Bell polynomial are mainly discussed.
     Chapter1is an introduction to review the theoretical background and development of integrable systems, solution of the soliton equation and symbolic computation. The main works of this dissertation are also illustrated.
     Chapter2is devoted to study two different kinds of integrable couplings of inte-grable hierarchies. From the constructed new enlarged Lie algebra and its corresponding loop algebra, new isospectral problems are discussed, which give rise integrable hierar-chies, and then the integrable couplings of the integrable systems and the corresponding Hamiltonian structures are obtained; From coupled Lie algebras, a coupling integrable couplings of an equation hierarchy is constructed and its corresponding Hamiltonian structure is also obtained by quadratic-form identity.
     Chapter3concentrates on studying the properties of super integrable hierarchy, such as the self-consistent sources and infinitely conservation laws. From super-KN integrable hierarchies based on loop super Lie algebra, we consider the properties of super-KN integrable hierarchy, such as the self-consistent sources and infinitely con-servation laws using the theory of source. The same method can be used to get the self-consistent sources and the infinitely conservation laws of super-JM integrable hier-archy.
     Chapter4discusses the generating of the fractional super hierarchy using the modified Riemann-Liouville derivative, based on the theory of fractional derivatives and integrals. Using the theory of the generating of fractional super systems, we generate the fractional super AKNS hierarchy and obtained its fractional super Hamiltonian structure with the help of fractional supertrace identity.
     Chapter5deals with Bell polynomials and related integrabilities. Via Bell poly-nomial approach and symbolic computation, the extended Korteweg-de Vries equation is transformed into two kinds of bilinear equations by choosing different coefficients. N-soliton solutions, bilinear Backlund transformation, Lax pair. Darboux covariant Lax pair and infinite conservation laws are constructed to reveal the integrability of the equation. At the same time, based on Hirota bilinear method and Riemann theta function, its quasi-periodic wave solution is also presented.
引文
[1]C. S. Garder, J. M. Greene, M. D. Kruskal, R. M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett.,19 (1967) 1095-1097.
    [2]王明亮,非线性发展方程与孤立子,兰州大学出版社,1990.
    [3]H. D. Wahlquist, F. B. Estabrook, Prolongation structures of nonlinear evolution equation, J. Math. Phys.,16 (1975) 1-7.
    [4]F. B. Estabrook, H. D. Wahlquist, Prolongation structures of nonlinear evolution equation Ⅱ, J. Math. Phys.,17 (1976) 1293-1297.
    [5]B. Deconinck, A constructive test for integrability of semi-discrete systems, Phys. Lett. A,223 (1996) 45-54.
    [6]B. K. Harrison, Backlund transformation for the Ernst equation of general relativity, Phys. Rev. Lett.,41 (1978) 1179-1200.
    [7]M. J. Ablowitz, A. Ramani, H. Segur, Nonlinear evolution equations and ordinary differential equations of Painleve type, Lett. Nuovo Cimento,23 (1978) 333-338.
    [8]M. J. Ablowitz, A. Ramani, H. Segur, A connection between nonlinear evolution equations and ordinary differential equations of P-type I, J. Math. Phys.,21 (1980) 715-721.
    [9]J. Weiss, M. Taboe, G. Garnevale. The Painleve property for partial differential equations, J. Math. Phys.,24 (1983) 522-526.
    [10]M. Jimbo, M. D. Kruskal, T. Miwa. Painleve test for the self-dual Yang-Mills equation, Phys. Lett. A,92 (1982) 59-60.
    [11]F. Calogero, W. Eckhaus, Nonlinear evolution equations, rescalings. model PDES and their integrability:Ⅰ. Inverse Probl., 3 (1987) 229-262.
    [12]F. Calogero, W. Eckhaus, Nonlinear evolution equations, rescalings. model PDEs and their integrability:Ⅱ, Inverse Probl., 4 (1988) 11-33.
    [13]F. Calogero, X. D. Ji, C-integrable nonlinear partial differentiation equations I, J. Math. Phys.,32 (1991) 875-887.
    [14]F. Calogero, X. D. Ji, C-integrable nonlinear PDEs II, J. Math. Phys.,32 (1991) 2703-2717.
    [15]陈登远,孤子引论,科学出版社,2006.
    [16]李翊神,孤子与可积系统,上海科技教育出版社,1999.
    [17]谷超豪,胡和生,周子翔,孤立子理论中的Darboux变换及其集合应用,上海科技出版社,1999.
    [18]郭汉英,向延育,吴可,纤维丛联络论与非线性演化方程的延拓结构,数学物理学报,3(1983)135-143.
    [19]郭汉英,吴可,侯伯宇,向延育,王世坤,Soliton方程的紧致代数结构旋量AKNS系统及其球面实现,数学物理学报,3(1983)241-248.
    [20]郭汉英,吴可,SL(2,R)和Ernst方程,应用数学学报,7(1984)362-365.
    [21]谷超豪,郭柏灵,李翊神,孤立子理论与应用,浙江科技出版社,1990.
    [22]屠规章,一族新的可积系及其Hamilton结构,中国科学,12(1988)1243-1252.
    [23]G. Z. Tu, The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems, J. Math. Phys.,30 (1989) 330-338.
    [24]G. Z. Tu, A trace identity and its applications to the theory of discrete integrable systems, J. Phys. A:Math. Gen.,23 (1990) 3903-3922.
    [25]马文秀,一个新的Liouville可积系的广义Hamilton方程族及其约化,数学年刊(A),1992.13:115-123.
    [26]W. X. Ma, R. G. Zhou, A coupled AKNS-Kaup-Newell soliton hierarehy, J. Math. Phys.,40 (1999) 4419-4428.
    [27]E. G. Fan, Integrable systems of derivative nonlinear Schrodinger type and their multi-Hamiltonian structure, J. Phys. A:Math.Gen.,34 (2001) 513-519.
    [28]Z. N. Zhu, H. C. Huang, A new Lax integrable hierarchy and its Hamiltonian form, Chin. Phys.,67 (1998) 778-783.
    [29]E. G. Fan, Y. F. Zhang, A simple method for generating integrable hierarchies with multi-component functions, Chaos, Solitons and Fractals,25 (2005) 425-440.
    [30]G. Z. Tu, R. I. Andrushkiw, X. C. Huang, A trace identity and its application to integrable systems of 1+2 dimensions, J. Math. Phys.32 (1991) 1990-1907.
    [31]X. B. Hu, A powerful approach to generate new integrable systems, J. Phys. A: Math. Gen.,27 (1994) 2497-2514.
    [32]X. B. Hu, An approach to generate superextensions of integrable Systems, J. Phys. A:Math. Gen.30 (1997) 619-632.
    [33]W. X. Ma, J. S. He, Z. Y. Qin, A supertrace identity and its applications to superintegrable systems, J. Math. Phys.,49 (2008) 033511.
    [34]J. Poschel, Integrability of hamiltonian systems on Cantor sets, Comm. Pur. Appl. Math.,35 (1982) 653-696.
    [35]M. J. Ablowitz, H. Segur, Solitons and the inverse scattering transformations. SIAM:Philadelphia; 1981.
    [36]M. J. Ablowitz, P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge:Cambrige University Press,1991.
    [37]S. Y. Kosmann, K. M. Tamizhmani, B. Grammaticos, Integrablility of Nonlinear Systems, Berlin:Springer,2004.
    [38]B. Fuchessteiner, Coupling of completely integrable systems:the perturbation bun-dle. In Applications of Analytic and Geometric Methods to Nonlinear Differential equations (P.A.Clarkson.ed.) Dordrecht:Kluwer,1993,125.
    [39]W. X. Ma, B. Fuchssteiner, Integrable theory of the perturbation equations, Chaos, Solitons and Fractals,7 (1996) 1227-1250.
    [40]W. X. Ma, B. Fuchssteiner, The bi-Hamiltonian structures of the perturbation equations of KdV hierarchy, Phys. Lett. A,213 (1996) 49-55.
    [41]W. X. Ma, Enlarging spectral problems to construct integrable couplings of soliton equations, Phys. Lett. A,316 (2003) 72-76.
    [42]W. X. Ma, Integrable couplings of vector AKNS soliton equations, J. Math. Phys., 46 (2005) 033507-033526.
    [43]F. G. Guo, Y. F. Zhang, A new loop algebra and a corresponding integrable hierarchy, as well as its integrable coupling, J. Math. Phys.,44 (2003) 5793-5803.
    [44]W. X. Ma, X. X. Xu, Y.F. Zhang, Semi-direct sums of Lie algebras and continuous integrable couplings, Phys. Lett. A,351 (2006) 125-130.
    [45]W. X. Ma, X. X. Xu, Y.F. Zhang, Semidirect sums of Lie algebras and discrete integrable couplings, J. Math. Phys.,47 (2006) 053501.
    [46]Y. F. Zhang, H.Q. Zhang, A direct method for integrable couplings of TD hierarchy, J. Math. Phys.,43 (2002) 466-472.
    [47]Y. F. Zhang, E.G. Fan, Commun. Theor. Phys.,49 (2008) 845.
    [48]L. Luo, E. G. Fan, Quasi-Hamiltonian Structure Associated with an Integrable Coupling System, Chin. Phys. Lett.,26 (2009) 050203.
    [49]H. X. Yang, Constructing integrable coupling systems of Hamiltonian lattice equa-tions using semi-direct sums of Lie algebras, Nonlinear Anal. Theor.,70 (2009) 317-327.
    [50]Q.Y. Yan, T. Li, Y. X. Liu, A new soliton hierarchy and its two extending integrable models, Commun. Nonlinear. Sci. Numer. Simulat.,14 (2009) 2928-2934.
    [51]T. C. Xia, F. C. You, Multi-component Dirac equation hierarchy and its multi-component integrable couplings system, Chin. Phys.,16 (2007) 605.
    [52]T. C. Xia, H. Wang, Y. F. Zhang, The multi-component Tu hierarchy of soliton equations and its multi-component integrable couplings system Chin. Phys.,14 (2005) 247.
    [53]H. H. Dong, X. B. Gong, A (2+1)-dimensional multi-component AKNS integrable hierarchy and its expanding model, Chaos Solitons Fract.,33 (2007) 945-950.
    [54]F. K. Guo, Y. F. Zhang, Semi-direct sums of Lie algebras and continuous integrable couplings, Phys. Lett. A,351 (2006) 125-130.
    [55]W. X. Ma, M. Chen, Hamiltonian and quasi-Hamiltonian structures assoeiated with semidirect surns of Lie algebras, J. Phys. A:Math. Gen.,39 (2006) 10787-10801.
    [56]H. Wang, X. Z Wang, G. D. Liu, J. M. Yang, A new Lie algebra and its related Liouville integrable hierarchies, Commun. Theor. Phys.54 (2010) 407-411.
    [57]F. C. You, T. C. Xia, Integrable couplings of the generalized AKNS hierarchy with an arbitrary function and its Bi-Hamiltonian structure, Int. J. Theor. Phys., 46 (2007) 3159-3168.
    [58]F. C. You, T. C. Xia, The integrable couplings of the generalized coupled Burgers hierarchy and its Hamiltonian structures. Chaos Solitons Fract.,36 (2008) 953-960.
    [59]F. C. You, T. C. Xia, The multi-component dispersive long wave equation hi-erarchy, its integrable couplings and their Hamiltonian structures, Appl. Math. Comput.,201 (2008) 44-55
    [60]J. Wess, B. Zumino, Supergauge transformations in four dimensions, Nucl. Phys. B 70 (1974) 39-50.
    [61]B. A. Kupershmidt, Elements of superintegrable systems:basic techniques and results, Springer,1987.
    [62]M. Gurses, O. Oguz. A super AKNS scheme. Physics Letters A,108 (1985) 437-440.
    [63]S. Ghosh, D. Sarma, Bilinearization of N=1 supersymmetric modified KdV equations. Nonlinearity.16 (2003) 411-418.
    [64]M. Siddiq, M. Hassan. U. Saleem. On Darboux transformation of the supersym-metric sin-Gordon equation, J. Phys. A:Math. Gen.,39 (2006) 7313-7318.
    [65]J. F. Gomes, L. H. Ymai, A. H. Zimerman. Permutablility of Backland transforma-tion for N=1 supersymmetric sinh-Gordon, Phys. Lett. A,373 (2009) 1401-1404.
    [66]A. R. Chowdhury, S. Roy, On the Backland transformation and Hamiltonian prop-erties of superevalution equation, J. Math. Phys.,27 (1986) 2464-2468.
    [67]Q. P. Liu, Darboux transformations for supersymmetric Korteweg-de Vries equa-tions, Lett. Math. Phys.,35 (1995) 115-122.
    [68]Q. P. Liu and M. Manas, Darboux transformation for the Manin-Radul supersym-metic KdV equation, Phys.Lett. B,394 (1997) 337-342.
    [69]Q. P. Liu and M. Manas, Darboux transformation for supersymmetric Kadomtsev-Petviashvili hierarchy, Phys. Lett. B,485 (2000) 293-300.
    [70]M. Siddiq, M. Hassan and U. Saleem, On Darboux transformation of the super-symmetric sine-Gordon equation, J.Phys. A:Math. Gen.,39 (2006) 7313-7318.
    [71]A. S. Carstea, Extension of the bilinear formalism to supersymmetric KdV-type equations, Nonlinearity,13 (2000) 1645-1656
    [72]A. S. Carstea, Bilinear approach to supersymmetric KdV equation, J.Nonlinear Math. Phys.,8(2001)48-52.
    [73]Q. P. Liu, X.B.Hu, Bilinearization of N=1 supersymmetric Korteweg-de Vries equation revisited, J.Phys. A:Math. Gen.,38 (2005) 6371-6378.
    [74]Q. P. Liu, X.B.Hu and M.X.Zhang, Supersymmetric modified Korteweg-de Vries equation:bilinear approach, Nonlinearity,18(2005) 1597-1603.
    [75]Z. Li, Y. H. W. Yang, H. H. Dong, Super-Burgers soliton hierarchy and its super-Hamilton Structure, Mod. Phys. Lett. B,23 (2009) 2907-2914.
    [76]S. X. Tao, T. C. Xia, Two super-integrable hierarchies and their super-Hamiltonian structures, Commun. Nonlinear. Sci. Numer. Simulat.,16 (2011) 127-132.
    [77]S. X. Tao, T. C. Xia, The super-classical-Boussinesq hierarchy and its super-Hamiltonian structure, Chin. Phys. B,19 (2010) 070202.
    [78]H. H. Dong. X. Z. Wang, Lie algebras and Lie super algebra for the integrable couplings of NLS-MKdV hierarchy, Commun. Nonlinear. Sci. Numer. Simulat.,14 (2009) 4071-4077.
    [79]J. S. He, J. Yu, Y. Cheng, R. G. Zhou, Binary nonlinearization of the super AKNS system, Mod. Phys. Lett. B,22 (2008) 275-288.
    [80]J. Yu, J. W. Han, J. S. He, Binary nonlinearization of the super AKNS system under an implicit symmetry constraint, J. Phys. A:Math. Theo.,42 (2009) 465201.
    [81]J. Yu, J. S. He, W. X. Ma, Y. Cheng, The Bargmann symmetry constraint and binary nonlinearization of the super Dirac systems, Chin. Ann. Math.,31B (2010) 361-372.
    [82]J. Yu, J. S. He, Y. Cheng, J. W. Han, A novel symmetry constraint of the super cKdV system, J. Phys. A:Math. Theor.,43 (2010) 445201.
    [83]虞静,超可积系统的双非线性化,博士学位论文,中国科学技术大学,2008.
    [84]S. X. Tao, H. Wang, H. Shi, Binary nonlinearization of the super classical-Boussinesq hierarchy, Chin. Phys. B,20 (2011) 070201.
    [85]陶司兴,夏铁成,超Broer-Kaup-Kupershmidt族的双非线性化,数学年刊(A),33(2012)217-228.
    [86]陶司兴,李超代数与非线性演化方程族的研究,博士毕业论文,2011.
    [87]J. Spanier, K. B. Oldham, The fractional calculus:Integrations and differentiations of arbitrary order, New York:Academic Press,1974.
    [88]B. Ross, The fractional calculus and its application. Lecture notes in mathemat-ics(457). Berlin:Springer-Verlag,1975.
    [89]A. Carpinteri, E. Malnardi. Fractals and Fractional Calculus in Continuum Me-chanics, Springer, New York,1997.
    [90) K. M. Kolwankar, Fractals and differential equations of fractional order, J. Indian Inst. Sci.,78 (1998) 275-291.
    [91]R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Stat. Sol. (B),133 (1986) 425-430.
    [92]F. Mainardi, Fractional relaxation-oscillation and fractional diffnsion-wave phe-nomena, Chaos Solitous Fract.,7 (1996) 1461-1477.
    [93]Y. E. Ryabov, A. Puzcnko, Damped oscillation in view of the fractional oscillator equation, Phys. Rev. B,66 (2002) 184-201.
    [94]V. M. Ovidiu, Universality classes for asymptotic behavior of relaxation process in systems with dynamical disorder:dynamical generalizations of stretched expo-nential, J. Math. Phys.,37 (1996) 2279-2306.
    [95]H. Schiessel, A. Blumen, Hierarchical analogues to fractional relaxation equations, J. Phys. A:Math, Gen.,26 (1993) 5057-5069.
    [96]M. Kopf et al, Anomalous diffusion behavior of water in biological tissues, Biophys. J.70 (1996) 2950-2958.
    [97]G. Srinivas, A. Yethiraj, B. Bagchi, Nonexponentiality of time dependent survival reactions in polymer chain, J. Chem. Phys.,114 (2001) 9170-9179.
    [98]G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371 (2002) 461-580.
    [99]M. M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fract.,14 (2002) 433-440.
    [100]W. T. Coffey, Y. P. Kalmykov, S. V. Titov, Inertial effects in anomalous dielectric relaxation, J. Mol. Liq.,114 (2004) 35-41.
    [101]R. Hiller, On fractional diffusion and continuous time random walks, Physica A, 329 (2003) 35-40.
    [102]R. Metzler, T. F. Nonnenmacher, Fractional relaxation processes and fractional theological models for the description of a class of viscoelastic materials. Int. J. Plasticity,19 (2003) 941-959.
    [103]N. Lasldn, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A,268 (2000) 298-305.
    [104]D. Baleanu, S. L. Muslih, About fractional supersymmetric quantum mechanics, Czech. J. Phys.,55 (2005) 1063-1066.
    [105]W. R. Schneider. W. Wyss, Fractional diffusion and wave equations, J. Math. Phys.,30 (1989) 134-144.
    [106]W. Wyss, The fractional diffusion equation, J. Math. Phys.,27 (1986) 2782-2785.
    [107]G. Dattoli, Operational methods, fractional operators and special polynomials, Appl. Math. Comput.,141 (2003) 151-159.
    [108]S. S. Romero, H. M. Srivastava, An application of the N-fractional calculus oper-ator method to a modified Whittaker equation, Appl. Math. Comput.,115 (2000) 11-21.
    [109]K. Y. Chen, H. M. Srivastava, Some infinite series and functional relations that arose in the context of fractional calculus, J. Math. Anal. Appl.,252 (2000) 376-388.
    [110]F. J. Yu, Integrable coupling system of fractional soliton equation hierarchy, Phys. Lett. A,373 (2009) 3730-3733.
    [111]G. C. Wu, S. Zhang, A generalized Tu formula and Hamiltonian structures of fractional AKNS hierarchy, Phys. Lett. A,375 (2011) 3659-3663.
    [112]H. Wang, T. C. Xia, The fractional supertrace identity and its application to the super Ablowitz-Kaup-Newell-Segur hierarchy. J. Math. Phys,54 (2013) 043505.
    [113]H. Wang, T. C. Xia, The fractional supertrace identity and its application to the super Jaulent-Miodek hierarchy. Conimun. Nonlinear. Sci. Numer. Simulat.18 (2013) 2859-2867.
    [114]V. K. Mel'nikov, Intersection of the nonlinear Sehrodinger equation with a source, Inverse Probl., 8 (1992) 133-147.
    [115]E. V. Doktrov, R. A. Vlasov, Optical solitons in media with resnent and nonres-onant self-focusing nonlinear waves. Opt. Acta.,30 (1983) 223-232.
    [116]V. K. Mel'nikov, Intersection of the Korteweg-do Vries equation with a source, Inverse Probl.,6 (1990) 233-246.
    [117]V. E. Zakharov, E. A. Kuznetsov, Multi-scale expansions in the theory of sys-tems integrable by the inverse scattering transform, Phys. D,18 (1986) 455-463.
    [118]V. K. Mel'nikov, Integration method of the Korteweg-de Vries equation with a self-consistent source, Phys. Lett. A,133 (1988) 493.
    [119]J. Leon, A. Latifi, Soliton of an initial-boundery value problem for coupled non-linear waves, J. Phys. A:Math. Gen.,23 (1990) 1385-1403.
    [120]J. Leon, Spectral transform and solitons for generalized coupled Bloch systems, J. Math. Phys.,29 (1988) 2012-2019.
    [121]Y. B. Zeng, W. X. Ma, R. L. Lin, Integration of the soliton hierarchy with self-consistent sources, J. Math. Phys.,41 (2000) 5453.
    [122]Y. B. Zeng, W. X. Ma, Y. Shao, Two binary Darboux transformations for the KdV hierarchy with self-consistent sources, J. Math. Phys.,42 (2001) 2113-2128.
    [123]Y. B. Zeng. Y. Shao, W. X. Ma, Integral-type Darboux transformation for the mKdV hierarchy with self-consistent sources, Comm. Theor. Phys.,38 (2002) 641-648.
    [124]W. X. Ma, W. Strampp, An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems, Phys. Lett. A,185 (1994) 277-286.
    [125]W. X. Ma, B. Fuchssteiner, Binary nonlinearization of Lax pairs, in:Proceedings of the First Workshop on Nonlinear Physics in Gallipoli, Italy, World Scientific, 1996,217-224.
    [126]W. X. Ma, Soliton, positon and negaton solutions to a Schroedinger self-consistent source equation. J. Phys. Soc. Jpn.72 (2003) 3017-3019.
    [127]王红艳,胡星标,带自相容源的孤立子方程,清华大学出版社,2008年.
    [128]A. S. Fokas. Symmetries and integrability, Stud. Appl. Math.,77 (1987) 253-299.
    [129]B. Fuchssteiner, A. S. Fokas, Symplectic structures, their Backland transforma-tions and hereditary symmetries, Phys. D,4 (1981) 47-66.
    [130]A. S. Fokas, R. L. Anderson, On the use of isospectral eigenvalue problems for obtaining hereditary symmetries for Hamilton systems, J. Math. Phys.,23 (1982) 1066-1073.
    [131]D. J. Zhang, D. Y. Chen, Hamiltonian structure of discrete soliton systems, J. Phys. A:Math. Gen.,35 (2002) 7225-7241.
    [132]R. M. Miura, C. S. Gardner, M. D. Kruskal, Korteweg-de Vries and generaliza-tions Ⅱ. Existence of conservation laws and constants of motion, J. Math. Phys.,9 (1968) 1204-1209.
    [133]M. Wadati, H. Sanuki, K. Konno, Relationships among inverse method, Backlund transformation and an infinite number of conservation laws, Prog. Theo. Phys.,53 (1975) 419-436.
    [134]K. Konno, H. Sanuki, Y. H. Ichikawa, Conservation laws of nonlinear evolution equation, Prog. Theo. Phys.,52 (1972) 886-889.
    [135]V. Zakharov, A. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov, Phys. JETP,34 (1972) 62-69.
    [136]T. Tsuchida, M. Wadati, The Coupled modified Korteweg-de Vries equations, J. Phys. Soc. Jpn.,67 (1998) 1175-1187.
    [137]V. E. Adler, S. SvinoluPov, R.I. Yamilov, Multi-component volterra and toda type integrable equations, Phys. Lett.,254 (1999) 24-36.
    [138]D. J. Zhang, D. Y. Chen, The conservation law of some diserete soliton, Chaos Solitons Fract.,14 (2002) 573-579.
    [139]张大军,宁同科,可积系统的守恒律,上海大学学报,12(2006)19-25.
    [140]J. Matsukidaira. J. Satsuma, Conserved quantities and symmetries of KP hierar-chy, J. Math. Phys.,31 (1990) 1426-1434.
    [141]O. G. Rasin, P. E. Hydon, Conservation law for integrable difference equations, J. Phys. A:Math. Gen.,40 (2007) 12763-12773.
    [142]O. G. Rasin, P. E. Hydon, Conservation laws for NQC-type difference equations, J. Phys. A:Math. Gen.,39 (2006) 14055-14066.
    [143]C. S. Gardner, J. M. Green, M. D. Kruskal et al, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett.,19 (1967) 1095-1097.
    [144]Ablowitz M.J., Clarkson P. A., Solitons, Nonlinear Evolution Equation and In-verse Scattering, Cambridge University Press, Cambridge,1991.
    [145]J. J. C. Nimmo, Soliton solutions of three differential-difference equations in Wronskian form, Phys.Lett. A,99 (1983) 281-286.
    [146]N. C. Reeman, J. J. C. Nimmo, Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petmiashvili equations:the Wronskian technique, Phys. Lett.,95A (1983) 1-3.
    [147]J. Weiss, M. Tabor, G. Carnvale, The Painleve property for partial differential equations, J. Math. Phys.,24 (1983) 522-526.
    [148]S. Y. Lou, H. Y. Ruan, Nonclassical analysis and Painleve Property for the Kuper-Shmidt equations, J. Phys. A:Math. Gen.,26 (1993) 4679-4688.
    [149]M. L. Wang, Y. B. Zhou, Z. B. Li, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A, 216 (1996) 67-75.
    [150]Z. Y. Yan, H. Q. Zhang, Multiple soliton-like and periodic-solutions to the gener-alization of integrable of (2+1)-dimensional dispersive long-wave equation, J. Phys., Soc. Jpn,71 (2002) 437-442.
    [151]E. G. Fan, H. Q. Zhang, New exact solutions for a system of coupled KdV equa-tion, Phys. Lett. A,245 (1998) 389-392.
    [152]G. X. Huang, S. Y. Lou, X. X. Dai, Exact and explicit solitary wave solutions to a model equation for water waves, Phys. Lett. A,139 (1989) 373-374.
    [153]H. D. Wahlquist, F. B. Estabrook, Backland transformation for solutions of the Korteweg-de Vries equation, Phys. Rev. Lett.,31 (1973) 1386-1390.
    [154]G. Darboux, Compts rendus hebdomadaires des 1'Aeademie des sciences. Pairs, 94 (1882) 1456-1459.
    [155]V. B. Matveev, M. A. Salle, Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin,1991.
    [156]Y. B. Zeng, Y. Q. Zhu, T. Xiao, H. H. Dai, Canonical explicit Backland trans-formations with spectrality for constrained flows of soliton hierarchies, Physica A, 303 (2002) 321-338.
    [157]Y. S. Li, W. X. Ma, J. E. Zhang, Darboux transformations of classical Boussinesq system and its new solutions, Phys. Lett. A,275 (2000) 60-66.
    [158]Y.S. Li, J. E. Zhang, Darboux transformations of classical Boussinesq system and its multi-soliton solutions, Phys. Lett. A,284 (2001) 253-258.
    [159]X. B. Hu, P. A. Clarkson, Backland transformations and nonlinear superposition formula of a diferential-difference KdV equation, J. Phys. A:Math. Gen.,31 (1998) 1405-1414.
    [160]X. B. Hu, Z. N. Zhu, A Backland transformations and nonlinear superposition formula for the Belo-Chaltikian lattice, J. Phys. A:Math. Gen.,31 (1998),4755-4761.
    [161]王明亮,白雪,齐次平衡原则与BTs,兰州大学学报,36(2000)12-17.
    [162]闫振亚,非线性波与可积系统,博士学位论文,大连理工大学,2002.
    [163]耿献国,MKP方程和Darboux变换,数学年刊(A辑),11(1990)265-268.
    [164]R. Hirota. Exact soliton of the KdV equtaion for multiple collisions of solitons, Phys. Rev. Lett.,27 (1971) 1192-1191.
    [165]S. Oishi, A method of analyzing soliton equations by bilinearization. J. Phys. Soc. Jpn.,48 (1980) 639-646.
    [166]R. Hirota, M. Ito, A direct approach to multi-periodic wave solitons to nonlinear evolution equation, J. Phys. Soc. Jpn.,50 (1981) 338-342.
    [167]J. Satsuma, M.J. Ablowitz, Two dimensional lumps in nonlinear dispersive sys-tems, J. Math. Phys.,20 (1979) 1496-1503.
    [168]Y. Matsuno, A new proof of the rational N-soliton solution for the Kadomtsev-petviashvili equation, J. Phys. Soc. Jpn.,28 (1989) 67-72.
    [169]J. J. C. Nimmo, Soliton solitions of three differential-difference equations in Wron-skian form, Phys. Lett. A,99 (1983) 281-286.
    [170]J. J. C. Nimmo, N. C. Freeman, A method of obtainning the soliton solution of the Boussinesq equation in terms of a Wronskian, Phys. Lett. A,95 (1983) 4-6.
    [171]Q. P. Liu, X. X. Yang, Supersymmetric two-boson equation:Bilinearization and solutions, Phys. Lett. A,351 (2006) 131-135.
    [172]S. F. Deng, D. Y. Chen, The novel multisoliton solutions of the KP equation, J. Phys. Soc. Jpn.,70 (2001) 3174-3175.
    [173]D. Y. Chen, D. J. Zhang, S. F. Deng, The novel multisoliton solutions of the mKdV-Sine-Gordon equation, J. Phys. Sov. Jpn,71 (2002) 655-659.
    [174]D. Y. Chen, D. J. Zhang, S. F. Deng, Remarks on some solutions of soliton equations, J. Phys. Sov. Jpn.,71 (2002) 2071-2072.
    [175]E. T. Bell, Exponential polynomials, Ann. Math.,35 (1934) 258-277.
    [176]C. Gilson, F. Lambert, J. Nimmo, R. Willox, On the combinatorics of the Hirota D-operators, Proc. R. Soc. Lond. A,452 (1996) 223-234.
    [177]F. Lambert, J. Springael, Construction of Backlund transformations with binary Bell polynomials, J. Phys. Soc, Jpn.,66 (1997) 2211-2213.
    [178]F. Lambert, J. Springael, On a direct procedure for the disclosure of Lax pairs and Backlund transformations. Chaos, Solitons and Fract.,12 (2001) 2821-2832.
    [179]F. Lambert, J. Springael, From soliton equations to their zero curvature formu-lation, Acta. Appl. Math.,102 (2008) 147-178.
    [180]E. G. Fan, The integrability of nonisospectral and variable-coefficient KdV equa-tion with binary Bell polynomials, Phys. Lett. A,375 (2011) 493-497.
    [181]E. G. Fan, Y. C. Hon, Super extension of Bell polynomials with applications to supersymmetric equations, J. Math. Phys.,53 (2012) 013503.
    [182]R. Hirota, The direct method in soliton theory, Cambridge University Press,2004.
    [183]C. W. Cao, Y. T. Wu, X. G. Geng, Relation between the Kadometsev-Petviashvili equation and the confocal involutive system, J. Math. Phys.,40 (1999) 3948-3970.
    [184]C. W. Cao, X. G. Geng, H. Y. Wang, Algebro-geometric solution of the 2+1 dimensional Burgers equation with a discrete variable, J. Math. Phys.,43 (2002) 621-643.
    [185]W. T. Wu, On the decision problem and the mechanization of theorem in ele-mentary geometry. Scientia Sinica,21 (1978) 159-172.
    [186]W. T. Wu, On the foundation of algebraic differential geometry, MMRP.1989.
    [187]X. S. Gao, J. Z. Zhang, S. C. Chou, Geometry expert(in Chinese), Nine Chapters Pub., Taiwan,1998.
    [188]S. C. Chou, X. S. Gao, J. Z. Zhang, Machine proofs in geometry, World Scientific, Singapore,1994.
    [189]石赫,机械化数学引论,湖南教育出版社,1998.
    [190]X. D. Sun, S. K. Wang, K. Wu, Classification of six-vertex-type solutions of the colored Yang-Baxter equation, J. Math. Phys.36 (1995) 6043-6063.
    [191]张鸿庆,弹性力学方程组一般解的统一理论,大连理工大学学报,18(1978)23-47.
    [192]朱思铭,施齐焉,符号计算与吴-消元法在Painleve检验分析中的应用,现代数学和力学,上海大学出版社,1997,482-485.
    [193]李志斌,张善卿,非线性波方程精确孤立波解的符号计算,数学物理学报,17(1997)81-89.
    [194]柳银萍,微分方程解析解及解析近似解的符号计算研究,博士学位论文,华东师范大学,2008.
    [195]Z. J. Zhou, Z. B. Li, An implementation for the algorithm of Hirota binlinear form of PDE in the Maple system, Appl. Math. Comput.,183 (2006) 872-877.
    [196]徐桂琼,非线性演化方程的精确解与可积性及其符号计算研究,博士学位论文,华东师范大学,2004.
    [197]范恩贵,可积系统与计算机代数,科学出版社,2004.
    [198]夏铁成,吴方法及其在偏微分方程中的应用,博士学位论文,大连理工大学,2002.
    [199]G. C. Wu, T. C. Xia, A new method for constructing soliton solutions to differential-differene equation with symbolic compution, Chaos Solitons Fract.,39 (2009) 2245-2248.
    [200]T. C. Xia, S. Q. Xiong, Exact solutions of (2+1)-dimensional Bogoyavlenskii's breaking soliton equation with symbolic computation, Comput. Math. Appl.,60 (2010) 919-923.
    [201]F. Schwarz, A reduce package for determining Lie symmetries of ordinary and partial differential equations, Comp. Phys. Comm.,27 (1982) 179-186.
    [202]G. J. Reid, Finding abstract Lie symmetry algebras of differential equations with-out integrating determining equations, Eur. J. Appl. Math.,2 (1991) 319-340.
    [203]E. L. Mansfield, P. A. Clarkson, Applications of the differential algebra package diffgrob2 to classical symmetries of differential equations, J. Symb. Comput.,23 (1997) 517-533.
    [204]B. Champagne, W. Hereman, The computer calculation of Lie point, symmetries of large systems of differential equations, Comp. Phys. Comm.,66 (1991) 319-340.
    [205]W. Hereman, Review of symbolic software for Lie symmetry analysis. Math. Comput. Model.,25 (1997) 115-132.
    [206]朝鲁,吴-微分特征列法及其在微分方程对称和力学中的应用,博士学位论文,大连理工大学,1997.
    [207]S. Y. Sakovich, On Integrability of a (2+1)-Dimensional Perturbed KdV Equa-tion, J. Nonlin. Math. Phys.5 (1998) 230-233.
    [208]S. Y. Sakovich. Coupled KdV Equations of Hirota-Satsuma Type, J. Nonlin. Math. Phys.6 (1999) 255-262.
    [209]W. X. Ma, R. G. Zhou, Nonlinearization of spectral problems of the perturbation KdV systems, Physica A,296 (2001) 60-74.
    [210]E. G. Fan, Y. Zhang, A simple method for generating integrable hierarchies with multi-potential functions, Chaos. Solitons. Fract.25 (2005) 425-439.
    [211]F. K. Guo, Y. F. Zhang, A Type of New Loop Algebra and a Generalized Tu Formula, Commun. Theor. Phys 51(2009) 39-46.
    [212]W. X. Ma, L. Gao, Coupling integrable couplings, Mod. Phys. Lett. B.23 (2009) 1847-1860.
    [213]Y. F. Zhang, E. G. Fan, Coupling integrable couplings and bi-Hamiltonian struc-ture associated with the Boiti-Pempinelli-Tu hierarchy. J. Math. Phys.51 (2010) 083506-083523.
    [214]W. X. Ma, Variational identities and applications to Hamiltonian structures of soliton equations, Nonlinear. Anal.:Theor.71 (2009) 1716-1726.
    [215]F. K. Guo, Two Hierarchies of Integrable Hamiltonian Equations, Math. Appl.9 (1996) 495-499.
    [216]G. Z. Tu, An extension of a theorem on gradients conserved densities of integrable system, Northeastern. Math.J.,6 (1990) 26.
    [217]S. X. Tao, T. C. Xia, H. Shi. Super-KN hierarchy and its super-Hamiltonian structure, Comm. Theor. Phys.,55 (2011) 391-395.
    [218]M. Jaulent, K. Miodek, Nonlinear evolution equations associated with enegry-dependent Schrodinger potentials. Lett. Math. Phys.,1 (1976) 243.
    [219]V. E. Tarasov, Fractional systems and fractional Bogoliubov hierarchy equations, Phys. Rev. E,71 (2005) 011102.
    [220]R. Nigmatullin, The realization of the generalized transfer in a medium with fractal geometry, Phys. Status Solidi B,133 (1986) 425-430.
    [221]K. M. Kolwankar, A. D. Gangal, Holder exponents of irregular signals and local fractional derivatives, Pramana J. Phys.,48 (1997) 49.
    [222]K. M. Kolwankar, A. D. Gangal, Local fractional Fokker-Planck equation, Phys. Rev. Lett.,80 (1998) 214.
    [223]J. Cresson, Scale calculus and the Schrodinger equation, J. Math. Phys.,44 (2003) 4907.
    [224]W. Chen, H. G. Sun, Multiscale statistical model of fully-developed turbulence particle accelerations, Mod. Phys. Lett. B,23 (2009) 449.
    [225]G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl.,51 (2006) 1367.
    [226]D. Baleanu, O.P. Agrawal, Fractional hamilton formalism within caputo's deriva-tive, Czech J. Phys.,56 (2006) 1087.
    [227]R. A. El-Nabulsi, A fractional action-like variational approach of some classical, quantum and geometrical dynamic, Int. J. Appl. Math.17 (2005) 299.
    [228]G. Jumarie, Lagrangian mechanics of fractional order, Hamilton-Jacobi fractional PDE and Taylor's series of nondifferentiable functions, Chaos Solitons Fract.,32 (2007) 969.
    [229]G. Jumarie. Fractional Hamilton-Jacobi equation for the optimal control of non-random fractional dynamics with fractional cost function, J. Appl. Math. Comput. 23 (2007) 215.
    [230]Y. H. Wang, Y. Chen, Integrability of the modified generalised Vakhnenko equa-tion, J. Math. Phys.,53 (2012) 123504.
    [231]A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Higher Education Press, Beijing,2009.
    [232]T. R. Marchant, Soliton interaction for the extended Korteweg-de Vries equation, IMA J. Appl. Math.,56 (1996) 157-176.
    [233]A. Nakamura, A direct method of calculating periodic wave solutions to nonlinear evolution equations. I. Exact two-periodic wave solution, J. Phys. Soc. Jpn.,47 (1979) 1701-1705.
    [234]A. Nakamura, A direct method of calculating periodic wave solutions to nonlinear evolution equations. II. Exact one-and two-periodic wave solution of the coupled bilinear equations, J. Phys. Soc. Jpn.,48 (1980) 1365-1370.
    [235]H. H. Dai, E. G. Fan, X. G. Geng, Constructing periodic wave solutions of non-linear equations by Hirota bilinear method, arXiv:nlin/0602015.
    [236]E. G. Fan, Y. C. Hon, Quasiperiodic waves and asymptotic behavior for Bogoy-avlenskiis breaking soliton equation in (2+1) dimensions, Phys. Rev. E,78 (2008) 036607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700