非局域对称及保对称离散格式的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对称理论在数学物理等众多领域的研究中起着越来越重要的作用,已成为研究非线性系统可积性质及精确求解的有力工具之一.基于对称理论及符号计算,本文主要开展了以下三个方面的工作:构造了多个非线性数学物理方程的非局域对称,得到了这些方程的一些新的精确解;研究了非线性演化方程保对称离散方法,并将此方法推广到构造高维方程的保对称离散格式;基于符号计算平台Maple,开发了构造非线性微分方程非局域对称的自动推演程序包.本文的主要内容如下:
     第一章作为绪论部分,重点介绍了对称理论、保对称离散、符号计算的背景与发展现状,并且阐明了本论文的主要工作.
     第二章研究了若干非线性微分方程的非局域对称.首先,提出了一个辅助系统构造微分方程非局域对称的方法.将此方法运用到几类经典方程上,如Boussinesq方程、MKdV方程、AKNS系统等,得到了这些方程的非局域对称,并将非局域对称局域化到相应的封闭系统;其次,利用Lie群方法研究PIB方程,得到了约化方程的非局域对称,并利用对称约化方法构造了此方程新的精确解;最后,将基于对称构造非局域对称的方法应用到非线性diffusion-convection方程,得到了此方程非局域相关的势系统,并通过势系统构造了方程多个新的非局域对称.
     第三章构造了几类经典方程的精确解.通过经典Lie群方法得到了封闭系统的对称群,构造了这些对称群的最优系统,并利用对称约化方法求得了这些方程一些新的精确解,如椭圆周期波和孤立子、椭圆周期波和扭结孤子相互作用解等.为了研究这些解的性质,对上述解选取适当参数并画出了相应的图像.
     第四章研究了非线性发展方程的保对称离散格式.利用保对称离散方法构造了MKdV方程、Boussinesq方程的保对称离散格式;提出了一种构造高维非线性发展方程保对称离散格式的方法,并利用此方法构造了(2+1)维Burgers方程的保对称离散格式.通过验证可知,得到的离散格式均继承了连续方程的Lie点对称.
     第五章开发了构造非线性微分方程非局域对称的程序包.基于微分方程的一些辅助系统,将提出的构造方程非局域对称的方法程序化,在Maple上编写相应的程序包NonSyml,并用多种不同类型的实例来说明此程序包的有效性,从而大大提高了构造非局域对称的效率.
     第六章对全文工作进行讨论和总结,并对下一步要进行的研究工作做了展望.
Symmetry theory plays a more and more important role in the field of mathematical physics and so on, has become one of powerful tools in studying integrable properties and exact solutions of nonlinear system. Based on symmetry theory and symbolic com-putation, the main work is carried out in three aspects:nonlocal symmetries of nonlinear differential equations are investigated in this dissertation, some new exact solutions of these equations are obtained; Symmetry-preserving discrete, algorithm of nonlinear evo-lution equations is studied, and the method is extended to higher dimensional equation-s; Furthermore, based on symbolic computation platform Maple, a software package of nonlocal symmetry automatic deduction is developed. The main work is carried out as follows:
     In chapter1, an introduction of the research background and the current situation re-view related to this dissertation, which including symmetry theory, symmetry-preserving discrete and symbolic computation is devoted. The main works of this dissertation are also illustrated.
     In chapter2, nonlocal symmetries of several differential equations are studied. First-1y, based on the auxiliary systems, a method of constructing nonlocal symmetry is pro-posed, and the method is applied to several classical equations, such as Boussinesq equa-tion, MKdV equation, AKNS system, etc. The nonlocal symmetries of these equations are obtained, and localized to corresponding closed systems. Secondly, we study PIB equation by using Lie group method and construct nonlocal symmetries of reduced e-quations. Some new exact solutions.of the PIB equation are obtained by using symmetry reduction method. Finally, nonlinear diffusion-convection equation is studied by using symmetry-based method, nonlocal-related potential systems and nonlocal symmetries are constructed.
     In chapter3, exact solutions of several classical equation are constructed. The sym-metry groups of the closed systems are obtained through classical Lie group method, op-timal systems of the symmetry groups are constructed. Some new exact solutions of these equations are obtained by using the symmetry reduction method, among which the inter-actions of elliptic periodic wave and soliton as well as periodic wave and kink soliton are found. In order to study the properties of the solutions, we select appropriate parameters and draw the corresponding images of above solutions.
     In chapter4, symmetry-preserving discrete format of nonlinear evolution equations is discussed. Symmetry-preserving discrete formats of MKdV equation, Boussinesq e- quation are constructed by using symmetry-preserving discrete method. We put forward a method which can construct symmetry-preserving discrete formats of high dimension-al nonlinear evolution equations, and apply this method to (2+1)-dimensional Burgers equation. Corresponding symmetry-preserving discrete formats which inherit Lie point symmetries of continuous equations are obtained.
     In chapter5, a software package of constructing nonlocal symmetries of PDEs is developed. Based on some auxiliary systems of PDEs, we put forward a mechaniza-tion method of constructing nonlocal symmetries and develop the corresponding software package NonSymI. Multiple instances are used to prove the effectiveness of this package, thus the efficiency of constructing nonlocal symmetries is improved greatly.
     In chapter6, the summary and discussion of this dissertation are given, and the outlook of future works are discussed.
引文
[1]孙义燧等,非线性科学若干前沿问题,中国科学技术大学出版社,2009.
    [2]谷超豪,李大潜等,数学物理方程,高等教育出版社,2002.
    [3]Olver P J, Applications of Lie groups to different equations, Springer-Verlag, New York,1993.
    [4]Bluman G W and Kumei S, Symmetries and Differential Equations, Springer-Verlag, 1989.
    [5]Helgason S, Differential geometry, Lie groups, and symmetric spaces, Access Online via Elsevier,1979.
    [6]Ibragimov N H, Lie group analysis of differential equations, CRC Press, Boca Ra-ton,1994,
    [7]Ablowitz M J, Segur H, Solitons and the inverse scattering transform, Philadelphia: Siam,1981.
    [8]Novikov S, Theory of solitons:the inverse scattering method, Springer,1984.
    [9]Ablowitz M J and Clorkson P A, Solitons,nonlinear evolution equations and inverse scattering, Cambridge:Cambridge university, Press,1991.
    [10]Matveev V B, Darboux transformation and explicit solutions of the Kadomtcev-Petviaschvily equation, depending on functional parameters, Lett. Math. Phys., 3(1979) 213-216.
    [11]谷超豪,胡和生,周子翔,孤立子理论中的Darboux变换及其集合应用,上海科技出版社,1999.
    [12]Levi D, Benguria R, Backlund transformations and nonlinear differential difference equations, Proceedings of the National Academy of Sciences,77(1980) 5025-5027.
    [13]Bassom A P, Clarkson P A, Hicks A C. Backlund-Transformations and Solution Hierarchies for the 4th Painleve Equation, Stud. appl. math.,95(1995) 1-71.
    [14]Dodd R K, Bullough R K, Backlund transformations for the sine-Gordon equations, Proceedings of the Royal Society of London. A. Mathematical and Physical Sci-ences,351 (1976) 499-523.
    [15]Wahlquist H D, Estabrook F B, Backlund transformations for solitons of the Korteweg-de Vries equatin, Phys. Rev. Lett.,31(1973) 1386-1390.
    [16]Hirota R, The direct method in soliton theory, Cambridge University Press, Cam-bridge,2004.
    [17]Hirota R, Exact solution of the KdV equation for multiple collisions of sollitons, Phys. Rev. Lett.,27(1971) 1192-1194.
    [18]李翊神,孤子与可积系统,上海科技教育出版社,1999.
    [19]王红艳,胡星标,带自相容源的孤立子方程,清华大学出版社,2008.
    [20]Clarkson P A and Kruskal M D, New similarity solutions of the Boussinesq equa-tions, J. Math. Phys.,30 (1989) 2201-2213.
    [21]Clarkson P A, Nonclassical symmetry reductions of the Boussinesq equation, Chaos, Soliton Fract.,5 (1995) 2261-2301.
    [22]Lou S Y, Ma H C, Non-Lie symmetry groups of (2+1)-dimensional nonlinear sys-tems obtained from a simple direct method, J Phys. A:Math. Gen.,38(2005) L129.
    [23]Lou S Y, Similarity solutions of the Kadomtsev-Petviashvili equation, J. Phys. A: Math. Gen.,23(1990) L649-L654.
    [24]Vinogradov A M, Krasil'shchik I S, On the theory of nonlocal symmetries of nonlin-ear partial differential equations, Dokl. Akad. Nauk SSSR.,275(1984) 1044-1049.
    [25]Bluman G W and Kumei S, Symmetry-based algorithms to relate partial differential equations:II. Linearization by nonlocal symmetries, Eur. J. Appl. Math.,1(1990) 217-223.
    [26]Akhatov I S, Gazizov R K, Ibragimov N K. Nonlocal symmetries. Heuristic ap-proach, J. Sovi. Math.,55(1991) 1401-1450.
    [27]Galas F, New non-local symmetries with pseudopotentials, J. Phys. A:Math. Gen., 25 (1992) L981-L986.
    [28]Lou S Y, New exact solutions of CDGSK equation related to a non-locla symmetry, Chin. Phys. Lett.,11 (1994) 593-596.
    [29]Lou S Y and Hu X B, Non-local symmetries via Darboux transformations, J. Phys. A:Math. Gen.,30 (1997) L95-L100.
    [30]Lou S Y and Hu X B, Infinitely many Lax pairs and symmetry constraints of the KP equation, J.Math.Phys.38(1997)6401-6427.
    [31]Sahadevan R, Tamizhmani K M, Lakshmanan M, Painleve analysis and integrabil-ity of coupled non-linear Schrodinger equations, J. Phys. A:Math. Gen.,19(1986) 1783-1791.
    [32]Clarkson A, Painleve analysis and the complete integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation, IMA J. Appl. Math.,44(1990) 27-53.
    [33]Weiss J, Tabor M and Carnevale G, The Painleve property for partial differential equations, J. Math. Phys.,24 (1983) 522-526.
    [34]Clarkson P A, Cosgrove C M, Painleve analysis of the non-linear Schrodinger family of equations, J. Phys. A:Math. Gen.,20(1987) 2003-2024.
    [35]Wang M L, Zhou Y B and Li Z B, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A,216 (1996) 67-75.
    [36]Fan E G, Two new applications of the homogeneous balance method, Phys. Lett. A, 265 (2000) 353-357.
    [37]李志斌,非线性数学物理方程的行波解,科学出版社,2007.
    [38]Wang M L, Li X Z, Zhang J L, The (G'/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372(2008) 417-423.
    [39]Parkes E J, Duffy B R, An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Comput. Phys. Commun.,98(1996) 288-300.
    [40]范恩贵,可积系统与计算机代数,科学出版社,2004.
    [41]Fan E G, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A,277 (2000) 212-218.
    [42]闫振亚,非线性波与可积系统,博士学位论文,大连理工大学,2002.
    [43]Elwakil S A, El-Labany S K, Zahran M A, et al, Modified extended tanh-function method for solving nonlinear partial differential equations, Phys. Lett. A,299(2002) 179-188.
    [44]陈勇,孤立子理论中的若干问题的研究及机械化实现,博士学位论文,大连理工大学,2003.
    [45]李彪,孤立子理论中若干精确求解方法的研究及应用,博士学位论文,大连理工大学,2004.
    [46]He J H, Wu X H, Exp-function method for nonlinear wave equations, Chaos, Soli-tons Fract.,30(2006) 700-708.
    [47]Manakov S V, Complete integrability and stochastization of discrete dynamical sys-tems, Zh. Exp. Teor. Fiz,67(1974) 543-555.
    [48]Kosmann-Schwarzbach B G Y, Tamizhmani T, Discrete Integrable Systems, Lect. Notes Phys.,644(2004).
    [49]Lie S, On integration of a class of linear partial differential equations by means of definite integrals, Arch. Math Ⅵ,3 (1881) 328-368.
    [50]Lie S, Sophus Lie's 1880 transformation group paper, Translation by M. Ackerman, Comments by R. Hermann. Mathematical Science Press, Brookline,1975.
    [51]Ovsjannikov L V, Group properties of differential equations, Siberian Section of the Academy of Science of USSR,1962.
    [52]Noether E, Invariant variations probleme, Nachr. Konig. Gesell. Wissen. Gottingen, Math. phys. Kl.,1918,235-257.
    [53]Ibragimov N H, Kara A H and Mahomed F M, Lie-Backlund and Noether Symme-tries with Applications, Nonlinear Dyn.,15(1998) 115-136.
    [54]Lakshmanan M and Tamizhmani K M, Lie-Backlund symmetries of certain non-linear evolution equations under perturbation around their solutions, J. Math. Phy. 26(1985)1189-1200.
    [55]Fokas A S, A symmetry approach to exactly solvable evolution equations, J. Math. Phys.,21 (1980) 1318-1325.
    [56]Bluman G W and Cole J D, Similarity methods for differential equations, Springer, 1974.
    [57]Vinogradov A M and Krasil'shchik I S, A method of calculating higher symme-tries of nonlinear evolutionary, equations and nonlocal symmetries, Dokl. Akad. NaukSSSR,253 (1980) 1289-1293 (in Russian).
    [58]Galas F, New non-local symmetries with pseudopotentials, J. Phys. A:Math. Gen., 25(1992) L981-L986.
    [59]Bluman G W, Cheviakov A F and Anco S, Applications of Symmetry Methods to Partial Differential Equations, Springer, 2009.
    [60]Bluman G W, Reid G J and Kumei S, New classes of symmetries for partial differ-ential equations, J. Math. Phys.,29(1988) 806-811.
    [61]Bluman G W, Temuerchaolu and Sahadevan R, Local and nonlocal symmetries for nonlinear telegraph equation, J. Math. Phys.,46 (2005) 023505.
    [62]Bluman G W, Cheviakov A F, Framework for potential systems and nonlocal sym-metries:Algorithmic approach, J. math, phy.,46(2005) 123506.
    [63]Bluman G W, Cheviakov A F, Nonlocally related systems, linearization and nonlocal symmetries for the nonlinear wave equation, J. Math. Anal. Appl.,333(2007) 93-111.
    [64]Chou K S, and Qu C Z, Symmetry groups and separation of variables of a class of nonlinear diffusion-convection equations, J. Phys. A:Math. Gen.32 (1999) 6271-6286.
    [65]Qu C Z, Potential symmetries to systems of nonlinear diffusion equations, J. Phys. A:Math. Theor.,2007,40(8):1757-1773.
    [66]Backlund transformation, non-local symmetry and exact solutions for (2+1)-dimensional variable coefficient generalized KP equations, Commun. Nonlinear Sci. Numer. Simulat.2000,5(1):31-35.
    [67]Bluman G W, Yan Z Y, Nonclassical potential solutions of partial differential equa-tions, Eur. J. Appl. Math.,2005,16(2):239-262.
    [68]Hu X R, Lou S Y and Chen Y, Explicit solutions from eigenfunction symmetry of the Korteweg de-Vries equation, Phys. Rev. E.,85 (2012) 056607.
    [69]Lou S Y, Hu X R and Chen Y, Nonlocal symmetries related to Backlund transfor-mation and and their applications, J. Phys. A:Math. Theor.,45(2012),155209.
    [70]Bluman G W, Yang Z Z, A symmetry-based method for constructing nonlocally related partial differential equation systems, J. Math. Phys.,54(2013) 093504.
    [71]Xin X P and Chen Y, A Method to Construct the Nonlocal Symmetries of Nonlinear Evolution Equations, Chin. Phys. Lett.30(2013) 100202.
    [72]Ovsiannikov L V, Group Analysis of Differential Equations, New York (1982).
    [73]Galas F, Diplomarbeit, Institut furMathematische Physik der Technischen Universi-tiit Braunschweig, Germany,1988.
    [74]Patera J, Winternitz P and Zassenhaus H, Continuous subgroups of the fundamental groups of physics. I. General method and the Poincare group, J. Math. Phys.,16 (1975) 1597-1614.
    [75]Liu R C, He W L, Zhang S L and Qu C Z, One-parameter optimal systems for the nonlinear evolution equation, Journal of Northwest University (Nature Science Edition),33(4) (2003) 383-388.
    [76]胡晓瑞,非线性系统的对称性与可积性,博士学位论文,华东师范大学,2012.
    [77]Griffiths D F, Mitchell A R, The finite difference method in partial differential equa-tions, John Wiley,1980.
    [78]Liszka T, Orkisz J, The finite difference method at arbitrary irregular grids and its application in applied mechanics, Comput. Struct.,11(1980) 83-95.
    [79]Ciarlet P G, The finite element method for elliptic problems, Elsevier,1978.
    [80]Reddy J N, An introduction to the finite element method, New York:McGraw-Hill, 1993.
    [81]Feng K, Canonical boundary reduction and finite element method, Proceedings of International Invitational Symposium on the Finite Element Method (1981, Hefei), Science Press, Beijing.1982.
    [82]Feng K, Finite element method and natural boundary reduction^ Proceedings of the international congress of mathematicians, (1983) 1439-1453.
    [83]Raithby G D, Chui E H, A finite-volume method for predicting a radiant heat transfer in enclosures with participating media, J. Heat Transfer,112(1990)415-423.
    [84]Versteeg H K, Malalasekera W, An introduction to computational fluid dynamics: the finite volume method, Pearson Education,2007.
    [85]Banerjee P K, Butterfield R. Boundary element methods in engineering science, London:McGraw-Hill,1981.
    [86]Aliabadi M H, Rooke D P, The boundary element method, Numer. Fract. Mech., (1991) 90-139.
    [87]Feng K, Qin M. The symplectic methods for the computation of Hamiltonian equa-tions, Numerical Methods for Partial Differential Equations, Springer Berlin Heidel-berg, (1987) 1-37.
    [88]Feng K, Qin M. Symplectic Geometric Algorithms for Hamiltonian Systems, Berlin: Springer,2010.
    [89]Novikov S P, Shvarts A S, Discrete Lagrangian systems on graphs. Symplectic-topological properties, Russ. Math. Surv.,54(1999) 258-259.
    [90]Nijhoff F W, Quispel G R W, Capel H W, Direct linearization of nonlinear difference-difference equations, Phys. Lett. A,97(1983) 125-128.
    [91]Nijhoff F W, et al. The lattice Gel'fand-Dikii hierarchy, Inverse Probl.,8(1992) 597-621.
    [92]Nijhoff F, Atkinson J, Hietarinta J, Soliton solutions for ABS lattice equations:I. Cauchy matrix approach, J. Phys. A:Math. Theor.,42(2009) 404005.
    [93]Hietarinta J, Zhang D J, Multisoliton solutions to the lattice Boussinesq equation, J Math. Phys.,51(2010) 033505.
    [94]Chang X K, Hu X B, A conjecture based on Somos-4 sequence and its extension, Linear Algebra Appl.,436(2012) 4285-4295.
    [95]He Y, Hu X B, Tam H W, A q-difference version of the epsilon-algorithm, J. Phys. A:Math. Theor.,42(2009) 095202.
    [96]Zhang D J, Chen D Y, The conservation laws of some discrete soliton systems, Chaos Solitons Fract.,14(2002) 573-579.
    [97]Zhang D, Cheng J, Sun Y, Deriving conservation laws for ABS lattice equations from Lax pairs, J. Phys. A:Math. Theor.,46(2013) 265202.
    [98]Levi D, Winternitz P, Continuous symmetries of discrete equations, Phys. Lett. A, 152(1991) 335-338.
    [99]Heredero R H, Levi D, Winternitz P, Symmetries of the discrete Burgers equation, J. Phys. A:Math. Gen.,32(1999) 2685-2695.
    [100]Nijhoff F W, Discrete Painleve equations and symmetry reduction on the lattice, Oxf. Lect. Ser. Math. Appl.,16(1999) 209-234.
    [101]Dorodnitsyn, V A, Transformation. groups in difference spaces, Itogi Nauki i Tekhniki. Seriya" Sovremennye Problemy Matematiki. Noveishie Dostizheniya" 34 (1989) 149-191.
    [102]Dorodnitsyn V A, Finite difference models entirely inheriting symmetry of original differential equations, Modern Group Analysis:Advanced Analytical and Computa-tional Methods in Mathematical Physics, Springer Netherlands, (1993) 191-201.
    [103]Dorodnitsyn V A, Applications of Lie groups to difference equations, CRC Press, 2010.
    [104]Xin X P, Chen Y, and Wang Y H,Asymmetry-preserving difference scheme for high dimensional nonlinear evolution equations, Chin. Phys. B,22 (2013) 060201.
    [105]Milstein G N, Numerieal integration of stochastic differential equations, Kluw-er,Dordrecht,1995.
    [106]Kloden P E, Platen E, Numerieal solutions of stoehastic dilffrential equations, Springer,Berlin,2000.
    [107]Tocina A, Ardanuy R, Runge-Kutta methods for numerieal solution of stoehastic differential equations, J. ComPut. Appl. Math.,138(2002) 219-241.
    [108]Milstein G N, Approximate integration of stoehastic differential equations, Theor. Probab. Appi.,19(1974) 557-562.
    [109]吴文俊,几何定理机械证明的基本原理,科学出版社,1984.
    [110]吴文俊,吴文俊论数学机械化,山东教育出版社,1986.
    [111]吴文俊,数学机械化,科学出版社,1999.
    [112]王东明等,符号计算选讲,清华大学出版社,2003.
    [113]范恩贵,可积系统与计算机代数,科学出版社,2004.
    [114]Parkes E J, Duffy B R, An automated tanh-function method for finding soli-tary wave solutions to non-linear evolution equations, Comput. Phys. Commun., 98(1996)288-300.
    [115]Fan E G, Extended tanh-function method and its applications to nonlinear equa-tions, Phys, Lett, A,277(2000) 212-218.
    [116]Elwakil S A, El-Labany S K, Zahran M A, et al, Modified extended tanh-function method for solving nonlinear partial differential equations, Phys. Lett. A,299 (2002) 179-188.
    [117]El-Wakil S A, Abdou M A, Modified extended tanh-function method for solving nonlinear partial differential equations, Chaos Solitons Fract.,31(2007) 1256-1264.
    [118]Fu Z T, Liu S K, Liu S D and zhao Q, New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations, Phys. Lett. A,290 (2001) 72-76.
    [119]Fan E G, Zhang J, Applications of the Jacobi elliptic function method to special-type nonlinear equations, Phys. Lett. A,,305(2002) 383-392.
    [120]Yan Z Y, New Jacobian elliptic function solutions to modified KdV equation:I, Commun. Theor. Phys.(Beijing, China),38(2002):143-146.
    [121]Li B, Chen Y, Xuan H, et al. Generalized Riccati equation expansion method and its application to the (3+1)-dimensional Jumbo-Miwa equation, Appl. math, comput, 2004,152(2):581-595.
    [122]Chen Y, Li B, Zhang H Q, Generalized Riccati equation expansion method and its application to the Bogoyavlenskii's generalized breaking soliton equation, Chin. Phys.,12 (2003) 940-945.
    [123]Wang Q, Chen Y, Zhang H Q, A new Riccati equation rational expansion method and its application to (2+1)-dimensional Burgers equation, Chaos, Solitons Fract., 25(2005) 1019-1028.
    [124]Chen Y, Wang Q, Multiple Riccati equations rational expansion method and com-plexiton solutions of the Whitham-Broer-Kaup equation, Phys. Lett. A,347(2005) 215-227.
    [125]Chen Y and Wang Q, A unified rational expansion method to construct a series of explicit exact solutions to nonlinear evolution equations, Appl. Math. Comput.,177 (2006) 396-409.
    [126]Wang Q, Chen Y, Li B and Zhang H Q, An extended Jacobi elliptic function rational expansion method and its application to (2+1)-dimensional dispersive long wave equation, Phys. Lett. A,340 (2005) 411-426.
    [127]Xie F D, Chen Y, An algorithmic method in Painleve analysis of PDE, Comput. Phys. Commun.,154(2003) 197-204.
    [128]李志斌,张善卿,非线性波方程准确孤立波解的符号计算,数学物理学报,17(1997)81-89.
    [129]Li Z B and Liu Y P, RAEEM:A Maple package for finding a series of exact trav-elling wave solutions for nonlinear evolution equations, Comput. Phys. Commun., 163 (2004) 191-201.
    [130]Parkes E J and Duffy B R, An automated tanh-function method for finding soli-tary wave solutions to nonlinear evolution equations, Comput. Phys. Commun.,98 (1996) 288-300.
    [131]柳银萍,微分方程解析解及解析近似解的符号计算研究,博士学位论文,华东师范大学,2008.
    [132]Rand D W, Winternitz P, ODEPAINLEVE-A MACSYMA package for painleve analysis of ordinary differential equations, Comput. Phys. Commun.,42(1986) 359-383.
    [133]Renner F, A constructive REDUCE package based upon the Painleve analysis of nonlinear evolutions equations in Hamiltonian and/or normal form, Comput. phys. commun.,70(1992) 409-416.
    [134]Xu G Q and Li Z B, A maple package for the painleve test of nonlinear evolution equations, Chin. Phys. Lett.,20 (2003) 975-978.
    [135]Yao R X and Li Z B, CONSLAW:A Maple package to construct the conservation laws for nonlinear evolutions, Appl. Math. Comput.,173 (2006) 616-635.
    [136]Zhou Z J, Fu J Z, Li Z B, An implementation for the algorithm of Hirota bilinear form of PDE in the Maple system, Appl. math, comput.,183(2006) 872-877.
    [137]Schwarz F, The package SPDE for determining symmetries of partial differential equations, Distributed with the package,1987.
    [138]Nucci M C, Interactive REDUCE programs for calculating Lie point, non-classical, Lie-Backlund, and approximate symmetries of differential equations:manual and floppy disk, in CRC Handbook of Lie Group Analysis of Differential Equations, CRC Press, Boca Raton, (1996)415-481.
    [139]Baumann G, Lie Symmetries of differential equations:A mathematica program to determine Lie symmetries, Wolfram Research Inc., Illinois, (1992) 202-622.
    [140]Yao R X and Lou S Y, A maple package to compute lie symmetry groups and symmetry reductions of (1+1)-dimensional nonlinear systems, Chin. Phys. Lett.,25 (2008) 1927-1930.
    [141]姚若侠,基于符号计算的非线性微分方程精确解及其可积性研究,博士学位论文,华东师范大学,2005
    [142]董仲周,若干非线性问题的对称约化及精确解,博士学位论文,华东师范大学,2010.
    [143]Miao Q, Hu X R and Chen Y, ONEOptimal:A Maple Package for Generating One-Dimensional Optimal System of Finite Dimensional Lie Algebra, Commun. Theor. Phys.,2013(Accepted).
    [144]王云虎,基于符号计算的可积系统的若干问题研究,博士学位论文,华东师范大学,2013.
    [145]PDEBellⅡ:A Maple package for finding bilinear forms, bilinear Backlund trans-formations, Lax pairs and conservation laws of the KdV-type equations, Comput. Phys. Commun.,2014(185)357-367.
    [146]Clarkson P A, Kruskal M D, New similarity reductions of the Boussinesq equation, J. Math. Phys.,30 (1989) 2201-2213.
    [147]Levi D, Winternitz P, Non-classical symmetry reduction:example of the Boussi-nesq equation, J. Phys. A:Math. Gen.,22(1989) 2915-2924.
    [148]Lou S Y, A note on the new similarity reductions of the Boussinesq equation, Phys. Lett. A,151(1990) 133-135.
    [149]Hirota R, Satsuma J, Nonlinear evolution equations generated from the Backlund transformation for the Boussinesq equation, Prog. Theor.Phys.,57(1977) 797-807.
    [150]Hu X B and Lou S Y, Nonlocal Symmetries of Nonlinear Integrable Models, Proceedings of Institute of Mathematics of NAS of Ukraine 30(2000) 120-126.
    [151]Weiss J, The Painleve property for partial differential equations. II:Backlund trans-formation, Lax pairs, and the Schwarzian derivative, J. Math. Phys.,24 (1983) 1405-1413.
    [152]Nucci M C, Painleve property and pseudopotentials for nonlinear evolution equa-tions, J. Phys. A:Math. Gen.,22(1989) 2897-2913.
    [153]Li Y S, Zhang J E, Bidirectional soliton solutions of the classical Boussinesq sys-tem and AKNS system, Chaos Solitons Fract.16(2003) 271-277.
    [154]Hong K Z, Wu B, Chen X F, Painleve analysis and some solutions of (2+1)-dimensional generalized Burgers equations, Commun. Theor. Phys.(Beijing, China), 39(2003) 393-394.
    [155]Hu X R, Chen Y, Symmetry analysis of two types of (2+1)-dimensional nonlinear Klein-Gorden equation, Theor. Phys.,52 (2009) 997-1003.
    [156]Dong Z Z, Chen Y, Symmetry reduction exact solutions and conservation laws of the (2+1)-dimensional dispersive long wave equation, Z. Naturforsch.,64a(2009) 579-603.
    [157]Yan Z Y, Symbolic computation and new families of solitary wave solutions to a Hamiltonian amplitude equation, Zeitschrift fur angewandte Mathematik und Physik ZAMP,53 (2002) 533-537.
    [158]Popovych R O, Ivanova N M, Potential equivalence transformations for nonlinear diffusion-convection equations, J. Phys. A:Math. Gen.,38(2005) 3145-3155.
    [159]Sophocleous C, Potential symmetries of nonlinear diffusion-convection equations, J; Phys. A:Math. Gen.,29 (1996) 6951-6959.
    [160]Hydon P E, Symmetry methods, for differential equations:a beginner's guide, Cam-bridge University Press,2000.
    [161]田畴,李群及其在微分方程中的应用,科学出版社,2001.
    [162]Boussinesq, Theorie de I'intumescence liquide appelee onde solitaire ou de trans-lation se propageant dans un canal rectangulaire, Comptes Rendus,72 (1871),755-759.
    [163]Li C X, Ma W X, Liu X J, Wronskian solutions of the Boussinesq equation-solitons, negatoris, positons and complexitons, Inverse Problems,23(2007)279-296.
    [164]Clarkson P A, The fourth Painleve transcendent, IMS AS Technical Report UKC/IMS/07/017,2007.
    [165]Clarkson P A, The fourth Painleve equation and associated special polynomials, J. Math. Phys.44(2003) 5350-5374.
    [166]Airault H, Rational solutions of Painleve equations, Stud. appl. Math.,61(1979) 31-53.
    [167]Dorodnitsyn V A, Group Analysis of Differential Equations, New York:Academic, 1982.
    [168]Dorodnitsyn V A, Finite difference models entirely inheriting continuous symme-try of original differential equations, Int. J. Mod. Phys. C,5 (1994) 723-734.
    [169]Dorodnitsyn V A, Noether-type theorems for difference equations, Appl. Nume. Math.,39 (2001) 307-321.
    [170]Dorodnitsyn V A, Winternitz P, Lie Point Symmetry Preserving Discretizations for Variable Coefficient Korteweg-de Vries Equations, Nonlinear Dyn.,22 (2000) 49-59.
    [171]Dorodnitsyn V A, Kozlov R, Winternitz P, Symmetries, Lagrangian Formalism and Integration of Second Order Ordinary Difference Equations, J. Nonlinear Math. Phys.,2 (2003) 41-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700