可积系统与混沌系统中若干问题的符号计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于符号计算,本文研究了非线性系统中可积系统与混沌系统中的若干问题,工作主要分以下两个部分:一、分别从延拓结构方法、Riccati型伪势与Bell多项式三个方面研究了非线性发展方程的可积性质:Lax对、自-Backlund变换、守恒律、奇异流形方程与双线性形式等,并开发了计算非线性发展方程双线性形式的一个程序包;二、构造了分数阶的Lorenz标准型与一个新的四维混沌系统,并给出了它们的数值模拟。
     第一章,介绍了本文所研究内容的理论背景与发展现状,其中包括非线性系统的可积性、延拓结构理论、符号计算与混沌系统。
     第二章,改进了延拓结构理论并将其应用于Qiao方程,得到了该方程的两个势与两个伪势,从中得到了新的反散射谱问题、Lax对与无穷多守恒律。将延拓结构理论扩展到变系数非线性发展方程,并应用于变系数KdV方程,得到了变系数KdV方程的Lax对与Pfaffian形式。
     第三章,构造了广义五阶KdV方程的Riccati型伪势,得到了广义五阶KdV方程在该条件下的Lax对与奇异流形方程。在三种条件下,得到了广义五阶KdV方程的新奇异流形方程与自-Backlund变换,其中CDG-SK方程、Lax方程与KK方程分别包含在这三种情况之中。
     第四章,基于Bell多项式,构造了得到非线性发展方程的双线性形式的机械化算法,并在Maple上给出了算法实现程序包。该程序包首先将非线性方程进行无维化,然后将无维化后的方程表达成P-多项式的线性组合,从而给出其双线性形式。并以实例验证了该算法的有效性和可靠性。
     第五章,构造了分数阶的广义Lorenz标准型与一个新四维混沌系统,分析了其动力学性质,并给出了数值模拟。通过选择不同的参数可以分别得到分数阶的经典Lorenz系统、Chen系统、Lu系统、Shimizu-Morioka系统与双曲型广义Lorenz系统。
     第六章,对全文的工作进行了总结和讨论,并对下一步工作进行了展望。
Based on symbolic computation, some problems of integrable systems and chaotic systems in nonlinear systems are investigated. There are two main parts in this disserta-tion:1. Some integrable properties of nonlinear equations are investigated with help of the prolongation structure method, Riccati type pseudopotentials and Bell polynomials. These properties include Lax pairs, auto-Backlund transformations, conservation laws, singularity manifold equations, bilinear forms and so on. A Maple package to obtain the bilinear forms of nonlinear evolution equations is developed; 2. A fractional-order gener-alized Lorenz canonical form and a new four-dimensional chaotic system are constructed and numerically simulated.
     In chapter 1, an introduction is devoted to review the background and the current situation related the dissertation, which include integrability of nonlinear system, prolon-gation structure method, symbolic computation and chaotic system.
     In chapter 2, the prolongation structure technique is improved and applied to Qiao equation. Two potentials and two pseudopotentials are obtained, from which a new spec-tral problem of inverse scattering transformation, Lax equations and infinite number of conserved laws are obtained. The prolongation structure method is generalized to the variable coefficient nonlinear evolution equations and applied to the variable coefficient KdV equation, from which Lax pairs and Pfaffian forms of variable coefficient KdV equa-tion are obtained.
     In chapter 3, the Riccati-type pseudopotentials of the generalized fifth-order KdV equation are derived, from which Lax pairs and singularity manifold equations can be obtained. Especially, new singularity manifold equations and auto-Backlund transforma-tions can be obtained under three conditions, which include CDG-SK equation, Lax equation and KK equation.
     In chapter 4, based on the Bell polynomials, a mechanization algorithm is proposed to obtain the bilinear forms of nonlinear evolution equations and the corresponding im-plementation software package in maple is developed. Firstly, the package transforms the equation into a dimensionless equation, which can be expressed in the linear combina-tions of P-polynomials, then the bilinear form of this equation can be obtained directly. The validity and reliability of this algorithm are verified by some examples.
     In chapter 5, a fractional-order generalized Lorenz canonical form and a new four-dimensional chaotic system are constructed and the dynamical properties are investigated. In addition, the numerical simulations and interesting figures are performed. By choos- ing different coefficient, the fractional-order system of classic Lorenz system, Lii system, Chen system, Shimizu-Morioka system and hyperbolic-type Lorenz system can be ob-tained.
     In chapter 6, the summary and discussion of this dissertation are given, as well as the outlook of future work is discussed.
引文
[1]Ablowitz M J and Clarkson P A, Nonlinear Evolution Equation and Inverse Scatter-ing, London Mathematical Society Lecture Notes Series 149, Cambridge University press,1991.
    [2]Ablowitz M J, Ramani A and Segur H, Nonlinear evolution equations and ordinary differential equations of Painleve type, Lett. Nuovo Cimento,23 (1978) 333-338.
    [3]Ablowitz M J, Ramani A and Segur H, A connection between nonlinear evolution equations and ordinary differential equations of P-type I, J. Math. Phys.,21 (1980) 715-721.
    [4]Bullough R K and Caudrey P J, Solitons, Springer-Verlag, Berlin,1980.
    [5]Garder C S, Greene J M, Kruskal M D and Miura R M, Method for solving the Korteweg-de vries equation, Physical Review Letters,19 (1967) 1095-1097.
    [6]Wahlquist H D and Estabrook F B, Prolongation structures of nonlinear evolution equation, J. Math. Phys.,16 (1975) 1-7.
    [7]Estabrook F B and Wahlquist H D, Prolongation structures of nonlinear evolution equation. II, J. Math. Phys.,17 (1976) 1293-1297.
    [8]Cao C W, A cubic system which generates Bargmann potential and N-gap potential, chinese Quart. J. Math.,3 (1988) 90-96.
    [9]Weiss J, Taboe M and Garnevale G, The Painleve property for partial differential equations, J. Math. Phys.,24 (1983) 522-526.
    [10]Jimbo M, Kruskal M D and Miwa T, Painleve test for the self-dual Yang-Mills equa-tion, Phys. Lett. A,92 (1982) 59-60.
    [11]Conte R, Invariant Painleve analysis of partial differential equations, Phys. Lett. A, 140 (1989) 383-390.
    [12]Pickering A, A new truncation in Painleve analysis, J. Phys. A:Math. Gen.,26 (1993)4395-4405.
    [13]Lou S Y, Extended Painleve expansion, nonstandard truncation and special reduc-tions of nonlinear evolution equations, Z. Naturforsch,53a (1998) 251-258.
    [14]Poschel J, Integrability of hamiltonian systems on Cantor sets, Comm. Pur, Appl. Math.,35 (1982) 653-696.
    [15]谷超豪等,孤立子理论与应用,浙江科学技术出版社,1990.
    [16]陈登远,孤子引论,科学出版社,2006.
    [17]李翊神,孤子与可积系统,上海科技教育出版社,1999.
    [18]谷超豪,胡和生,周子翔,孤立子理论中的Darboux变换及其集合应用,上海科技出版社,1999.
    [19]楼森岳,唐晓艳,非线性数学物理方法,科学出版社,2006.
    [20]王明亮,非线性发展方程与孤立子,兰州大学出版社,1990.
    [21]王东明等,符号计算选讲,科学出版社,2003.
    [22]吴文俊,几何定理机械证明的基本原理,科学出版社,1984.
    [23]范恩贵,可积系统与计算机代数,科学出版社,2004.
    [24]Conte R, Magri F, Musette M, Satsuma J and Winternitz P, Direct and Inverse Method in Nonlinear Evolution Equations, Springer, Berlin,2003.
    [25]Weiss J, The Painleve property for partial differential equations II:Backlund trans-formations, Lax pairs, and the Schwarzian derivative, J. Math. Phys.,24 (1983) 1405-1403.
    [26]Ablowitz M J and Segur H, Solitons and Inverse Scattering Transfoem, SIAM Philadelphia,1981.
    [27]Zakharov V E. What Is Integrability?, Springer-Verlag, Berlin,1991.
    [28]Calogero F and Eckhaus W, Nonlinear evolution equations, rescalings, model PDES and their integrability:Ⅰ, Inverse Problems,3 (1987) 229-262.
    [29]Calogero F and Eckhaus W, Nonlinear evolution equations, rescalings, model PDEs and their integrability:Ⅱ, Inverse Problems,4 (1988) 11-33.
    [30]Calogero F and Ji X D, C-integrable nonlinear partial differentiation equations. Ⅰ, J. Math. Phys.,32 (1991) 875-887.
    [31]Calogero F and Ji X D, C-integrable nonlinear PDEs. Ⅱ, J. Math. Phys.,32 (1991) 2703-2717.
    [32]李翊神,中国科学A辑,32(1989)1113-1139.
    [33]Hermann R, Pseudopotentials of Estabrook and Wahlquist, the Geometry of Soli-tons, and The Theory of Connections. Phys, Rev. Lett.,36 (1976) 835-836.
    [34]Cornoes J, Soliton and simple pesudopotentials, J. Math. Phys.,17 (1976) 756-759.
    [35]Morris H C, Prolongation structures and nonlinear evolution equations in two spatial dimensions, J. Math. Phys.,17 (1976) 1870-1872.
    [36]Crampin M and Firani F A E, The soliton connection, Letters in Mathematical Physics,2 (1977) 15-19.
    [37]Kaup D J, The Estabrook-Wahlquist method with examples application, Physica D, 1 (1980)391-411.
    [38]Dodd R and Fordy A, The Prolongation Structures of Quasi-Polynomial Flows, Proc. R. Soc. Lond. A,385 (1983) 389-429.
    [39]Dodd R and Fordy A, Prolongation structures of complex quasi-Polynomial evolu-tion equations, J. Phys. A:Math. Gen.,17 (1984) 3249-3266.
    [40]Omote M, Prolongation structures of the supersymmetric sine-Gordon equation and infinity-dimensional superalgebras, J. Phys. A:Math. Gen.,20 (1987) 1941-1950.
    [41]Roelfos G H M and van den Hijligenberg N W, Prolongation structure for supersym-metric equations, J. Phys. A:Math. Gen.,23 (1990) 5117-5130.
    [42]Shadwick W F, The KdV prolongation algebra, J. Math. Phys.,21 (1980) 454-461.
    [43]Estabrok F B, Moving frams and prolongation algebras. J. Math. Phys.,23 (1982) 2071-2076.
    [44]Nucci M C, pseudopotentials, Lax equations and Backlund transformations for non-linear evolution equations, J. Phys. A:Math. Gen.,21 (1988) 73-79.
    [45]Nucci M C, painleve property and pseudopotentials for non-linear evolution equa-tions, J. Phys. A:Math. Gen.,22 (1989) 2897-2913.
    [46]Ames W F and Rogers C, Nonlinear equations in the applied sciences, Academic Press, New York,1992.
    [47]Anderson R L and Ibraghimov N H, Lie-Backlund transformations in applications, SIAM Philadelphia,1979.
    [48]Lou S Y, pseudopotentials, Lax pairs and Backlund transformations for some vari-able coefficient nonlinear equations, J. Phys. A:Math. Gen.,24 (1991) L513-L518.
    [49]Lou S Y, Negative Kadomtsev-Petviashvili hierarchy, Physica Scripta,57 (1998) 481-485.
    [50]Lou S Y, Conformal invariance and integrable models, J. Phys. A:Math. Gen.,30 (1997)4803-4813.
    [51]Lou S Y and Hu X B, Non-local symmetries via Darboux transformation, J. Phys. A:Math. Gen.,30 (1997) L95-L100.
    [52]郭汉英,向延育,吴可,纤维丛联络理论与非线性演化方程的延拓结构,数学物理学报,3(1983)135-143.
    [53]郭汉英,吴可,向延育,王世坤,SL(2,R)和]Ernst方程,应用数学学报,7(1984)362-365.
    [54]Guo H Y, Wu K and Wang S K, Prolongation structure, Backlund transformation and principal homogeneous Hilbert problem in general relativity, Comm. Theoret. Phys.,2 (1983) 883-898.
    [55]Deconinck B, A constructive test for integrability of semi-discrete systems, Phys. Lett. A,223(1996)45-54.
    [56]Doktorov E V, Prolongation structure without prolongation, J. Phys. A:Math. Gen., 13 (1980) 3599-3604.
    [57]Igonin S and Martini R, Prolongation structure of the Krichever-Novikov equation, J. Phys. A:Math. Gen.,35 (2002) 9801-9810.
    [58]Harrison B K, Backlund transformation for the Ernst equation of general relativity, Phys. Rev. Lett.,41 (1978) 1179-1200.
    [59]Alexeyev A A and Kudryshov N A, The Wahlquist-Estabrool method for evolutions with a small parameter:a technique of approximating pseudopotentials, J. Phys. A: Math. Gen.,25 (1992) L95-L99.
    [60]Reyes E G, Pseudo-potentials, nonlocal symmetries and integrability of some shal-low water equations, Sel. math., New ser.,12 (2006) 241-270.
    [61]Harrison B K and Estabrook F B, Geometric approach to invariance groups and solution of partial differential system, J. Math. Phys.,12 (1971) 653-666.
    [62]de Jager E M and Spannenburg S, Prolongation structures and Backlund transfor-mations for the matrix Korteweg-de Vries and the Boomeron equation, J. Phys. A: Math. Gen.,18 (1985) 2177-2189.
    [63]Hoenselaers C and Schief W K, Prolongation structures of Harry Dym type equa-tions and Backlund tranformations of cc ideals, J. Phys. A:Math. Gen.,25 (1992) 601-622.
    [64]Schwarz F, A REDUCE package for determining Lie symmetries of ordinary and partial differential equations, Comp. Phys. Comm.,27 (1982) 179-186.
    [65]Reid G J, Finding abstract Lie symmetry algebras of differential equations without integrating determining equations, Eur. J. Appl. Math.,2 (1991) 319-340.
    [66]Mansfield E L and Clarkson P A, Applications of the differential algebra package diffgrob2 to classical symmetries of differential equations, J. Symbolic. Comput.,23 (1997)517-533.
    [67]Champagne B, Hereman W and Winternitz, The computer calculation of Lie point symmetries of large systems of differential equations, Comp. Phys. Comm.,66 (1991)319-340.
    [68]Hereman W, Review of symbolic software for Lie symmetry analysis, Math. Com-put. Modelling,25 (1997) 115-132.
    [69]朱思铭,施齐焉,符号计算与吴-消元法在Painleve检验分析中的应用,现代数学和力学(MMM-Ⅶ),上海大学出版社,1997,482-485.
    [70]Li Z B, Wu method and solitons, Proc. of ASCM'95 eds Shi H. and Kobayashi H., (Tokyo:Scientists Incorporated) (1995) 157.
    [71]李志斌,张善卿,非线性波方程精确孤立波解的符号计算,数学物理学报,17(1997)81-89.
    [72]张善卿,微分方程精确解及李对称符号计算研究,博士学位论文,华东师范大学,2004.
    [733]徐桂琼,非线性演化方程的精确解与可积性及其符号计算研究,博士学位论文,华东师范大学,2004.
    [74]姚若侠,基于符号计算的非线性偏微分方程精确解及其可积性研究,博士学位论文,华东师范大学,2005.
    [75]柳银萍,微分方程解析解及解析近似解的符号计算研究,博士学位论文,华东师范大学,2008.
    [76]Zhou Z J and Li Z B, An implementation for the algorithm of Hirota binlinear form of PDE in the Maple system, Appl. Math. Comput.,183 (2006) 872-877.
    [77]Qiao Z J, New integrable hierarchy, its parametric solutions, cuspons, one-peak soli-tons, and M/W-shape peak solitons, J. Math. Phys.,48 (2007) 082701.
    [78]Qiao Z J and Liu L P, An new integrable equation with no smooth solitons, Chaos, Solitons and Fractals,41 (2009) 587-593.
    [79]Estevez P G, Generalized Qiao hirarchy in 2+1 dimensions:Reciprocal transforma-tions spectral problem and non-isopectrality, Phys. Lett. A,375 (2011) 537-540.
    [80]Estevez P G and Prada J, A generalization of the Sine-Gordon equation to 2+1 di-mensions, J. Prada, J. Nonlin. Math. Phys.,11 (2004) 164-179.
    [81]Li J B and Qiao Z J, Bifurcations of traveling wave solutions for an integrable equa-tion, J. Math. Phys.,51 (2010) 042703.
    [82]Clarkson P A, Painleve analysis and the complete integrability if a general-ized variable-coefficient Kadomtsev-Petviashvili equation, IMA J. Appl. Math.,44 (1990) 27-53.
    [83]Grimshaw R, Slowly Varying Solitary Waves. Ⅰ. Korteweg-De Vries Equation. Proc. R. Soc. Lond. A,368 (1979) 359-375.
    [84]Nirmala N, Vedan M J and Baby B V, Auto-Backlund transformation, Lax pairs, and Painleve property of a variable coefficient Korteweg-de Vries equation. Ⅰ, J. Math. Phys.,27 (1986) 2640-2643.
    [85]Nirmala N, Vedan M J and Baby B V, A variable coefficient Korteweg-de Vries equation:Similarity analysis and exact solution. Ⅱ, J. Math. Phys.,27 (1986) 2644-2646.
    [86]Lou S Y and Ruan H Y, conservation laws of the variable coefficient KdV and MKdV equations, Acta Phys. Sin.,41 (1992) 182-187.
    [87]Fan E G, Backlund transformation, Lax pairs, symmetries and exact solutions for variable coefficient KdV equation, Acta Phys. Sin. (Overseas Edition),7 (1998) 649-654.
    [88]Joshi N, Painleve property of general variable-coefficient versions of the Korteweg-de Vries and non-linear Schrodinger equations, Phys. Lett. A,125 (1987) 456-460.
    [89]Harrison B K, Matrix methods of searching for Lax pairs and a paper by Estevez, Proceedings of Institute of Mathematics of NAS of Ukraine,30 (2000) 17-24.
    [90]Caudrey P J, Dodd R K and Gibbon J D, A new hierarchy of Korteweg-De Vries equations, Proc. R. Soc. Lond. A,351 (1976) 407-422.
    [91]Sawada K and Kotera T, A method for finding N-soliton solutions of K.d.V. equation and K.d.V.-like equation, Prog. Theor. Phys.,51 (1974) 1355-1367.
    [92]Lax P D, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure. Appl. Math.,62 (1968) 467-490.
    [93]Kaup D J, On the inverse scattering problem for the cubic eigenvalue problem of the class фxxx+6Rфx+6Rф=λф,Stud. Appl. Math.,62 (1980) 189-216.
    [94]kupershmidt B A, A super KdV equation:an integrable system, Phys. Lett. A,102 (1984) 213-215.
    [95]Ablowitz M J, Kaup D J, Newell A C and Segur H, Method for Solving the Sine-Gordon Equation, Phys. Rev. Lett.,30 (1973) 1262-1264.
    [96]Parker A and Dye J M, Boussineq-type equations and "Switching" solitons, Proc. Inst. NAS Ukraine,43 (2002) 344-351.
    [97]Dye J M and Parker A, On bidirectional fifth-order nonlinear evolution equations, Lax pairs, and directionally dependent solitary waves, J. Math. Phys.,42 (2001) 2567-2589.
    [98]Cartan E, Les systemes differentials exterieurs et leurs applications geometriques, Hermann, Pairs,1945.
    [99]Olver P J, Applications of Lie groups to differential equations, Springer, New York, 1986.
    [100]Zhao W Z, Bai Y Q and Wu K, Generalized inhomogeneous Heisenberg ferro-magnet model and generalized nonlinear Schrodinger equation, Phys. Lett. A,352 (2006) 64-68.
    [101]朝鲁,吴-微分特征列法及其在微分方程对称和力学中的应用,博士学位论文,大连理工大学,1997.
    [102]陈勇,孤立子理论中的若干问题的研究及机械化实现,博士学位论文,大连理工大学,2003.
    [103]谢福鼎,Wu-Ritt消元法在偏微分代数方程中的应用,博士学位论文,大连理工大学,2002.
    [104]李彪,孤立子理论中若干精确求解方法的研究及应用,博士学位论文,大连理工大学,2005.
    [105]王灯山,非线性波方程的对称与延拓结构理论,博士学位论文,中国科学院研究生院,2008.
    [106]闫振亚,非线性波与可积系统,博士学位论文,大连理工大学,2002.
    [107]胡建兵,分数阶混沌稳定性理论及同步方法研究,博士学位论文,中北大学,2008.
    [108]Yang Y Q and Chen Y, The generalized Q-S synchronization between the gener-alized Lorenz canonical form and the Rossler system, Chaos, Solitons and Fractals, 39 (2009) 2378-2385.
    [109]Chen Y and Li X, Function projective synchronization between two different chaotic systems, Z. Naturforsch.,62a (2007) 29-33.
    [110]An H L and Chen Y, The function cascade synchronization method and applica-tions, Commun. Nonlinear Sci. Num. Sim.,13 (2008) 2246-2255.
    [111]Bell E T, Exponential polynomials, Ann. Math.,35 (1934) 258-277.
    [112]Hirota R, Direct methods in soliton theory, Cambridge University press,2004.
    [113]Gilson C, Lambert F, Nimmo J and Willox R, On the combinatorics of the Hirota D-operators, Proc. R. Soc. Lond. A,452 (1996),223-234.
    [114]Lambert F and Springael J, Construction of Backlund transformations with binary Bell polynomials, J. Phys. Soc. Jpn.,66 (1997) 2211-2213.
    [115]Lambert F and Springael J, Soliton equations and simple combinatorics, Acta Appl. Math.,102(2008) 147-178.
    [116]Lambert F, Leble and Springael J, Binary Bell polynomials and Darboux covariant Lax pairs, Glasgow Math. J.,43A (2001) 53-63.
    [117]Fan E G, The integrability of nonisospectral and variable-coefficient KdV equation with binary Bell polynomials, Phys. Lett. A,375 (2011) 493-497.
    [118]Fan E G, Generalized super Bell polynomials with applications to superymmetric equations, arXiv:1008.4198.
    [119]Zhou Z J, Fu J Z and Li Z B, An implementation for the algorithm of Hirota bilinear form of PDE in the Maple system, Appl. Math. Comput.,183 (2006) 872-877.
    [120]Yang X D and Ruan H Y, A Maple Package on Symbolic Computation of Hirota Bi-linear Form for Nonlinear Equations, Commun. Theor. Phys.,52 (2009) 801-807.
    [121]Leibniz G W, Mathematische Schriften, Georg Olms Verlagsbuch-handlung, Hildesheim,1962.
    [122]Sabatier J, Agrawal O P and Tenreiro Machado J A, Advances in Fractional Cal-culus:Theoretical Developments and Applications in Physics and Engineering, Springer, Netherlands,2007.
    [123]Samko S G, Klibas A A and Marichev O I, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, New York,1993.
    [124]Oldham K B and Spanier J, The Fractional Calculus, Academic Press, New York, 1974.
    [125]Podlubny I, Fractional Differential Equations, Academic Press, San Diego,1999.
    [126]Mandelbort B B, The fractal gemetry of nature, W. H. Freeman and Company, New York,1983.
    [127]Diethelm K, Ford N J and Freed A D, A Predictor-Corrector approach for the nu-merical solution of fractional differential equations, Nonlin. Dyn.,29 (2002) 3-22.
    [128]Chen Y, Yan Z Y and Zhang H Q, Applications of fractional exterior differential in three dimensional space, Appl. Math. Mech.,24 (2003) 256-260.
    [129]Grigorenko I and Grigorenko E, Chaotic dynamics of the fractional Lorenz system, Phys. Rev. Lett.,91 (2003) 034101.
    [130]Hartly T T, Lorenzo C F, Qanner H K, Chaos in a fractional order chua's system. IEEE Trans CAS-I,42 (1995) 485-489.
    [131]Grigorenko E L, Wood F B, Meyer M S and Pauls D L, Chromosome influences on different dyslexia-related cognitive processes:further confirmation, American Journal of Human Genetics,66 (2000) 715-723.
    [132]Li C G and Chen G R, chaos in the fractional order Chen system and its control, Chaos Solitons and Fractals,22 (2004) 549-554.
    [133]Gao X and Yu J B, Chaos in the fractional order periodically forced complex Duff-ing's oscillators, Chaos Solitons and Fractals,24 (2005) 1097-1104.
    [134]Wang Q Y, Lu Q S and Chen G R, Ordered bursting synchronization and complex wave propagation in a ring neuronal nerwork, Physica A,374 (2007) 869-878.
    [135]Pecora L M, Carroll T L, Synchronization in chaotic system. Phys. Rev. Lett.,64 (1990)821-824.
    [136]Yu Y, Li H X, Wang S and Yu J, Dynamic analysis of a fractional-order Lorenz chaotic system, Chaos Solitons and Fractals,42 (2009) 1181-1189.
    [137]Deng W H and Li C P, Chaos synchronization of the fractional Lii system, Physica A,353(2005)61-72.
    [138]Li C and Peng J, Chaos in Chen's system with a fractional order, Chaos Solitons and Fractals,22 (2004) 443-450.
    [139]Wang X Y and Wang M J, Dynamic analysis of the fractional-order Liu system and its synchronization, Chaos,17 (2007) 033106.
    [140]Celikovsky S and Chen G, On a generalized Lorenz canonical form of chaotic systems, Int. J. Bifurcation and Chaos,12 (2002) 1789-1812.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700