微分方程解析解及解析近似解的符号计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界中的很多现象都可用非线性微分方程来描述.非线性微分方程解析解的研究对洞察事物内部的结构,剖析事物之间的关系,并应用于解释各种物理现象都起到至关重要的作用.高性能计算机的诞生,极大地推动了非线性微分方程领域的符号计算研究,涌现出了许多构造非线性微分方程解析解的方法和算法.本文以非线性微分方程为研究对象,借助于非线性代数系统Maple,研究了多种构造非线性微分方程精确解及解析近似解的方法和算法.主要工作如下:
     第一部分研究构造非线性演化方程精确解的方法和算法,具体包括两方面的内容:
     对已有的构造非线性演化方程精确行波解的几种代数方法,如Riccati方程方法、耦合的Riccati方程方法、假设法、形变映射法等进行了推广和整合,提出了“椭圆方程方法”.并结合吴消元法的思想和方法,在计算机代数系统Maple上编写了推导非线性演化方程精确行波解的软件包RAEEM,该软件包可自动推导出输入方程一系列可能的精确行波解,其中包括多项式解、有理函数解、指数函数解、三角函数解、双曲函数解及Jacobi椭圆函数解、Weierstrass椭圆函数解等.
     Bticldund变换研究对非线性微分方程的可积性及精确解的求解都有十分重要的意义.特别是,一旦从B(?)cldund变换推导出解的非线性叠加公式,则仅通过代数运算就可构造微分方程的新解.我们借鉴已有的构造B(?)cklund变换的方法,提出了构造1+1维非线性演化方程一类自B(?)cklund变换的机械化算法,并结合吴文俊数学机械化思想,在计算机代数系统Maple上实现了该算法,其中的软件包AutoBT不仅可自动推导出输入方程的可能的特定类型的自B(?)cklund变换及相应的参数约束条件,还可自动推导出解的非线性叠加公式.
     第二部分研究非线性微分系统解析近似解的求解方法和算法.同伦分析方法是近几年发展起来的构造非线性系统解析近似解十分有效的方法.与摄动方法不同,同伦分析方法的有效性与所考虑的非线性问题是否含有小参数无关.此外,不同于所有其它传统的摄动方法和非摄动方法,如人工小参数法,δ展开方法和Adomian分解方法等,同伦分析方法本身提供了一种方便的途径来控制和调节解级数的收敛速度和收敛区域.同伦分析方法已被广泛应用于求解应用数学和力学中的许多问题.
     复合介质在物理学和工程领域随处可见,因此,复合介质的实验与理论研究受到了广泛的重视.摄动方法是求解弱非线性复合介质问题的有效工具.求解强非线性复合介质问题仍然非常困难,同伦分析方法的提出为强非线性问题的求解提供了有效的工具.文[85]和[86]分别应用同伦分析方法构造了强非线性复合介质问题的解析近似解,然而,为了计算简单,他们首先应用模式展开法将原系统简化为常微分系统,且只截取到第一模式项,这使所得的常微分系统与原系统之间存在较大的误差.为了提高解的精度,本文选取线性算子为线性偏微分方程,直接应用同伦分析方法构造原系统的解析近似解.所获结果明显优于已有的摄动解及同伦分析解.另外,本文也将同伦分析方法推广应用到分数阶微分方程情形.
Many phenomena in nature can be described with nonlinear differential equations. The study of analytical solutions to nonlinear differential equations plays a very important role in penetrating the inner structure, in analyzing the relationship of things as Well as in interpreting various physical phenomena. The naissance of high performance computer greatly promotes the study on symbolic computation of nonlinear differential equations and then coming forth abundant algorithms and methods to construct the analytical solutions of nonlinear differential equations. Armed with the computer algebraic system Maple, this dissertation concentrates on the nonlinear differential equations and do much research on various algorithms and approaches to construct exact solutions and analytical approximation ones. Our main works are summarized bellow.
     Part I is devoted to study the algorithm and method to construct exact solutions of nonlinear differential equations. We do research from the following two aspects.
     We improve and integrate several algebraic methods of constructing the exact solitary wave solutions to nonlinear evolution equations such as the Riccati equation method, the coupled Riccati equation method, the deformed mapping method, and the ansats making method and then propose an approach named "elliptic equation method." Based on Wu elimination method, we provide an software package RAEEM in computer algebraic system Maple for seeking for exact traveling wave solutions to nonlinear differential equations, which can output automatically a series possible exact traveling wave solutions for inputted equation including the polynomial type solutions, rational function solutions, exponential function solutions, triangular function solutions, hyperbolic function solutions, Jacobi elliptic function solutions and the Weierstrass elliptic function solutions etc..
     The study of Backlund transformation method is very important in the sense of integrability and the solving of exact solutions to nonlinear differential equations. Especially, once the nonlinear superposition formula of solutions is obtained starting from the Backlund transformation, one can construct new solutions of differential equations only by algebraic computation. Benefiting from the existed constructing Backlund transformation method, we propose an mechanization algorithm to build a kind of self-Backlund transformations for 1+1 nonlinear evolution equations. Similarly, utilizing the idea of Wu Wentsun mechanization, we give a corresponding implementation software package AutoBT in Maple, which can not only output the self-Backlund transformations of all possible specified types and the corresponding parameters constraints, but also can output the nonlinear superposition formula of solutions.
     Part II is devoted to study the algorithm and method to construct the analytic and approximating solutions of nonlinear differential systems. The homotopy analysis method is effective in constructing the analytic and approximating solutions of nonlinear differential systems, which is developed in recent several years. Differing from the perturbed method, the effectiveness of the homotopy analysis method is independent of whether or not the considering nonlinear problem having small parameter. Moreover, It is differ from all other traditional perturbed and unperturbed methods, such as the manual small parameter method, the 5 expansion method and the Adomian decomposition method etc. The homotopy analysis method itself provides a kind of convenient tool in controlling and adjusting the convergence speed and region of the solution series. This method has been widely used in solving many problems of applied mathematics and mechanics.
     The experimental and theoretical researches concerning composite media have received much attention because of their potentially wide applications in engineering and physics. The perturbation method is a powerful tool for dealing with weakly nonlinear problems of composite media. However, it is still very difficult to solve strongly nonlinear problems of composite media. The new homotopy analysis method is a powerful tool for solving strongly nonlinear problems. The authors in [85] and [86] have constructed the analytic approximating solutions of strongly nonlinear composite media by the homotopy analysis method. However, for the simplicity of computation, they first predigest the original system into an ordinary system with the help of the mode expansion method and just keep the first mode, this may evoke great errors between the original system with the reduced ordinary differential system. To get the higher precision, in this paper we choose linear partial differential equations as linear operators, and directly construct the homotopy analysis solutions for the original system. Our obtained solutions are obviously superior to the known ones. Another innovation is that we extend the homotopy analysis method to solving fractional differential systems.
引文
1 Wu W T.On the decision problem and the raechanization of theorem-proving in elementary geometry,Scientia Sinica,1978,21:159.Wu W T.On zeros of algebraic equations:an application of Ritt principle,Kexue Tongbao,1986,31:1,Chinese version,1985,30:881.
    2 Wang D M.Elimination Practice:Software Tools and Applications.Imperial College Press,London,2004.
    3 Blumann G W.Lie Symmetries of Differential Equations:A Mathematica program to determine Lie Symmetries,MathSource 0202-622.Illiniois.Wolfram Research Inc,Champaign,1992.Blumann G W.Symmetry and Integration Methods for Differential Equations,Springer-Vedag,New York,2001.
    4 Hereman W.Review of symbolic software for the computation of Lie symmetries of differential equations,Euro.Math.Bulletin,1994,1:45.
    5 Hereman W,Banerjee P P,Korpel A etal.Exact solitary wave solutions of nonlinear evolution and wave equations using a direct algebraic method,J.Phys.A:Math.Gen.,1986,19:607.Hereman W,Takaoka M.Solitary solutions of nonlinear evolution and wave equations using a direct method and MACSYMA,J.Phys.A:Math.Gen.,1990,23:4805.
    6 Baldwin D,Goktas U,Hereman W,etc..Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs,J.Sym.Comp.,2004,37:669.
    7 Dai S Q.Poincare-lighthill-kuo method and symbolic computation,Applied Mathematics and Mechanics,2001,3:13.
    8 Hu X B,Wang D L,Tam H W and Xue W M.Soliton solutions to the Jimbo-Miwa equations and the Fordy-Gibbons-Jimbo-Miwa equation,Phys.Lett.A,1999,262: 310.Hu X B,Wang D L and Qian X M.Soliton solutions and symmetries of the 2+1dimensional Kaup-Kupershmidt equation,Phys.Lett.A,1999,262:409.
    9 曹策问.AKNS方程组LaX对的非线形化.中国科学(A辑),33(1990):528.Lou S Y and Chen L L.Formal variable separation approach for nonintegrable models,J.Math.Phys.,1999,40:6491.Lou S Y.On the coherent structures of Nizhnik-Novikov-Vesetov equation,Phys.Lett.A,2000,277:94.Lou S Y,Lin J and Tang X Y.Painleve integrability and multi-dromion solutions of the 2+1 dimensional AKNS system,Eur.Phys.J.B,2001,22:473.Tang X Y,Lou S Y and Zhang Y.Localized exicitations in(2+1)-dimensional systems,Phys.Rev.E.,2002,66:046601.Tang X Y,Lou S Y.Extended multilinear variable separation approach and multivalued localized excitations for some(2+1)-dimensional integrable systems,J.Math.Phys.,2003,44:4000.
    10 Lou S Y,Ning G J.The relations among a special type of solutions in some(2+1)-dimensional nonlinear equations,J.Math.Phys.,1989,30:1614.
    11 Fan E G,Zhang H Q.New exact solutions for a system of coupled KdV equations,Phys.Lett.A,1998,245:389.Fan E G.A unified and explicit construction of N-soliton solutions for the nonlinear Schrodinger equation,Commun.Theor.Phys.,2001,36:401.Fan E G.A new algebraic method for finding the line soliton solutions and doubly periodic wave solutions to a two dimensional perturbed KdV equaiton,Chaos,Sotitons and Fractals,2003,15:567.Fan E G,Dai H H.A direct approach with computerized symbolic computation for finding a series of travelling waves to nonlinear equations,Comput.Phys.Comm.,2003,153:17.
    12 Fan E G.Extended tanh-function method and its applications to nonlinear equations,Phys.Lett.A,2000,277:212.
    13 Fan E G.An algebraic method for finding a series of exact solutions to integrable and non-integrable nonlinear evolution equations,J.Phys.A:Math.Gen.,2003,36:7009.
    14 Chou S C.Automated reasoning in differential geometry and mechanics using the characteristic set method,Journal of Automated Reasoning,1993,10:161.Gao X S,Chou S C,and Zhang J Z.Proceedings of ISSAC-93,284.
    15 Ablowitz M J,Kaup D J,Newell A C and Segur H.The scattering transform-Fourier analysis for nonlinear problems,Stud.Appl.Math.,1974,53:249.Ablowitz M Y,Ramani A,Segur H.A connection between nonlinear evolution equations and ordinary differential equations of P-type,Ⅰ,Ⅱ,J.Math.Phys.,1980,21:715;21:1006.Kodama Y,Ablowitz M J and Satsuma J.Direct and inverse scattering problems of the nonlinear intermediate long wave equation,J,Math.Phys.,1982,23:564.Fokas A S.On the inverse scattering transform of multidimensional nonlinear equations related to first order systems in the plane,J.Math.Phys.,1984,25:2494.
    16 Hirota R.Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons,Phys.Rev.Lett.,1971,27:1192.Chen D Y,Zhang D J,Deng S F.The novel multisoliton solutions of the mKdV sinegordon equation,J.Phys.Soc.Jpn.,2002,71:658.Deng S F,Chen D Y.The novel multisoliton solutions of the KP equation,J.Phys.Soc.Jpn.,2001,70:2174.陈登远,孤立子引论,预印本,2002.
    17 Hirota R,Satsuma J.Soliton solutions of a coupled Korteweg-de Vries equation,Phys.Lett.,1981,85A:407.
    18 Hirota R,Grammaticos B,Ramani A.Soliton structure of the Drinfel'd-SokolovWilson equation,J.Math.Phys.,1986,27:1499.
    19 Wadati Met al..Simple derivation of Backlund transformation from Riccati form of inverse method,Prog.Theor.Phys.,1975,53:418.Gu C H.A unified explicit form of Backlund transformations for generalized hierarchies of KdV equations,Lett.Math.Phys.,1986,11:325.
    20 Gu C H,Zhou Z X.On the Darboux matrices of Backlund transformations for AKNS systems,Lett.Math.Phys.,1987,13:179.Gu C H,Zhou Z X.On Darboux transformations for soliton equations in high dimensional space-time,Lett.Math.Phys.,1994,32:1. Gu C H.Integrable evolution systems based on generalized selfdual Yang-Milts equations and their soliton-like solutions,Lett.Math.Phys.,1995,35:61.
    21 Wang M L,Li Z B.Proc.Of the 1994 Beijing Symposium on nonlinear evolution equations and infinite dimensional dynamics systems,Zhongshan University Press,1995,181.
    Li Z B,Wang M L.Travelling wave solutions to the two-dimensional KdV-Burgers equation,J.Phys.A,1993,26:6027.
    22 Rosales R.Exact solutions of some nonlinear evolution equations,Stud.Appl.Math.,1978,59:117.
    23 Korpel A.Solitary wave formation through nonlinear coupling of finite exponential waves,Phys.Lett.A,1978,68:179.
    24 Malfiet W.Solitary wave solutions of nonlinear equations,Am.J.Phys.,1992,60:650.
    25 柳银萍.基于吴方法的孤波自动求解软件包及其应用,硕士学位论文,华东师范大学,2001.
    26 Li Z B.Wu method and solitons,Proc.of ASCM'95 eds Shi H.and Kobayashi H.,(Tokyo:Scientists Incorporated)1995:157.
    李志斌,张善卿.非线性波方程准确孤立波解的符号计算,数学物理学报,1997,17:81.
    27 Li Z B,Liu Y P.RATH:A Maple package for finding travelling solitary wave solution of nonlinear evolution equations,Compu.Phys.Commun.,2002,148:256.
    28 Liu Y P Liu and Li Z B.An Automated Jacobi Elliptic Function Method for finding Periodic Wave solutions to Nonlinear Evolution Equations.Chin.Phys.Lett.,2002,19:1228.
    29 Liu Y P,Li Z B.An automated algebraic method for finding a series of exact traveling wave solutions to nonlinear evolution equations,Chin.Phys.Lett.,2003,20:317.
    30 Li Z B,Liu Y P.RAEEM:A Maple package for finding a series of exact travelling wave solutions for nonlinear evolution equations,Comp.Phys.Comm.,2004,163:191.
    31 Sachs R L.On the integrable variant of the Boussinesq system:Painleve property,rational solutions,a related many-body system,and equivalence with the akns hierarchy,Phys.D,1988,30:1.
    32 李志斌,姚若侠.非线性耦合微分方程组的精确解析解,物理学报,2001,50:2062.Yao R X,Li Z B.New exact solutions for three evolution equations,Phys.Lett.A,2002,297:196.
    33 Gao Y T,Tian B.Generalized hyperbolic-function method with computerized symbolic computation to construct the solitonic solutions to nonlinear equations of mathematical physics,Comp.Phys.Comm.,2001,133:158.
    34 Hunter J K,Scheurle J.Existence of perturbed solitary wave solutions to a model equation for water waves,Phys.D,1988,32:253.
    35 Chen Y,Wang Q.Multiple Riccati equations rational expansion method and complexiton solutions of the Whitham-Broer-Kaup equation,Phys.Lett.A,2005,347:215.Chen Y,Wang Q.A new general algebraic method with symbolic computation to construct new travelling wave solution for the(1+1)-dimensional dispersive long wave equation,Appl.Math.Comput.,2005,168:1189.Chen Y,Wang Q.A new general algebraic method with symbolic computation to construct new doubly-periodic solutions of the(2+1)-dimensional dispersive long wave equation,Appl.Math.Comput.,2005,167:919.
    36 张鸿庆。吴方向.一类偏微分方程组的一般解及其在壳体理论中的应用,力学学报,1992,24:700;构造板壳问题基本解的一般方法,科学通报,1993,13:671.张鸿庆,冯红.构造弹性力学位移函数的机械化算法,应用数学和力学,1995,16:335.Zhang H Q and Chen Y F.Proceeding of the 3rd ACM,Lanzhou University Press,1998:147.Zhang H Q.Proceeding of the 3rd ACM,World Scientific Press,2001:254.
    37 闫振亚,张鸿庆.具有三个任意函数的变系数KdV-mKdV方程的精确类孤子解,物理学报,1999,48:1957.Chen Y,Li B,Zhang H Q.Auto Bacldund transformation and exact solutions for modified nonlinear dispersive mK(m,n)equations,Chaos,Solitons and Fractals,2003,17:693.Lu Z S,Zhang H Q.On a further extended tanh method,Phys.Lett.A,2003,307:269.
    38 Kuramoto Y.Instability and turbulence of wavefronts in reaction diffision systems,Progr.Theor.Phys.,1980,63:1885.
    39 Das K P,Verheest F.Ion-acoustic solitons in magnetized multi-component plasmas including negative ions,J.plasma phys.,1989,41:139.
    40 Tam H W,Hu X B,Wang D L.The Hirota-Satsuma Coupled KdV Equation and a Coupled Ito System Revisited,J.Phys.Soc.Jpn.,1999,68:369.
    41 刘式适,傅遵涛,刘式达,赵强.Jacobi椭圆函数展开法及其在求解非线性波动方程中的应用,物理学报,2001,50:2068.
    Liu S K,Fu Z T,Liu S D,Zhao Q.Jacobi elliptic expansion function method and periodic wave solutions of nonlinear wave solutions,Phys.Lett.A,2001,289:69.
    Fu Z T,Liu S K,Liu S D,Zhao Q.New Jacobi elliptic function expansion and new periodic solutions of nonlinear equations,Phys.Lett.A,2001,290:72.
    42 Parkes E J,Vakhnenko V O.The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method,Chaos,Solitons and Fractals,2002,13:1819.
    43 Vakhnenko V O,Morrison A J.A Backlund transformation and the inverse scattering transform method for the generalised Vakhnenko equation,Chaos,Solitons and Fractals,2003,17:683.
    44 Morrison A J,Parkes E J.Glasgow Math.J.,2001,43A:65.
    45 Morrison A J,Parkes E J.The N-soliton solution of the modified generalised Vakhnenko equation(a new nonlinear evolution equation),Chaos,Solitons and Fractals,2003,16:13.
    46 Ablowitz M J,Kaup D J,Newell A C,Segur H.The inverse scattering transformFourier analysis for nonlinear problems,Stud.Appl.Math.,1974,53:249.
    47 Hirota R,Satsuma J.N-Soliton Solutions of Model Equations for Shallow Water Waves,J.Phys.Soc.Jpn.,1976,40:611.
    48 Konno K,Ichikawa Y H and Wadati M.A Loop Soliton Propagating along a Stretched Rope,J.Phys.Soc.Jpn.,1981,50:1025.
    49 Konno K,Jeffrey A.Some Remarkable Properties of Two Loop Soliton Solutions,J.Phys.Soc.Jpn.,1983,52:1.
    50 Ishimori Y.On the Modified Korteweg-de Vries Soliton and the Loop Soliton,J.Phys.Soc.Jpn.,1981,50:2471.
    51 EI Naschie MS.Stress,stability and chaos in structural engineering.London:McGraw-Hill,1990.
    52 Rogers C,Shadwick W R.Backlund transformation and their application,Academic Press,New York,1982.
    53 Wahlquist H D,Estabrook F B.Backlund transformations for solitons of the Korteweg-de Vries equation,Phys.Rev.Lett.,1973,31:1386.
    54 Wang M L,Zhou Y B,Li Z B.Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics,Phys.Lett.A,1996,216:67.
    55 范恩贵.齐次平衡法、Weiss-Tabor-Carnevale法与Clarkson-Kruskat约化法之间的联系,物理学报,2000,49:1409.
    56 Steeb W H,Grauel A,Kloke M and Spieker B M.Nonlinear diffusion equations,integrability and the Painleve property,Phys.Scripta,1985,31:5.Xu G Q,Li Z B.A maple package for the Painleve test of nonlinear partial differential equations,Chin.Phys.Lett.,2003,20:975.Lou S Y.Painleve test for the integrable dispersive long waves,Phys.Lett.A,1993,176:96.
    57 胡星标,李勇.DJKM方程的Backlund变换及非线性叠加公式,数学物理学报,1991,11:164.Hu X B,Li B Y.Superposition formulae of a fifth order KdV equation and its modified equation,Acta Math.Appl.Sin.,1988,4:46.
    58 Sokalski K,Stepien L,Sokalska D.The existence of Bogomolny decomposition by means of strong necessary conditions,J.Phys.A:Math.Gen.,2002,35:6157.Sokalski K,Wietecha T,Sokalska D.Existence of dual equations by means of strong necessary conditions analysis of integrability of partial differential nonlinear equations,J.Non.Math.Phys.,2005,12:31.
    59 Kawachara T J,Oscillatory Solitary Waves in Dispersive Media,J.Phys.Soc.Japan,1972,33:260.
    60 刘式适,刘式达.物理学中的非线性方程,北京大学出版社,2000.
    61 Fu Z T,Liu S K,Liu S D.New kinds of solutions to Gardner equation,Chaos,Solitons and Fractals,2004,20:301.
    62 Kichenassamy S,Oliver P J.Existence and Nonexistence of Solitary Wave Solutions to Higher Order Model Evolution Equations,SIAM J.Math.Anal.,1992,23:1141.
    63 李志斌,潘素起,广义五阶KdV方程的孤波解与孤子解,物理学报,2001,50:402.
    64 Ito M.An Extension of Nonlinear Evolution Equations of the KdV(mKdV)Type to Higher Orders,J.Phys.Soc.Jpn.,1980,49:771.
    65 Cole J D.Perturbation Methods in Applied Mathematics,Blaisdell Publishing Company,Waltham,Ma,1968.
    66 Dyke M Van.Perturbation Methods in Fluid Mechanics,The Parabolic Press,Stanford,CA,1975.
    67 Nayfeh A H.Introduction to Perturbation Techniques,Wiley,New York,1981.Nayfeh A H.Problems in Perturbation,Wiley,New York,1985.Nayfeh A H.Perturbation Methods,Wiley,New York,2000.
    68 Hinch E J.Perturbation Methods,Cambridge Texts in Applied Mathematics,Cambridge University Press,Cambridge,1991.
    69 Bush A W.Perturbation Methods for Engineers and Scientists,CRC Press Library of Engineering Mathematics,CRC Press,Boca Roton,FL,1992.
    70 Liao S J.Beyond Perturbation:Introduction to Homotopy Analysis Method,Chapman and Hall/CRC Press,Boca Raton,2003.
    71 Liao S J.On the homotopy analysis method for nonlinear problems,Appl.Mathe.Comp.,2004,147:499.Wu Y Y,Wang C,Liao S J.Solving the one loop soliton solution of the Vakhnenko equation by mean of the Homotopy analysis method,Chaos,Solitons & Fractals,2005,23:1733.
    72 TORVIK J,BAGLEY R L.On the appearance of the fractional derivative in the behavior of real materials,Transactionals of the ASME,1984,51:294.
    73 Liu Y P,Li Z B.The homotopy analysis method for approximating the solution of the modified Korteweg-de Vries equation,Chaos;Soliton & Fractals,(in press).
    74 Liu Y P,Li Z B.Homotopy analysis method for nonlinear differential equations with fractional orders,Zeitschrift fur Naturforschung A,2008,63a:1.
    75 Liu Y P,Li Z B.As an application of homotopy analysis method to nonlinear composites,Journal of Physics A:Mathematical and Theoretical,(accepted).
    76 MAINARDI F. Fractional calculus: some basic problems in continuum and statistical mechanics, CISM lecture notes , Udine, Italy, 1996.
    77 SAKAKIBARA S. Properties of vibration with fractional derivative damping of order 1/2, JSME International Joural, 1997,40: 393.
    78 PETRASAND I, VINAGRE B M. Practical application of digital fractional order controller to temperature control, Porto, Portugal: Proc, of the European Control Conference (ECC2001), 2001,1764.
    79 Kaya D. An application for the higher order modified KdV equation by decomposition method, Commun. Non. Sci. Numer. Simul., 2005,10: 693.
    80 Orsingher E, Zhao X. The space-fractional telegraph equation and the related fractional telegraph process, Chinese Ann. Math., 2003,24: 1.
    81 Orsingher E, Beghin L. Time-fractional telegraph equation and telegraph processes with brownian time, Prob. Theory Relat. Fields, 2004,128: 141.
    82 Stroud D, Hui P M. Nonlinear susceptibilities of granular matter, Phys. Rev. B, 1988, 37: 8719.
    83 Zeng X C, Bergman D J, Hui P M and Stroud D. Effective medium theory for weakly nonlinear composites, Phys. Rev. B, 1988,38: 10970.
    84 Gu G Q and Yu K W. Effective conductivity of nonlinear composites, Phys. Rev. B, 1992,46:4502.
    Yu K W, Gu G Q. Variational calculation of strongly nonlinear composites, Phys. Lett. A,1994,193: 311.
    85 Gu G Q, Yu K W. Homotopy Continuation Approach to Electrostatic Boundary Value Problems of Nonlinear Media, Commun. Theor. Phys., 1998, 29: 523.
    86 Liu Y P and Li Z B, Analytic solutions of the nonlinear composite media, Chaos, Solitons & Fractals (in press).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700