水下炮孔爆破水中冲击波传播特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前资源已成为制约人类发展的三大因素之一,而在陆地资源日趋减少的形势下,世界各国纷纷把目光投向海洋、湖泊、港湾等水下可利用资源。水下爆破技术是开采水下资源和水下施工的一个重要手段,水下爆破技术二战前主要用于军事目的以及零星的水下炸礁工程逐渐扩展到民用行业,如航道疏浚,海港开发,河口、港口整治,沉船解体,交通和水电工程建设,以及科学研究试验等方面。随着安全环保意识增强和钻孔机械设备的改进,水下炮孔爆破逐渐取代水中爆炸和水下裸露爆破成为水下爆破的主要施工方法。水下炮孔爆破的炸药埋藏在岩石或水工结构中,炸药爆炸时的能量分布、冲击波的传播特性以及边界条件的影响都与炸药直接在水介质中爆炸产生的水中冲击波特性有所不同。
     文章在探讨水中爆炸的基本理论和水中爆炸产生的水中冲击波传播特性及衰减规律的基础上,采用数值模拟方法,对水下炮孔爆破在单自由面、两个自由面的情况下,炸药在岩石中爆炸后产生的应力冲击波在水介质中的传播特性和衰减规律问题展开研究,并取得了以下研究成果:
     1)对一个炮孔在单自由面、水介质堵塞时炸药产生的水中冲击波进行数值计算发现,炮孔附近的水中冲击波压力峰值是动水运动和气泡脉动的压力的叠加,动水运动和气泡脉动的影响主要是垂直向上;远离爆源时,由孔口局部炸药产生的水中直达波成为水中冲击波的主导波,水中直达波以孔口中心为球心向四周传播。在距炮孔轴线11m后的水中冲击波衰减规律与现场试验数据所回归的衰减规律比较吻合。在其它因素不变的情况下,将不同水深时水中冲击波传播的衰减规律相比较,随着水深的增加,水中冲击波压力峰值在竖直方向上衰减变得更快;而水平方向上,水中冲击波压力峰值在爆源附近区域衰减变快;距炮孔轴线11m后,水深使得水中冲击波衰减变慢,水中冲击波的影响范围变大。
     2)在两个自由面的水下台阶爆破,水中冲击波的产生机理与单自由面时有所不同。通过对水下台阶爆破最小抵抗线方向、平行台阶坡顶线方向和垂直水底三个方向的水中冲击波传播特性的研究,结果表明:水下台阶爆破的水中冲击波的压力由炮孔中所有药量来决定的,水中冲击波压力在垂直水底方向衰减最快,其次是平行于坡顶线方向,最小抵抗线方向的衰减是最慢的。在其它影响因素不变的情况下,水深5m、10m、15m时水深变化对水中冲击波的传播特性和衰减规律基本没有影响。
     3)堰内充水爆破拆除围堰时,混凝土围堰内侧中的水平炮孔爆炸产生的水中冲击波有方向性的,炮孔轴线上的水中冲击波压力最大,随着测点偏离炮孔轴线,水中冲击波压力逐渐变小。水中冲击波压力峰值在炮孔轴线上衰减比垂直于炮孔轴线向上衰减慢。某水利工程碾压混凝土围堰爆破拆除的水中冲击波实测数据和水中冲击波波形,验证了围堰水平炮孔产生的水中冲击波具有方向性,炮孔轴线方向上的水中冲击波强度最大,偏离炮孔轴线,水中冲击波压力逐渐衰减。
Currently natural resources has become one of three factor for restricting human being development, however, in the situation of land resources gradually lessen, the eyes of each country in the world were trained on the underwater available resources in the sea, lakes, and harbors. The underwater blasting technology was an important means to underwater resources exploration and underwater construction, and its application was extended gradually from the military purpose and scattered underwater reef blasting to civilian industry, such as channel dredging, harbor, estuary exploitation and control, wrecked ship disintegration, transportation and water-power engineering construction and scientific study and test, etc. Following strengthen of safety and environmental awareness and improvement of drilling machines, the underwater borehole blasting become gradually the principle work means. Explosive in underwater borehole blasting was embedded in rock or hydro-structure, and the energy distribution, shock propagation and boundary condition influence were different from the underwater explosion and water surface explosion.
     On the basis of research results of underwater explosion fundamental theory and water shock propagation and attenuation characteristic, this paper combined the numerical simulation and studied the propagation and attenuation characteristic of shock in water produced by the explosion in rock of underwater borehole blasting under single free surface and dual free surface condition, and reached the study results as follow.
     1) Through simulating the shock in water produced by a single borehole on single free surface and damping in water condition, the water shock peak pressure was the superposition of dynamic water pressure and bubble pulsation peak pressure, and the effect of dynamic water motion and bubble pulsation was vertical direction. The water direct wave produced by the partial explosives in borehole orifice become the principle wave of shock in water away from the explosion source, and the direct wave propagated around in center of borehole orifice. The attenuation rule of shock in water after 11m away from borehole axes was confirmed to the attenuation rule regressed from the site test data. On the other factor no changed, the attenuation rule of shock in water of different water depth was compared. Following the water depth increasing, the water shock peak pressure attenuated more quickly in vertical direction. In the horizontal direction, the peak pressure attenuation become more quickly near explosion resource but become slow after 11m away from borehole axes.
     2) In underwater bench blasting with dual free surface, the mechanism of shock in water was different from single free surface condition. Through study the water shock propagation characteristic in minimum burden direction, parallel to bench edge direction and vertical to water bottom direction of underwater bench blasting, the results shows that the water shock of underwater bench blasting was produced by the whole explosive amount in borehole, and the water shock attenuated most quick in vertical direction, the parallel to bench edge direction's was next quick and the minimum burden direction's was the slowest. Under other factors no changed condition, the 5m, 10m, 15m water depth were, in the main, no influence on the propagation characteristic and attenuation rule of shock in water.
     3) The cofferdam was demolished by blasting with inner full water, water shock produced by horizontal borehole explosion in inner side concrete of cofferdam had directivity, and the maximum pressure of water shock existed in borehole axis direction, and the water shock pressure become small following away the borehole axis. The peak pressure attenuation of shock in water in borehole axis direction was slower than the direction vertical to the borehole axis. The monitor data and waveform of shock in water of a hydraulic engineering RCC cofferdam blasting demolition verified the directivity of water shock produced by cofferdam horizontal borehole, the maximum water shock pressure in borehole axis and the water shock pressure declined by away the borehole axis.
引文
[1]库尔.水下爆炸[M].罗耀杰,译.北京:国防工业出版社,1965
    [2]RH Cole.Underwater Explosions[M].New Jersey:LISA,Princeton University Press,1948
    [3]山西省水利勘测设计院.漳泽水库进水口水下爆破经验介绍[J].水利水电技术,1964,(12):25~27
    [4]王中黔.黄埔炸礁工程[J].见:汪旭光.中国典型爆破工程及技术[M].北京:冶金工程出版社,2006
    [5]刘殿中.211工程水下岩塞爆破[J].见:汪旭光.中国典型爆破工程及技术[M],北京:冶金工业出版社,2006
    [6]周祖仁,方山峰.丰满水电站岩塞爆破及其对闸门的影响[J].武汉水利电力学院学报,1981,(2):1~11
    [7]刘书伦.深水急流条件下的水下炸礁实例[J].见:汪旭光.中国典型爆破工程及技术[M],北京:冶金工程出版社,2006
    [8]于亚伦.工程爆破理论与技术[M].北京:冶金工业出版社,2004
    [9]高欣宝,麻全仕.水下爆破的安全管理与防护[J].安全,1996,(5):7~11
    [10]梁龙河,曹菊珍,王元书.水下爆炸特性的-维球对称数值研究[J].高压物理学报,2002,16(3):199~204
    [11]霍永基.水下爆炸(上)[J].爆破,1986,2(3):1~7
    [12]霍永基.水下爆炸(下)[J].爆破,1986,2(4):5~13
    [13]Nadamitsu Y,Liu ZY,Fujita M,etc.Von Neumann Reflection of Underwater Shock Wave[J].Journal of Materials Processing Technology,1999,85(1-3):48~51
    [14]Holt M,Ballhaus Jrwf.Influence of a Free Surface on Underwater Spherical Explosions[J].Calif,Aeronaut Sci Div,1970
    [15]Temkin S,Ecker GZ.Droplet Pair Interaction in a Shock-wave Flow Field[J].Journal of Fluid Mechanics,1989,202:467~497
    [16]Khanqaokar,Tarang P,Le Mehaute B.Extended KdV Equation for Transient Axisymmetric Water Waves[J].Ocean Engineering,1991,18(5):435~450
    [17]Cowperthwaite M,Rosenberg JT.Lagrange Gage Studies in Ideal and Non-ideal Explosives[C].7th Symposium(International) on Detonation,1982,1072~1083
    [18]李澎,徐更光.水下爆炸冲击波传播的近似计算[J].火炸药学报,2006,29(4):21~24
    [19]颜事龙.集中药包与条形药包水下爆炸能量测试[J].爆破器材,2003,32(5):23~27
    [20]Akio Kira.Underwater Explosion of Spherical Explosive[J].Journal of Materials Processing Technology,1999,64~85
    [21]Snay H G.Hydrodynamics of Underwater Explosions[C].Symposium Naval Hydrodyn,Washington D C,1965
    [22]Gaspin J B.Depth Scaling of Underwater Explosion Phenomena[J].AD-A020473,1975
    [23]Slifke J B.Pressure-Pulse Characteristics of Deep Explosions as Functions of Depth and Range[J].AD-661804,1967
    [24]Michael M.Explosion Effects and Properties:Part Ⅱ-Explosion Effects in the Water[J].AD-A056694,1978
    [25]Snay H G.The Scaling of Underwater Explosion Phenomena[J].AD-271468,1961
    [26]Gaspin J B.Depth Sealing of Underwater Explosion Source Levels[J].AD-A020473,1975
    [27]Temkin S A.Review of the Propagation of Pressure Pulse Produced by Small Underwater Explosion Charges[J].NOLTR-6181,1988
    [28]陆遐龄,梁向前,胡光川,等.水中爆炸的理论研究与实践[J].爆破,2006,23(2):9~13
    [29]钱胜国.近自由水面水下爆炸时水中特性[J].爆炸与冲击,1983,(4)
    [30]王中黔.水下爆破冲击波[J].见:水下爆破文集[R].北京:人民交通出版社,1980
    [31]长江航运局.四川维尼纶厂通用码头水下爆破安全观察总结[J].水运工程,1976,(8)
    [32]马乃耀.水下爆破-黄埔水下爆破经验介绍[J].1977
    [33]李洪涛,皇甫堪,闫吉杰.基于无线数据传输的水下爆炸压力遥测系统[J].测控技术与设备,2003,29(1):28~30
    [34]R Rajendran.Linear Elastic Shock Response of Plane Plates Subjected to Underwater Explosion[J].International Journal of Impact Engineering,2001(25):493~506
    [35]Ramajeyathilagam K.Non-Linear Transient Dynamic Response of Rectangular Plates under Shock Loading[J].Intemational Journal of Impact Engineering,2000(24):999~1015
    [36]Houlston R,Shaten J E.Structural Response of Panels Subjected to Shock Loading[J].55th Shock and Vibration Bulletin(Part 2),1985
    [37]张效慈,李玉节,赵本立.深水爆炸水动压力场对潜体结构的动态影响[J].中国造船,1997,38(4):61~63
    [38]李国华,李玉节,张效慈.浮动冲击平台水下爆炸冲击谱测量与分析[J].船舶力学,2000,4(2):51~60
    [39]高秋新.爆炸引起的船体振荡[J].舰船力学情报,1992,(9):26~30
    [40]李珙华.舰弹性船模的三维水弹性理论分析及试验结果比较[R].中国船舶科学研究中心科技报告,1994
    [41]潘超,黄劲松.多物质欧拉算法对近水面爆炸的数值模拟[J].中国农村水利水电,2005,(1):45~48
    [42]Cao JZ,Liang LH.Demonstration of Numerically Simulating Figures for Underwater Explosions[J].24th International Congress on High-Speed Photography and Photonics,2000,SEP 24~29
    [43]Turangan,Cary Kenny.Free-Lagrange Simulations of Single Cavitation Bubble Collapse[D].University of Southampton(United Kingdom),2003
    [44]鲁传敬.三维水下爆炸气泡的数值模拟[J].航空学报,1996,17(1):92~95
    [45]刘榕海.利用水下爆炸法评价爆炸危险性的研究[J].爆炸与冲击,1993,(2)
    [46]李玉民.水中爆炸气泡脉动流场的数值计算[J].爆炸与冲击,1996,16(4):377~381
    [47]Kell J B.Damping of Underwater Explosion Bubble Oscillation[J].Journal of Applied Physics,1956,27(10)
    [48]Chan S K.An Improvement in the Modified Finite Element Procedure for Underwater Shock Analysis[C].Proceeding of 62nd shock and Vibration Symposium,Oct,1992
    [49]Zamyshlyae B V.Pressure Fields during Underwater Explosion in a Free Fluid[J].Dynamic Loads in Underwater Explosion,1973,7(2):86~120
    [50]Saito T,Marumoto M,Yamashita H.Experimental and Numerical Studies of Underwater Shock Wave Attenuation[J].Shock Waves,2003,13(2):139~148
    [51]Gong SW.On Attenuation of Floating Structure Response to Underwater Shock[J].International Journal of Impact Engineering,2006,32(11):1857~1877
    [52]Fedkiw RP.Coupling an Eulerian Fluid Calculation to a Lagrangian Solid Calculation with the Ghost Fluid Method[J].Journal of Computational Physics,2002,175(1):200~224
    [53]Shin Young S,Chisum James E.Modeling and Simulation of Underwater Shock Problems Using a Coupled Lagrangian-Eulerian Analysis Approach[J].Shock and Vibration,1997,4(1):1~10
    [54]顾文彬,叶顺双,刘文华,等.界面对浅层水中爆炸冲击波波峰值压力影响的研究[J].解放军理工大学学报,2001,2(51:61~63
    [55]顾文彬,郑向平,刘建青,等.浅层水中爆炸冲击波对混凝土墩斜碰撞作用试验研究[J].爆炸与冲击,2006,26(4):361~366
    [56]张鹏翔,顾文彬,叶序双.浅层水中爆炸冲击波切断现象浅探[J].爆炸与冲击,2002,22(3):221~228
    [57]顾文彬,叶序双,张鹏翔,等.浅层水中爆炸水底影响的试验研究[J].解放军理工大学学报,2001,2(2):55~58
    [58]顾文彬.浅层水中爆炸冲击波压力特性试验与数值模拟研究[R].博士后研究工作报告.南京:解放军理工大学,2000
    [59]顾文彬,阳天海,叶序双,等.单个装药浅层水中爆炸作用数值模拟[J].解放军理工大学学报,2000,1(3):51~55
    [60]张鹏翔,顾文彬,叶序双.浅层水中爆炸直达波压力峰值计算方法探讨[J].解放军理工大学学报,2002,3(1):57~59
    [61]顾文彬,孙百连,阳天海,等.浅层水中沉底爆炸冲击波相互作用数值模拟[J].解放军理工大学学报,2003,4(6):64~68
    [62]顾文彬,马海洋,唐勇,等.水底对浅水中装药爆炸效果的影响[J].爆破,2003,20(4):88~92
    [63]姚熊亮,王玉红,史冬岩,等.圆筒结构水下爆炸数值实验研究[J].哈尔滨工程大学学报,2002,23(1):5~8
    [64]鲁忠宝.典型装药水中爆炸参数与水深关系的仿真研究[J].鱼雷技术,2007,15(1):45~47
    [65]任新见,汪剑辉.集团装药浅层水中爆炸数值模拟技术[J].西部探矿工程,2005,(10):125~127
    [66]丁珏,刘家骢.近水面水下爆炸初期水雾形成过程的数值模拟[J].爆破器材,2002,31(5):1~5
    [67]单海波,徐全军,陈国祥,等.球形装药淤泥中爆炸场数值模拟及分析[J].工程爆破,2004,10(1):13~15
    [68]盖京波,王善,杨世全.冲击波在多层结构中的传播[J].火力与指挥控制,2007,32(3):12~18
    [69]冯刚,朱锡,张振华.近水面水下爆炸作用下舰艇结构损伤数值仿真[J].计算机辅助工程,2006,15(增刊):81~84
    [70]邓文彬,王国治.基于DYTRAN软件的水下爆炸数值计算[J].华东船舶工业学院学报,2003,17(6):11~16
    [71]吴成,金俨,李华新.固支方板对水中爆炸作用的动态响应研究[J].高压物理学报,2003,17(4):275~281
    [72]Cichocki K.Effects of Underwater Blast Loading on Structures with Protective Elements[J].International Journal of Impact Engineering,1999,22(6):609~617
    [73]McCoy R W,Sun C T.Fluid-structure Interaction Analysis of a Thick-section Composite Cylinder Subjected to Underwater Blasting Loading[J].Composite Structures,1997,37(1):45~55
    [74]Kira A,Fujita M,Itoh S.Underwater Explosion of Spherical Explosives[J].Journal of Materials Processing Technology,1999,85:64~68
    [75]Wardlaw,Andrew B Jr,Luton J.Fluid-structure Interaction Mechanisms for Close-in Explosions[J].Shock and Vibration,2000,7(5):265~275
    [76]Motta ADA,Ebecken N F F.Steel Structures Optimization to Resist Underwater Shockwaves-Explosive Charges Optimization[J].Structures and Materials(v 15,Structures Under Shock and Impact Ⅷ),2004,121~128
    [77]Shin Young S.Ship Shock Modeling and Simulation for Far-field Underwater Explosion[J].Computers and Structures,2004,82:2211~2219
    [78]Fletcher Ken,Briggs Mike,Grant Rob.Deepwater Blasting on the River Nile in Southern Egypt[J].Journal of Explosives Engineering,2004,21(3):6~15
    [79]Fang Bin,Zhu Xi,Zhang Zhen-Hua.Effect of Parameters in Numerical Simulation of Underwater Shock Wave[J].Journal of Harbin Engineering University,2005,26(4):419~424
    [80]Liang C C,Liu T H,Tseng W M.Modal Validations and Predictions of Water Plume Behavior of Underwater Explosion near Air-water Surface[J].Journal of Taiwan Society of Naval Architects and Marine Engineers,2006,25(1):17~33
    [81]Jung Woo Jin,Ogata Yuji,Kubota Shiro,etc.Relationship of Fragmentation of Cylindrical Rock Specimen and Incident Underwater Shock Wave[J].Journal of the Japan Explosives Society,2002,63(6):404~409
    [82]黄儒钦.水力学教程[M].成都:西南交通大学出版社,1999
    [83]陈宝心,杨勤荣.爆破动力学基础[M].武汉:湖北科学技术出版社,2005
    [84]张守中.爆炸基本原理[M].国防工业出版社,1988
    [85]中国矿院北京研究生部,相似理论[M].1980
    [86]李翼祺,马素贞.爆炸力学[M].科学出版社,1992
    [87]张可玉.水下爆破手册[M].中国人民解放军海军司令部保证部,2003
    [88]叶序双.空气中、水中爆炸理论基础[M].中国人民解放军工程兵工程学院训练部,1981
    [89]李裕春,时党勇,张胜民.ANSYS10.0/LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社,2006
    [90]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA8.1进行显式动力分析[M].北京:清华大学出版社,2005
    [91]白金泽.LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005
    [92]赵海鸥.LS-DYNA动力分析指南[M].北京:兵器工业出版社,2003
    [93]Livermore Software Technology Corporation.LS-DYNA Keyword User's Manual (Nonlinear Dynamic Analysis of Structures,Version 960).May,2001
    [94]Livermore Software Technology Corporation.LS-DYNA Keyword User's Manual (970v).Livermore.2003
    [95]陶松霖.凿岩爆破[M].北京:冶金工业出版社,1992
    [96]王玉杰.爆破安全技术[M].北京:冶金工业出版社,2005
    [97]王玉杰.爆破工程[M].武汉:武汉理工大学出版社,2007
    [98]宋学义.水下爆破[M].长沙:中南工业大学出版社,1989
    [99][苏]加尔基B B,等.水下爆破工程[M].王中黔,吕毅,张旭译.北京:人民交通出版社,1992
    [100]杨军,金乾坤,黄风雷.岩石爆破理论模型及数值计算[M].北京:科学出版社,1999
    [101]周长城,胡仁喜,熊文波.ANSYS11.0理论与典型范例[M].北京:电子工业出版社,2007
    [102]易长平,卢文波,许红涛,等.岩体开挖过程中初始应力的动态卸荷效应研究[J].岩石力学与工程学报,2005,24(增1):4750~4754
    [103]顾宏伟,赵燕明,金文.柱状药包岩石中爆炸的数值模拟[J].工程爆破,2007,13(1):24~27
    [104]易长平,卢文波,张建华.爆破振动作用下地下洞室临界振速的研究[J].爆破,2005,22(4):4~7
    [105]徐光彬.耦合装药情况下台阶深孔爆破的数值模拟[J].广西水利水电,2007(3):20~23
    [106]杨颖涛,姜涛,詹发民.深孔水压爆破炮孔初始压力的数值模拟[J].爆破,2006,23(2):20~21
    [107]潘超,黄劲松.多物质欧拉算法对近水面爆炸的数值模拟[J].中国农村水利水电,2005,(1):45~48
    [108]张馨,王善,陈振勇,等.水下接触爆炸作用下加筋板的动态响应分析[J].系统仿真学报,2007,19(2):257~260
    [109]孙百连,顾文彬,蒋建平,等.浅层水中沉底的两个装药爆炸的数值模拟研究[J].爆炸与冲击,2003,23(5):460~465
    [110]顾文彬,苏青笠,刘建青,等.水下平面爆炸冲击作用下空化区域形成及其特征[J].爆破,2004,21(4):8~11
    [111]方斌,朱锡,张振华,等.水下爆炸冲击波数值模拟中的参数影响[J].哈尔滨工程大学学报,2005,26(4):419~424
    [112]顾文彬,孙百连,阳天海,等.浅层水中沉底爆炸冲击波相互作用数值模拟[J].解放军理工大学学报(自然科学版),2003,4(6):64~68
    [113]孙远征,龙源,邵鲁中,等.水下钻孔爆破水中冲击波试验研究[J].工程爆破,2007,9(1):15~19
    [114]乔小玲,胡毅亭,彭金华,等.岩石型乳化炸药的TNT当量[J].爆破器材,1998,27(6):5~8
    [115]周传波,何晓光,郭廖武,等.岩石深孔爆破技术新进展[M].武汉:中国地质大学出版社,2005
    [116]郑炳旭,张志毅.条形药包爆破理论与技术[J].工程爆破,2003,9(1):22~26
    [117]吉国栋,陈叶青.条形药包爆炸应力场的全息动光弹研究[J].工程爆破,1999,5(4):20~24
    [118]王仲华,陈如华.三峡大坝全级配混凝土力学性能试验研究[J].长江科学院院报,1998,15(1):1~5
    [119]陆德源.三峡大坝应用碾压混凝土的研究[J].人民长江,1994,25(8):1~7
    [120]汪安华.三峡工程大坝混凝土设计与温度控制[J].人民长江,1996,27(1):2~5
    [121]汪安华.三峡工程大坝混凝土设计研究[J].人民长江,1999,30(1):8~11
    [122]张正宇,曹广晶,钮新强,等.中国三峡工程RCC围堰爆破拆除新技术[M].北京:中国水利水电出版社,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700