用户名: 密码: 验证码:
压燃式发动机颗粒物排放理化特性及其对大气环境的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高浓度的大气悬浮颗粒物对大气能见度、人体健康及气候变化均有着严重的影响,随着我国机动车保有量的不断增长,机动车颗粒物排放已成为城市大气悬浮颗粒物的重要来源。对机动车排气颗粒物理化特性的研究是正确认识颗粒物生成机理及其环境健康效应的基础,并可为判断大气悬浮颗粒物的污染来源,进而制定污染排放控制措施提供科学的依据。本文分别基于台架实验和道路实验两种方法对机动车颗粒物排放的理化特性做了系统深入的研究,并进一步提出了新的针对道路微环境下不同车型机动车颗粒物排放因子的计算方法,主要研究内容如下:
     (1)针对超低硫柴油、低硫柴油和生物柴油三种不同燃料,在台架实验条件下,采用基于数量和质量两种不同方法研究了压燃式发动机排气颗粒物挥发性及其粒径分布特征。研究表明,相对低硫柴油,燃用生物柴油可以有效降低发动机排气颗粒中挥发性成分的比排放率,然而相对超低硫柴油,燃用生物柴油所产生颗粒物中挥发性物质成分的比排放率有所增加,其挥发性物质成分主要集中在小尺寸颗粒物中。
     (2)研究了不同发动机工况、不同动力学粒径、不同燃油条件下发动机排气颗粒物形态、内部纳米结构及氧化活性。研究发现,发动机颗粒物的氧化活性主要取决于颗粒物基本粒子尺寸、挥发性物质比例及内部纳米结构特征等。由于燃用生物柴油所产生颗粒物较小的基本粒子尺寸、较高的挥发性物质比例以及相对短小、扭曲的内部碳层结构,其在热重实验中表现出相对超低硫柴油、低硫柴油颗粒物更强的氧化活性,与此同时,颗粒物的基本粒子尺寸、挥发性及内部碳层结构又与缸内燃烧条件、动力学粒径有着密切的关系。
     (3)通过台架实验,研究了不同发动机负荷、不同动力学粒径以及燃油特性对颗粒物主要成分的影响,成分研究内容主要包括有机碳、元素碳及16种多环芳烃。试验结果表明,燃用生物柴油对颗粒物排放的抑制效果主要表现在燃烧生成的成分,如元素碳、大分子量的多环芳烃等,同时颗粒物的主要成分亦存在着明显的负荷变化及粒径分布特征。
     (4)选取了上海地区一条典型的高速公路,开展了机动车排气颗粒对大气环境影响的研究,分别考察了白天和晚上道路微环境下大气悬浮颗粒物的理化特性,并与背景样品做了对比,主要测试内容包括不同粒径颗粒物的形貌、质量浓度及所包含的有机碳、元素碳、水溶性离子及多环芳烃的质量浓度。实验发现机动车对环境颗粒物的影响主要集中在<400nm的粒径范围内,在颗粒物主要成分中,机动车排放对元素碳、硝酸盐及多环芳烃浓度的影响最为明显。基于台架实验所获得的柴油发动机的排放源特征,采用正交矩阵因子法对路边颗粒物样品的主要成分进行源解析研究,得出不同车型机动车(柴油车、汽油车)排放对路边大气颗粒物的贡献比例,并据此改进了基于燃油消耗机动车颗粒物排放因子的计算方法,得出了不同车型机动车排放因子。计算结果表明,柴油车颗粒物排放是道路微环境下大气悬浮颗粒物的最主要贡献者,尤其对超细颗粒物的贡献达到60%以上。上海地区现行柴油车辆的颗粒物排放因子相对一些发达国家和地区仍处于一个比较高的水平。
Increased level of atmospheric aerosol can severely impact atmosphere visibility, publichealth and climate. With the rapid increase of vehicles in China, particulate emission has beenbecome one of the most important pollutant sources for atmospheric aerosol. Acomprehensive knowledge on physicochemical characteristics of vehicle particulate emissionis required to understand particle formation mechanism, hazards to the atmosphereenvironment, source assignment and ways to reduce particulate emission from motor vehicles.In this dissertation work, detailed physicochemical characteristics of particulate emissionwere investigated by dynamometry and roadside sampling. For the roadside experiment, anew method was proposed to calculate the vehicle emission factor with different engine types.This thesis is composed of the following parts:
     (1) In the dynamometer experiment, ultra low sulfur diesel fuel (ULSD, sulfur contentless than10ppm), biodiesel (BD) and low sulfur diesel fuel (LSD, sulfur content lessthan400ppm) were used as the fuels. Detailed physicochemical characteristicsincluding size-dependent particle volatility, particle morphology, nanostructure,oxidation property and major composition were investigated. The size-dependentvolatility was investigated on the basis of number and mass measurements. It wasfound that, the use of biodiesel could reduce the brake specific emission of volatilesubstance effectively in comparison with LSD. While volatile substances in thebiodiesel particulate are notably greater than ULSD particulates and moreconcentrated in the particulates with small size.
     (2) Particle morphology, nanostructure and oxidation property were also investigated overranges of engine operation conditions, aerodynamic sizes, and fuel types. Theoxidation experiments suggest that the oxidation property of diesel particulate dependon the primary particle size, volatile fraction, and nanostructure. Due to the smallerprimary particle size, larger volatile content and greater disordered inner nanostructure,biodiesel particulate exhibite stronger tendenty to oxidation than those from ULSDand LSD. Moreover, in-cylinder combustion parameter and fuel properties control theprimary particle size, volatile content and inner nanostructure of diesel particles.
     (3) Analysis of particle composition included organic carbon, element carbon andpolycyclic aromatic hydrocarbons. In this thesis, the effect of engine load,aerodynamic size and fuel type on particle composition were investigated. The use ofbiodiesel appears to reduce particulate emissions from diesel combustion. Thissuppression effect is exhibited mostly in the reduction of elemental carbon and largermolecular weight PAHs. Moreover, the particle compositions were found to be loadand size dependeent.(4) Roadside sampling was made immediately adjacent to a freeway in Shanghai. Particle
     samples were collected during daytime and nighttime. The physicochemicalcharacteristics of particle samples were investigated including size-resolved particlemass concentration, morphology, composition. These results were compared withthose of background samples. The results indicated that the vehicle emissionscontributes mostly to the size range less than400nm, and the mass concentration ofelement carbon, nitrate and PAHs in the particles exhibits the most notable increase,when compared to the background. The source assignment method of positive matrixfactor was used to analyze the contribution ratio of different emission sources and theresults were used for the calculation of vehicle emission factor of different enginetypes. The results indicate that particle emission from diesel motor vehicles is themajor contributor of roadside particulate, especially for ultrafine particles with thecontribution ration above60%. In Shanghai, the emission factor of in-use diesel motorvehicles is still in a higher level in the comparison with some developed countries andregions.
引文
[1] Shendrikar A.D., Steinmetz W.K. Integrating nephelometer measurements for the airbome fine particulatematter(PM2.5)mass concentrations [J]. Atmospheric Environment2003,37:1383-1392.
    [2] Chan Y.C., Simpson R.W., Mctainsh G.H., Vowles P.D., Cohen D.D., Bailey G.M. Source apportionmentof visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques[J]. Atmospheric Environment1999,33:3237-3250.
    [3] Kim K.W., Kim Y.J., Oh S.J. Visibility impairment during Yellow Sand periods in the urban atmosphere ofKwangju,Korea [J]. Atmospheric Environment2001,35:5157-5167.
    [4]王玮,潘志,刘红杰,叶慧海,岳欣,王英,刘萍.交通来源颗粒物粒径谱分布及其与能见度关系[J].环境科学研究,2001,14:17-22.
    [5] Pope C.A., Thun M.J., Namboodriri M.M., Dockery D.W., Evans J.S., Speizer F.E., Heath C. W.Particulate air pollution as a predictor of mortality in a prospective study of US adults [J]. AmericanJournal of Respiratory and Critical Care1995,151:669-674.
    [6] Joellen L., Toxico L. Effects of Emissions from Diesel Engines. New York: Elsevier Science Publishing Co,Inc,1982.
    [7] Spix H.R., Anderson J., Schwartz M.A. Short term effects of air pollution on hospital admissions ofrespiratory diseases in Europe A quantitative summary of APHEA project results [J]. Archives ofEnvironmental Health1998,53:54–64
    [8] Li N., Hao M., Phalen R.F. Particulate air pollutants and asthma. A paradigm for the role of oxidative stressin PM-induced adverse health effects [J]. Clinical Inmunology,2003,109:250–265
    [9] Pope III C.A., Dockery D.W., Spengler J.D. Respiratory health and PM10pollution: a daily time seriesanalysis [J]. American Review of Respiratory Disease,1991,144:668–674
    [10]魏复盛,胡伟,腾恩江等.空气污染与儿童呼吸系统患病率的相关分析中国[J].环境科学,2000,20:220-224
    [11]胡伟,魏复盛,Zhang J.室内燃煤与大气污染对儿童肺功能的交互影响[J].环境与健康杂志,2004,21:275–278
    [12]钱孝琳,阚海东,宋伟民.大气细颗粒物污染与居民每日死亡关系的Meta分析[J].环境与健康杂志2005,22:246–248
    [13]戴海夏.上海市大气细颗粒物污染特征及人群健康效应研究,[学位论文],复旦大学,2003
    [14]李新令.发动机超细颗粒排放特性及其在排气稀释过程中变化研究,[学位论文],上海交通大学,2007.
    [15] Johnston C.J., Finkelstein J.N., Mercer P. Pulmonary effects induced by ultrafine ptfe particles [J].Toxicology and Applied Pharmacology,2000,168:208–215.
    [16] Augustinus E.M., Johan M.M., Erik L. An aggregate public health indicator to represent the impact ofmultiple environmental exposures [J]. Epidemiology1999,10:606–617.
    [17]刘毅,周明煜.北京及近中国海春季沙尘气溶胶浓度变化规律的研究.[J].环境科学学报,1999,19:642-647
    [18]郝吉明,王丽涛,李林,胡京南,余学春.北京市能源相关大气污染源的贡献率和调控对策分析[J].中国科学。辑地球科学,2005,35(增刊I):115-122
    [19]刘炜.发动机超细颗粒排放特性及其在排气稀释过程中变化研究,[学位论文],上海交通大学,2009.
    [20] Dec J.E. Advanced compression-ignition engines-understanding the in-cylinder processes [J]. Proceedingof the Combustion Institute2009,32:2727-2742.
    [21] Maricq M.M. Chemical characterization of particulate emissions from diesel engines: A review [J].Journal of Aerosol Science2007,38:1079-1118
    [22]周龙保.内燃机学[M],北京:机械工业出版社,1999
    [23] Tree D.R., Svensson K.I. Soot processes in compression ignition engines [J]. Progress in Energy andCombustion Science2007,33:272–309
    [24]Wei Q., Kittelson D.B., Watts W.F. Single Stage Dilution Tunnel Performance [C]. SAE2001-01-0201.
    [25] Kleeman M.J., Schauer J.J., Cass G. Size and composition distribution of fine particulate matter emittedfrom motor vehicles [J]. Environmental Science&Technology2000,34:1132-1142.
    [26] Zielinska B., Sagebie J., Arnott L.W.P., Rogers C.F., Kelly K.E., Wagne D.A., Lighty R.J.S., Sarofim A.F.,Palmer G. Phase and Size Distribution of Polycyclic Aromatic Hydrocarbons in Diesel and GasolineVehicle Emissions [J]. Environmental Science&Technology2004,38:2557-2567
    [27] Graboski M.S., McCormick L. Combustion of fat and vegetable oil derived fuels in diesel engines [J].Progress in Energy and Combustion Science1998,24:125-64.
    [28] Lapuerta M., Armas O., Rodríguez-Fernandez J. Effect of biodiesel fuels on diesel engine emissions [J].Progress in Energy and Combustion Science2008,34:198-223.
    [29] Krahl J., Munack A., Schr der O., Stein H., Bünger J. Influence of biodiesel and different designed dieselfuels on the exhaust gas emissions and health effects [C]. SAE2003-01-3199.
    [30] Di Y.G., Cheung C.S., Huang Z.H. Experimental investigation on regulated and unregulated emissions ofa diesel engine fueled with ultra-low sulfur [J]. Science of the Total Environment2009,407:835–846
    [31] Zhu L., Cheung C.S., Zhang W.G. Huang Z. Influence of Methanol–biodiesel Blends on the ParticulateEmissions of a Direct Injection Diesel Engine [J]. Aerosol Science and Technology2010,44:362-369.
    [32] Lapuerta M., Rodr guez-Fernandez J., Agudelo J.R. Diesel particulate emissions from used cooking oilbiodiesel [J]. Bioresource Technol2008,99:731–740.
    [33] Bagley S.T., Gratz L.D., Johnson J.H. McDonald J.F. Effects of an oxidation catalytic converter and abiodiesel fuel on the chemical, mutagenic, and particle size characteristics of emissions from a dieselengine [J]. Environmental Science&Technology1998,9:1184-1191.
    [34] Cardone M., Prati M., Rocco M., Seggiani M., Senatore A., Vitolo S. Brassica carinata as an alternativeoil crop for the production of biodiesel in Italy: engine performance and regulated and unregulatedexhaust emissions [J]. Environmental Science&Technology2002,36:4656-4662.
    [35] Pinto A., Guarieiro L., Rezende M., Ribeiro N., Torres E., Lopes W., Pereira P., Andrade J. Biodiesel: anoverview [J]. J Braz Chem Soc2005,16:1313-1330.
    [36] Kulkarni M., Dalai A. Waste cooking oil-an economical source for biodiesel: a review [J]. Ind Eng ChemRes2006,45:2901-2913.
    [37] Durbin T., Collins J., Norbeck J., Smith M. Effects of biodiesel, biodiesel blends, and a synthetic dieselon emissions from light heavy-duty diesel vehicles [J]. Environmental Science&Technology2000,34:349-355.
    [38] Tang L., Frank B., Lanni T., Rideout G., Meyer N., Beregszaszy C. Unregulated emissions from aheavy-duty diesel engine with various fuels and emission control systems [J]. Environmental Science&Technology2007,41:5037-5043.
    [39] Maricq M.M., Chase R.E., Xu N. Laing, P.M. The effects of the Catalytic Converter and Fuel Sulfur Levelon Motor Vehicle Particulate Matter Emissions: Light Duty Diesel Vehicles [J]. Environmental Science&Technology2002,36:283-289.
    [40] R nkk T., Virtanen A., Kannosto J., Keskinen J., Lappi M. Pirjola, L. Nucleation Mode Particles with aNonvolatile Core in the Exhaust of a Heavy Duty Diesel Vehicle [J]. Environmental Science&Technology2007,41:6384-6389.
    [41] Kweon C.B., Okada S., Foster D.E., Bae M.S., Schauer, J.J. Effect of engine operating conditions onparticle-phase organic compounds in engine exhaust of a heavy-duty direct-injection (D. I.) diesel engine
    [C]. SAE2003-01-0342.
    [42] Sakurai H., Park K., McMurry P.H., Zarling D.D., Kittelson D.B. Ziemann P.J. Size-dependent MixingCharacteristics of Volatile and Nonvolatile Components in Diesel Exhaust Aerosols [J]. EnvironmentalScience&Technology2003,37:5487-5495.
    [43] Kerminen V.M., Makela T.E., Ojanen C.H., Hillamo R.E., Vilhunen J.K., Rantanen L., Havers N., BohlenA. Klockow D. Characterization of the particulate phase in the exhaust from a diesel car [J].Environmental Science&Technology1997,31:1883-1889.
    [44] Ning Z., Cheung C.S., Liu S.X. Experimental investigation of the effect of exhaust gas cooling on dieselparticulate [J]. Journal of Aerosol Science2004,35:333-345.
    [45] Collura S., Chaoui N., Azambre B., Finqueneisel G., Heintz O., Krzton A., Koch A., Weber J.V.Influence of the soluble organic fraction on the thermal behaviour, texture and surface chemistry of dieselexhaust soot [J]. Carbon2005,43:605-613.
    [46] Mustafi N.N., Raine R.R., James, B. Characterization of exhaust particulates from a dual fuel engine byTGA, XPS, and Raman techniques [J]. Aerosol Science and Technology2010,44:954-963.
    [47] Di Y.G., Cheung C.S., Huang Z.H. Experimental study on particulate emission of a diesel engine fueledwith blended ethanol–dodecanol–diesel [J]. Journal of Aerosol Science2009,40:101-112
    [48] Zhu R.J., Cheung C.S., Huang Z.H., Wang X.B. Experimental investigation on particulate emissions of adirect injection diesel engine fueled with diesel–diethyl adipate blends [J]. Journal of Aerosol Science2011,42:264–276
    [49] Boehman A.L., Song J.H., Alam M. Impact of biodiesel blending on diesel soot and the regeneration ofparticulate filters [J]. Energy&Fuels,2005,19:1857-1864.
    [50] Haye B.E.著,徐新阳、康雁、陈旭等译,A Random Walk Through Fractal Dimensions分形漫步,沈阳:东北大学出版社,1994.9
    [51]董素荣,宋崇林,崔兰等,柴油机燃烧形成微粒的形态特性及微量元素分析,[J].内燃机学报,2008,26:499-505
    [52] Lee K.O., Zhu J.Y. Sizes, graphitic structures and fractal geometry of Light-duty diesel engineparticulates [C].SAE2003-01-3169
    [53] Lapuerta M., Martos F.J., Herreros J.M. Effect of engine operating conditions on the size of primaryparticles composing diesel soot agglomerates [J]. Journal of Aerosol Science2007,38:455-466.
    [54] Van Gulijk C., Marijnissen J.C.M., Makkee M., Moulijn J.A., Schmidt-Ott A. Measuring Diesel Soot witha Scanning Mobility Particle Sizer and an Electrical Low-Pressure Impactor: Performance Assessmentwith a Model for Fractal-like Agglomerates [J]. Journal of Aerosol Science,2004,35:633-655
    [55] Zhu J., Lee K. O., Yozgatligil A., Choi M.Y. Effects of engine operating conditions on morphology,microstructure, and fractal geometry of light-duty diesel engine particulates [J]. Proceedings of theCombustion Institute2005,30:2781–2789.
    [56] Mathis U., Mohr M., Kaegi R., Bertola A. Boulouchos K. Influence of diesel engine combustionparameters on primary soot particle diameter [J]. Environmental Science&Technology2005,39:1887-1892.
    [57] Ishiguro T., Takatori Y., Akihama K. Microstructure of diesel soot particles probed by electron microscopy:First observation of inner core and outer shell [J]. Combustion and Flame1997,108:231-234.
    [58] Vander Wal R.L., Mueller C.J. Initial investigation of effects of fuel oxygenation on nanostructure of sootfrom a direct-injection diesel engine [J]. Energy Fuel2006,20:2364-2369.
    [59] Song J.H., Alam M., Boehman A.L., Kim U. Examination of the oxidation behavior of biodiesel soot [J].Combustion and Flame2006,146:589-604.
    [60] Marsh H., Kuo K. Kinetics and catalysis of carbon gasification [C]. Introduction to Carbon Science107-152, Butterworths, London,1989
    [61] Hippo E.J., Murdie N., Hyjazie A. The role of active sites in the inhibition of gas-carbon reactions [J].Carbon1989,27:689-695,.
    [62] Heckman F.A., Harling D.F. Progressive oxidation of selected particles of carbon black: Further evidencefor a new microstructural model [J]. Rubber Chemistry Technology,1966,37:1245-1254
    [63] Donnet J.B. Structure and reactivity of carbons: from carbon black to carbon composites [J]. Carbon,1982,20:267-282
    [64] Dresselhaus M.S., Dresselhaus, G., Eklund P.C. Science of fullerenes and carbon nanostructures. SanDiego: Academic Press,1996.35-47
    [65] Levy M., Wong P. The oxidation of pyrolytic graphite at temperatures of1400°-1800°F and at airvelocities of25-100cm/sec [J]. J. Electrochem. Soc.,1964,111:1088-1091
    [66] Vander Wal R. L., Tomasek, A. J. Soot oxidation: dependence upon initial nanostructure [J]. Combustionand Flame2003,134:1-9.
    [67]Vander Wal, R.L., Tomasek, A.J. Soot nanostructure: dependence upon synthesis conditions [J].Combustion and Flame2004,136:129-140.
    [68]Su D.S., Jentoft R.E., Muller J.O., Rothe D., Jacob E., Simpson C.D., Tomovic., Müllen K., Messerer A.,P schl U., Niessner R., Schl gl R. Microstructure and oxidation behavior of Euro IV diesel engine soot:acomparative study with synthetic model soot substances [J]. Catalysis Today,2004,90:127-132
    [69]Song J., Alam M., Boehman A. L. Impact of Alternative Fuels on Soot Properties and DPF Regeneration[J]. Combustion Science&Technology2007,179:1991-2037,
    [70] Hurt R.H., Crawford G.P., Shim, H. S. Equilibrium nanostructure of primary soot particles [J].Proceedings of the Combustion Institute2000,28:2539–2546.
    [71] Ishiguro T, Suzuki N, Fujitani Y, Morimoto H. Microstructural changes of diesel soot during oxidation [J].Combustion and Flame1991,85:1-6
    [72] Kandas A.W., Senel I.G., Levendis Y., Sarofim A.F. Soot surface area evolution during air oxidation asevaluated by small angle X-ray scattering and CO2adsorption [J]. Carbon2005,43:241–251.
    [73] Stanmore B.R., Brilhac J.F., Gilot P. The oxidation of soot: a review of experiments, mechanisms andmodels [J]. Carbon2001,39:2247–2268.
    [74] Strzelec A., Toops T. J., Daw C.S. Impact of Biodiesel on the Oxidation Kinetics and Morphology ofDiesel Particulate [C].7thUS National Technical Meeting of the Combustion Institute, Atlanta, GA.2011.
    [75] Zhang K.M., Wexler A.S., Zhu Y.F. Evolution of particle number distribution near roadways—Part II: the‘Road-to-Ambient’ process [J]. Atmospheric Environment,2004,38:6655–6665
    [76] Palmgren F., Berkowicz R., Ziv A. Actual car fleet emissions estimated from urban air qualitymeasurements and street pollution models [J]. Science of the Total Environment,1999,235:101–109
    [77] Moore K.F., Ning, Z., Ntziachristos L., Schauer J.J. and Sioutas C. Daily variation in the properties ofurban ultrafine aerosol—Part I: Physical characterization and volatility. Atmospheric Environment,Volume41, Issue38, December2007, Pages8633-8646
    [78] Whitby K.T., Clark W.E., Marple V.A. Characterization of California aerosols. I. Size distributions offreeway aerosol [J]. Atmospheric Environment1975,9:463–482
    [79] Gramotnev G., Brown R., Ristovski Z. Determination of average emission factors for vehicles on a busyroad [J]. Atmospheric Environment,2003,37:465–474
    [80] Li X.L., Wang J.S., Tu X.D. Vertical variations of particle number concentration and size distribution in astreet canyon in Shanghai, China [J]. Science of the total environment,2007,378:306–316
    [81]Ning Z., Polidori A., Schauer J.J., Sioutas C. Emission factors of PM species based on freewaymeasurements and comparison with tunnel and dynamometer studies [J]. Atmospheric Environment2008,42:3099–3114
    [82]USEPA. User’s Guide to MOBILE6.0: Mobile Source Emission Factor Model.EPA420-R-02-001,2002
    [83]王纬,刘红杰等,公路隧道实验调查交通来源空气污染方法[J].环境科学研究,2001,14:1-4
    [84]Fraser M.P., Cass G.R., Simoneit B.R.T. Gas-phase and particle-phase organic compounds emitted frommotor vehicle traffic in a Los Angeles roadway tunnel [J]. Environmental Science&Technology.1998,32:2051-2060
    [85]Cheung C.S., Zhao H.Determination of emission factors of motor vehicles from on-road emissionmeasurement [J]. Transactions of Csice,1999,4:102-106
    [86]顾泽平.大气细颗粒物有机质组分的变化规律及其在源解析中的应用,上海大学,博士学位论文,2009
    [87] Miller M.S., Friedlander S.K., Hidy G.M. A chemical element balance for the Pasadena aerosol.[J].Colloid Inter face Science,1972,39:652-176.
    [88]戴树桂,朱坦,白志鹏.受体模型在大气颗粒物源解析中的应用和进展[J].中国环境科学,1995,15:252-257
    [89] Paatero P., Tapper U. Positive matrix factorization: A non-negative factor model with optimal utilizationof error estimates of data values [J]. Environmetrics1994,5:111–126.
    [90]Lee E., Chan C.K., Paatero P. Application of positive matrix factorization in source apportionment ofparticle pollutants in Hong Kong [J].Atmospheric Environment1999,33:3201-3212
    [91] Prendes P., Andrade J.M., Lopez-Mahia P., Prada D. Source apportionment of inorganic ions in airborneurban particles from Coruna city(N.W.of Spain)using positive matrix factorization [J].Talanta1999,49:165-178
    [92] Chueinta W., Hopke P.K., Paatero P. Investigation of source of atmospheric aerosol at urban andsuburban residential areas in Thailand by positive matrix factorization [J].Atmospheric Environment2000,34:3319-3329
    [93]Yu S., Zhang Y,H., Xie S.D., Zeng L.M., Zheng M., Salmon L.G., Shao M., Slanina S. Sourceapportionment of PM2.5in Beijing by positive matrix factorization [J].Atmospheric Environment2006,40:1526-1537
    [94] Zhang J., He K.B., Ge Y.S, Shi X.Y. Influence of fuel sulfur on the characterization of PM10from a dieselengine [J]. Fuel2009,88:504–510
    [95] Surawski N.C., Miljevic B., Ayoko G.A., Roberts B.A., Elbagir S. Fairfull-Smith, K.E., Bottle, S.E. andRistovski, Z.D. Physicochemical Characterization of Particulate Emissions from a Compression IgnitionEngine Employing Two Injection Technologies and Three Fuels [J]. Environmental Science&Technology2011,45:5498-5505.
    [96] Kline S.J., McClintock F.A. Describing Uncertainties in Single Sample Experiments [J]. Mech. Eng.1953,75:3-8.
    [97] Ullman T.L., Spreen K.B., Mason R.L. Effects of Cetane Number, Cetane Improver, Aromatics, andOxygenates on1994Heavy-duty Diesel Engine Emissions [C]. SAE941020.
    [98] Tsolakis A. Effects on particle size distribution from the diesel engine operating on RME-biodiesel withEGR [J]. Energy Fuels2006,20:1418-1424.
    [99] Meyer N.K., Ristovski Z.D. Ternary nucleation as a mechanism for the production of diesel nanoparticles:experimental analysis of the volatile and hygroscopic properties of diesel exhaust using the volatilizationand humidification tandem differential mobility analyzer [J]. Environmental Science&Technology2007,41:7309-7314.
    [100] Vander Wal R. L., Tomasek A. J., Pamphlet M. I., Taylor C. D., Thompson W. K. Analysis of HRTEMimages for carbon nanostructure quantification [J]. Journal of Nanoparticle Research,2004,6:555-568.
    [101] Shim H. S., Hurta R. H., Yang N. Y. C. A methodology for analysis of002lattice fringe images and itsapplication to combustion-derived carbons [J]. Carbon2000,38:29–45.
    [102] Stratakis G. A., Stamatelos A. M. Thermogravimetric analysis of soot emitted by a modern diesel enginerun on catalyst-doped fuel [J]. Combustion and Flame2003,132:157-169.
    [103]Mitchell P., Frenklach M. Monte Carlo simulation of soot aggregation with simultaneous surfacegrowth—why primary particles appear spherical [J]. Proceedings of the Combustion Institute1998,27:1507–1514.
    [104]Hu B., Yang B. Koylu U. O. Soot measurements at the axis of an ethylene/air nonpremixed turbulent jetflame [J]. Combustion and Flame2003,134:93–106.
    [105] Neeft J. P. A., Nijhuis T. X., Makkee M., Moulijn J. A. Kinetics of the oxidation of diesel soot [J]. Fuel1997,76:1129-1136.
    [106] Oh C., Sorensen C. M. The effect of overlap between monomers on the determination of fractal clustermorphology [J]. Journal of Colloid and Interface Science1997,193:17-25.
    [107]Park K., Feng C., Kittelson D. B., McMurry P. H. Relationship between particle mass and mobility fordiesel exhaust particles [J]. Environmental Science&Technology2003,37:577-583.
    [108]Colbeck I., Appleby L., Hardman E. J., Harrison R.M. The optical properties and morphology of cloudprocessed carbonaceous smoke [J]. Journal of Aerosol Science1990,21:527-538.
    [109]Huang, P. F., Turpin, B. J., Pipho, M. J., Kittelson, D. B., McMurry P. H. Effects of watercondensation/evaporation on diesel chain agglomerate morphology [J]. Journal of Aerosol Science1994,25:447-459.
    [110]Alfè M., Apicella B., Barbella R., Rouzaud J. N., Tregrossi A., Ciajolo A. Structure-property relationshipin nanostructures of young and mature soot in premixed flames [J]. Proceedings of the CombustionInstitute2009,32:697-704.
    [111]Otto K., Sieg M. H., Zinbo M., Bartosiewz L. The oxidation of soot deposits from diesel engines [C].SAE1981-80-0336.
    [112]Ciambelli P., Corbo P., Gambino M., Palma V., Vaccaro S. Catalytic combustion of carbon particulate [J].Catalysis Today1996,53:99-106.
    [113]Stanmore B., Brihlac J. F., Gilot P. The ignition and combustion of cerium doped diesel soot [C]. SAE1999-01-0115.
    [114]Higgins K. J., Jung H., Kittelson D. B., Roberts J. T., Zachariah M. R. Kinetics of diesel nanoparticleoxidation [J]. Environmental Science&Technology2003,37:1949-1954.
    [115]Higgins K. J., Jung H., Kittelson D.B., Roberts J. T., Zachariah M. R. Size-selected nanoparticlechemistry: kinetics of soot oxidation [J]. Journal of Physical Chemistry A2002,106:96-103.
    [116] Li Z., Song C. L., Song J. O., Lv G., Dong S. R., Zhao Z. Evolution of the nanostructure, fractaldimension and size of in-cylinder soot during diesel combustion process [J]. Combustion and Flame2011,158:1624-1630.
    [117]Morjan I., Voicu I., Alexandrescu R., Pasuk I., Sandu I., Dumitrache F., Soare I., Fleaca T. C., PloscaruM., Ciupina V., Daniels H. R., Westwood A.V.K., Rand B. Gas composition in laser pyrolysis ofhydrocarbon-based mixtures: influence on soot morphology [J]. Carbon2004,42:1269-1273.
    [118] De Soete G. Catalysis of soot combustion by metal oxides [C]. Western States Section Meeting of theCombustion Institute, Salt Lake City,1988.
    [119]Cheung K.L., Polidori A., Ntziachristos L., Tzamkiozis T., Samaras Z., Cassee F., Gerlofs M., Sioutas C.Chemical characteristics and oxidative potential of particulate matter emissions from gasoline, diesel, andbiodiesel cars [J]. Environmental Science&Technology2009,43:6334-6340.
    [120]Chang D.Y., Van Gerpen J.H. Determination of particulate and unburned hydrocarbon emissions fromdiesel engines fueled with biodiesel [C]. SAE982527.
    [121]Wu F.J., Wang J.X., Chen W.M., Shuai S.J. A study on emission performance of a diesel engine fueledwith five typical methyl ester biodiesels [J]. Atmospheric Environment2009,43:1481-1485.
    [122]Ristovski Z.D., Jayaratne E.R., Lim, M., Ayoko, G.A., Morawska L. Influence of diesel fuel sulfur onnanoparticle emissions from city buses [J]. Environmental Science&Technology2006,40:1314-1320.
    [123]Watson J.G., Chow J.C., Lowenthal D.H. Differences in the carbon composition of source profiles fordiesel-and gasoline-powered vehicles [J]. Atmospheric Environment1994,28:2493-2505.
    [124]Han Y.M., Cao J.J., Chow J.C., Watson J.G., Fung K.K., Jin Z.D., Liu S.X., An Z.S. Evaluation of thethermal/optical reflectance method for discrimination between soot-and char-EC [J]. Chemosphere2007,69:569-574.
    [125]Zhang J., He K.B., Shi X.Y., Zhao Y. Comparison of particle emissions from an engine operating onbiodiesel and petroleum diesel [J]. Fuel2011,90:2089-2097.
    [126]Cao J.J., Lee S.C., Ho K.F., Fung K., Chow J.C., Watson J.G. Characterization of roadside fine particlecarbon and its eight fractions in Hon Kong [J]. Aerosol and Air Quality Research2006,6:106-122
    [127]Zhu C.S., Chen C.C., Cao J.J., Tsai C.J., Chou C.C., Liu S.C., Roam G.D. Characterization of carbonfractions for atmospheric fine particles and nanoparticles in a highway tunnel [J]. AtmosphericEnvironment2010,44:2668-2673.
    [128]Moldanova J., Fridell E., Popvicheva O., Denmirdjian B., Tishkova V., Faccinetto A., Focsa C.Characterization of particulate matter and gaseous emissions from a large ship diesel engine [J].Atmospheric Environment2009,43:2632-2641.
    [129]Venkataraman A., Lyons J., Friedlander M.M.K. Size distributions of polycyclic aromatic hydrocarbonsand elemental carbon.1. sampling, measurement methods, and source characterization [J]. EnvironmentalScience&Technology1994,28:555-562
    [130]Muller C. J., Pickett L. M., Siebers D.L., Pitz W.J., Westbrook C.K., Martin G.C. Effects of oxygenateson soot process in di diesel engines: experiments and numerical simulates [C]. SAE2003-01-1791
    [131]Collier A., Rhead M., Trier C., Bell M. Polycyclic aromatic compound profiles from a light-dutydirect-injection diesel engine [J]. Fuel1995,74:362-367.
    [132]He C., Ge Y.S., Tan J.W., You K.W., Han X.K., Wang J.F. Characteristics of polycyclic aromatichydrocarbons emissions of diesel engine fueled with biodiesel and diesel [J]. Fuel2010,89:2040-2046
    [133]Marr L., Kirchstetter T., Harley R., Miguel A., Hering A., Hammond S. Characterization of polycyclicaromatic hydrocarbons in motor vehicle fuels and exhaust emissions [J]. Environmental Science&Technology1999,33:3091-3099.
    [134]Sharp C., Howell S., Jobe J. The effect of biodiesel fuels on transient emissions from modern dieselengines, Part II: unregulated emissions and chemical characterization [C]. SAE2000-01-1968.
    [135]Lin Y.C., Lee W.J., Wu T.S., Wang C.T. Comparison of PAH and regulated harmful matter emissionsfrom biodiesel blends and paraffinic fuel blends on engine accumulated mileage test [J]. Fuel2006,85:2516-2523.
    [136]Ballesteros R., Hernandes J.J., Lyons L.L. An experimental study of the influence of biofuel origin onparticle-associated PAH emissions [J]. Atmospheric Environment2010,44:930-938.
    [137]Lim M.C.H., Ayoko G.A., Morawska L., Ristovski Z.D., Jayaratne E.R. Effect of fuel composition andengine operating conditions on polycyclic aromatic hydrocarbon emissions from a fleet of heavy-dutydiesel buses [J]. Atmospheric Environment2005,39:7836-7848.
    [137]Mi H., Lee W., Chen C., Yang H., Wu S. Effect of fuel aromatic content on PAH emission from aheavy-duty diesel engine [J]. Chemosphere2000,41:1783-1790.
    [138]Westerholm R., Christensen A., T rnqvist M., Ehrenberg L., Rannug U., Sj gren M., Rafter J., SoontjensC., Almén J., Gr gg K. Comparison of exhaust emissions from Swedish environmental classified dieselfuel (MK1) and European program on emissions, fuels and engine technologies (EPEFE) reference fuel: achemical and biological characterization, with viewpoints on cancer risk [J]. Environmental Science&Technology2001,35:1748-1754.
    [139]Miguel A.H., Kirchstetter T.W., Harley R.A., Hering S.V. On-road emissions of particulate polycyclicaromatic hydrocarbons and black carbon from gasoline and diesel vehicles [J]. Environmental Science&Technology1998,32:450-455.
    [140]Nisbet C., LaGoy P. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbon (PAHs)[J].Regul Toxicol Pharm1992,16:290-300.
    [141]John W., Wall S.M., Ondo J.L., Winklmayr W. Modes in the size distributions of atmospheric inorganicaerosol [J]. Atmospheric Environment1990,24:2349-2359.
    [142]Shen Z.X., Han Y.M., Cao J.J., Tian J., Zhu C.S., Liu S.X., Lu P.P., Wang Y.Q. Characteristics oftraffic-related emissions: a case study in roadside ambient air over Xi’an, China [J]. Aerosol and AirQuality Research2010,10:292-300.
    [143]Zhuang H., Chan C.K., Fang M., Wexler A.S. Size distribution of particulate sulfate, nitrate, andammonium at a coastal site in Hong Kong [J]. Atmospheric Environment1999,33:843-853.
    [144]Lin C.C., Chen S.J., Huang K.L., Lee W.J., Lin W.Y., Liao C.J., Chaung H.C., Chiu C.H. Water-solubleions in nano/ultrafine/fine/coarse particles collected near a busy road and at a rural site [J]. EnvironmentPollution2007,145:562-570.
    [145]Arimoto R., Duce R.A., Savoie D.L., Prospero J.M., Talbot R., Cullen J.D., Tomza U., Lewis N.F., RayB.J. Relationships among aerosol constituents from Asia and the North Pacific during PEM-West A [J].Journal of Geophysical Research1996,101:2011-2023.
    [146]Yoshizumi K., Baron P.A. Size distributions of ammonium nitrate and sodium nitrate in atmosphericaerosol [J]. Environmental Science&Technology1985,19:258–261.
    [147]Ning Z., Geller M.D., Sioutas C. Fine, ultrafine and nanoparticle trace organic composition near a majorfreeway with heavy duty diesel fraction [C]. SAE2007-24-0108.
    [148]Grose M., Sakurai H., Savstrom J., Stolzenburg M.R., Watts W.F., Morgan C.G., Murray L.P., TwiggM.V., Kittelson D.B., McMurry P.H. Chemical and physical properties of ultrafine diesel exhaust particlessampled downstream of a catalytic trap [J]. Environmental Science&Technology2006,40:5502-5507.
    [149]Zhang L., Vet R., Wiebe A. Characterization of the size-segregated water-soluble inorganic ions at eightCanadian rural sites [J]. Atmospheric Chemistry and Physics2008,8:7133-7151.
    [150]Yao X.H., Chan C.K., Fang M., Cadle S., Chan T., Mulawa P., He K., Ye B.M. The water-soluble ioniccomposition of PM2.5in Shanghai and Beijing, China [J]. Atmospheric Environment2002,36:4223-4234.
    [151]Ye B.M., Ji X.L., Yang H.Z., Yao X.H., Chan C.K., Cadle S.H., Chan T., Mulawa P.A. Concentrationand chemical composition of PM2.5in Shanghai for a1-year period [J]. Atmospheric Environment2003,37:499-510.
    [152]Yao X., Fang M., Chan C.K. The size dependence of chloride depletion in fine and coarse sea-saltparticles [J]. Atmospheric Environment2003,37:743-751.
    [153]Sheu H.L., Lee W.J., Tsai J.H., Fan Y.C., Su C.C., Chao H.R. Particle size distribution of polycyclicaromatic hydrocarbons in the ambient air of a traffic intersection [J]. Journal of Environmental Scienceand Health, Part A1996,31:1293-1316
    [154]Oliveira C., Martins N., Tavares J., Pio C., Cerqueira M., Matos M., Silva H., Oliveira C., Cam s F. Sizedistribution of polycyclic aromatic hydrocarbons in a roadway tunnel in Lisbon, Portugal [J].Chemosphere2011,83:1588-1596.
    [155]Allen J.O., Dookeran N.M., Smith K.A., Sarofim A.F., Taghizadeh K., Lafleur A. Measurement ofpolycyclic aromatic hydrocarbons associated with size-segregated atmospheric aerosols in Massachusetts[J]. Environmental Science&Technology1996,30:1023-1031.
    [156]Ravindra K., Sokhi R., Van Grieken R. Atmospheric polycyclic aromatic hydrocarbons: sourceattribution, emission factors and regulation [J]. Atmospheric Environment2008,42:2895-2921.
    [157]Rogge W., Hildemann L., Mazurek M., Cass G., Simoneit B. Sources of fine organic aerosol.3. Roaddust, tire debris, and organometallic brake lining dust roads as sources and sinks [J]. EnvironmentalScience&Technology1993,27:1892-1904.
    [158]Alves C., Pio C., Duarte A. Composition of extractable organic matter of air particles from rural andurban Portuguese areas [J]. Atmospheric Environment2001,35:5485-5496.
    [159]Ravindra K., Bencs L., Wauters E., De Hoog J., Deutsch F., Roekens E., Bleux N. Berghmans P., VanGrieken R. Seasonal and site-specific variation in vapour and aerosol phase PAHs over Flanders(Belgium) and their relation with anthropogenic activities [J]. Atmospheric Environment2006,40:771-785.
    [160]Dobbins R.A., Fletcher R.A., Chang, H. C. The evolution of soot precursor particles in a diffusion flame[J]. Combustion and Flame1998,115:285-298.
    [161]Liu Z.F., Lu M.M., Birch M.E., Keener T.C., Khang S.J., Liang F.Y. Variations of the Particulate CarbonDistribution from a Non-road Diesel Generator [J]. Environmental Science&Technology2005,39:7840-7844.
    [163]Liu W., Huang Z., Wang J.S., Qiao X.Q., Hou J.X. Effects of dimethoxy methane blended with GTL onparticulate matter emissions from a compression-ignition engine. Energy&Fuels.2008,22:2307-2313
    [164]Zhu L., Cheung C. S., Zhang W.G., Huang Z. Effect of charge dilution on gaseous and particulateemissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol and ethanol.Applied Thermal Engineering2011,31:2271-2278.
    [165]Zhu L., Zhang W.G., Huang Z. Influence of biodiesel–methanol blends on the emissions in thelow-temperature combustion of a direct-injection diesel engine using high levels of exhaust gasrecirculation. Proc. IMechE Part D: J. Automobile Engineering,2011,225:1044-1054.
    [166]Liu W., Qiao X.Q., Wang J.S., Wang Z., Huang Z. Effects of combustion mode on exhaust particle sizedistribution produced by an engine fueled by dimethyl ether (DME).Energy&Fuels.2008,22:3838–3843
    [167]Xie X.M., Huang Z., Wang J.S. Impact of building configuration on Air Quality in street canyon,Atmospheric Environment,2005,39:4519-4530.
    [168]Xie X.M., Huang Z., Wang J.S, Xie Z. The impact of solar radiation and street layout on pollutantdispersion in street canyon. Building and Environment.2005,40(2):201-212.
    [169]Xie X.M., Huang Z., Wang J.S. The study of thermal effects on vehicle emission dispersion in an urbanstreet canyon, Transportation Research Part D: Transportation and Environment,2005,10:197–212.
    [170]张炜.柴油机缸内微粒的微观结构、表面官能团及氧化特性研究,[学位论文],天津大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700