柴油机EGR掺氢燃烧及柴油废气重整化学动力学建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微粒和NO_x是柴油机排放的主要污染物,受柴油机本身固有缺陷-“微粒-NO_x权衡曲线”(particulate-NO_x trade-off curve)限制,同时降低柴油机的微粒和NO_x排放难度较大。氢气是公认的内燃机理想能源,柴油机EGR掺氢燃烧不仅可以有效降低微粒和NO_x的排放量,而且可以提高经济性。
     本文在ZS195柴油机上分别进行了EGR、掺氢及EGR掺氢试验研究,在不同转速和负荷下分析比较了不同EGR率和掺氢率对发动机的排放和经济性影响。结果表明:柴油机掺氢燃烧可以不同程度降低微粒和N0_x,提高有效热效率。
     柴油废气重整利用柴油机废气与柴油进行催化重整,产生的重整气(富氢)送入进气管,再与空气混合后进入气缸内燃烧。将柴油废气重整技术用到柴油机中能够有效改善柴油机的性能。论文介绍了柴油废气重整制氢的基本概念和反应机理,以正庚烷代替柴油,利用CHEMKIN软件建立了柴油废气重整反应的化学动力学模型,该模型由气相反应机理和表面反应机理两部分构成,其中气相反应机理部分包含37种组分和58个反应;表面机理部分包含20种组分和47个反应。模拟比较了气体温度、氧碳比、水碳比及空速等因素对重整过程的影响,且与试验结果进行对比,结果表明:模拟值与试验值基本吻合。
     设计一套柴油废气重整装置,该装置能够满足控制入口气体温度、水碳比、氧碳比的要求,为柴油重整制氢规律奠定实验基础。
Particulate and NOx emissions are diesel engine major pollutants controlled by the diesel engine itself inherent defects-(particulate-NOX trade-off curve) limit, So it is very difficult to reduce particulate and NOx emissions together. Hydrogen is recognized as ideal energy of internal combustion engine. Diesel EGR (exhaust gas recirculation) with small amounts of hydrogen combustion can not only reduce particulate and NOx emissions effectively, but also improve the economy.
     In this thesis, EGR,adding hydrogen to diesel and EGR added hydrogen experiments have been carried out on a ZS195 diesel engine. Different ratio of EGR and ratio of hydrogen added to impact on engine emissions and the economic was analyzed and compared under different speed and load. The results show that: adding hydrogen to engine combustion can reduce particulate and NOx in different degrees and improve the effective thermal efficiency.
     The reformed gas (hydrogen-rich) which produced form diesel exhaust gas catalytic reforming, mixed with the air into the intake manifold and combusted in the cylinder. Diesel engine can improve its performance effectively by using the technology of diesel exhaust gas reforming. This paper introduces the basic concepts and reaction mechanism of diesel exhaust steam reforming.The chemical kinetics model of exhaust gas diesel fuel has been developed using the CHEMKIN platform and n-heptane instead of diesel. The model include gas-phase reaction mechanism and surface reaction mechanism, consists of 57 species and 105 reactions. The simulation compare the gas temperature, water/ carbon ratio, Oxygen/ carbon ratio and space velocity factors impact the reforming process. The simulation results consistent with the experimental with the experimental results well.
     Under the guide of the simulation conclusions design a suitable diesel exhaust reforming device, which can meet the gas temperature, water/carbon ratio, Oxygen/ carbon ratio and space velocity control requirements. For a more comprehensive understanding of fuel reforming laws laid experimental basis.
引文
[1]胡群.车用柴油机排放物有害成分的分析与控制[J].内燃机学报,2003(6)
    [2]宋岩.柴油机NOx和PM排放控制技术的发展[J].徐州工程学院学报.2007年4月.Vol.22 No 4
    [3]张红升,王桂平.柴油机NOx和PM排放控制技术的发展[J].山东内燃机.2004年第三期
    [4]蒋德明.内燃机燃烧与排放学[M].西安交通大学出版社.2001.10.50,250-300
    [5]邵玉艳,尹鸽平,高云智.氢经济面临的机遇和挑战[J].电源技术
    [6]催可润,高孝洪.氢在内燃机中的应用和发展[J].兵工学报.1994年第2期
    [7]王存,朱磊,袁银南,张育华.氢气在内燃机上的应用及特点[J].拖拉机与农用运输车.2007年6月.Vol.34 No3
    [8]B H Ohlein, M Boe, G Hansen. Hydrogen from methanol for fuel cells in mobile systems: development of a compact reformer[J]. Journal of Power Sources. 1996, 61: 143-147.
    [9]John W Fairbanks. Engine Maturity, Efficiency, and Potential Improvements [A]. Proceedings of DEER2004:Diesel Engine Emissions Reduction [C].Coronado:(s. n.) ,2004.
    [10]孙宁,马凡华.氢内燃机的发展现状和动向[J].车用发动机,2006(2):1-5.
    [11]White C M ,Steeper RR , Lutz A E .The Hydrogen-fueled Internal Combustion Engine: A Technical Review[J]. International Journal of Hydrogen Energy,2006,31:1292-1305.
    [12]Ghazi A Karim. Hydrogen as a Spark Ignition Engine Fuel[J].International Journal of Hydrogen Energy,2003,28:569- 577 .
    [13]周德琪,李厚生,包铁成,等.汽车用掺氢汽油发动机的试验研究[J].内燃机学报,1996,14(1):64-71.
    [14]刘世文,汪洋,郑尊清,等.天然气加氢改性对柴油引燃气体发动机排放特性和经济性影响的研究[J].燃烧科学与技术,2003,9(6):339-345.
    [15]Schafer F .Investigation of the Addition of Hydrogen to Methanol on the Operation of an Unthrottled otto Engine [A].SAE Preprint [C].810776,1981:23-32
    [16]王红民.氢气在汽车燃油替代能源方面的应用[J].武汉理工大学学报.2007年11月.Vol.28 Suppl.Ⅱ
    [17]吴涛涛,张会生.重整制氢技术及其研究进展[J].能源技术2006年8月.Vol.27 No4
    [18]Andrew E Lutz, Robert W Bradshaw. Thermodynamic analysis of hydrogen production by partial oxidation reforming[J]. International Journal of Hydrogen Energy, 2004, 29: 809-816.
    [19]张斌,李政.倪维斗.天然气自热重整器模拟及性能分析[J].天然气工业,2003,23(5):95-99.
    [20]Hidetoshi Sekiguchi, Yoshihiro Mori. Steam plasma reforming using microwave discharge[z]. Tokyo Institute of Technology Department of Chemical Engineering, 2003, 44-48.
    [21]朱文良,韩伟,张小亮,熊国兴,杨维慎.汽油与水和氧混合重整制氢气[J].催化学报,2005年6月.Vol.26 No 6
    [22]A. Tsolakis, A. Megaritis, and M. L. Wyszynski .Application of Exhaust Gas Fuel Reforming in Compression Ignition Engines Fueled by Diesel and Biodiesel Fuel Mixtures[J]. Energy & Fuels 2003, 17, 1464-1473
    [23]A. Tsolakis, A. Megaritis.Reaction Profiles during Exhaust-Assisted Reforming of Diesel Engine Fuels[J]. Energy & Fuels 2005, 19, 744-752
    [24]张新荣,史鹏飞,刘春涛.甲醇水蒸气重整制氢Cu/ZnO/Al2O3催化剂的研究[J].燃料化学学报.2003年6月.Vol.31 No 3
    [25]曲延涛,张国强.废热重整甲醇内燃机—涡轮复合循环[J].节能技术.2005年5月第三期
    [26]石鲁民,刘明树.S195柴油机掺氢燃烧的试验研究[J].拖拉机.1993年第2期
    [27]S195柴油机缸内掺氢燃烧时性能优化模型的建立[J].农业工程学报.1993年9月.Vol.9 No 3
    [28]刘世文,汪洋,郑尊清,尧命发,谢辉.天然气加氢改性对柴油引燃气体发动机排放特性和经济性影响的研究[J].燃烧科学与技术.2003年12月.Vol.9 No 6
    [29]张波,傅维标,武向辉.氢气对柴油机油耗的影响[J].燃烧科学与技术.2006年6月.Vol.12 No 3
    [30]王忠.EGR降低S195型柴油机排放的试验研究[J].农业机械学报.2003年3月.Vol.34 No 2
    [31]黄锐,孙跃东,陶晓华.EGR降低柴油机NO排放的模型计算与试验研究[J].柴油机.2007年.Vol.29 No 3
    [32]杨帅,李秀元,应启戛,张振东.EGR率对柴油机排放特性影响的试验[J].农业机械学报.2006年5月.Vol.37 No 5
    [33]邓元望,朱梅林,向东.柴油机废气再循环技术评述[J].柴油机设计与制造.2001年第4期
    [34]王忠.排气再循环对柴油机工作过程参数、性能和排放的影响[J].内燃机学报.2002年.Vol.20 No 5
    [35]蒋德明.内燃机燃烧与排放学[M].西安交通大学出版社.2001.10-50,250-300
    [36]A.Tsolakis and A.Megaritis.Exhaust gas assisted reforming of rapeseed methyl ester for reduced exhaust emissions of CI engines[J].Biomass and Bioenergy 27(2004)493-505
    [37]Mariagiovanna Minutillo On-board fuel processor modelling for hydrogen-enriched gasoline fuelled engine [J] International Journal of Hydrogen Energy 30 (2005) 1483 - 1490
    [38]王艳辉,张金昌,吴迪镛.汽油氧化重整制氢反应宏观动力学研究[J].石油与天然气化工,2002 31(4)262-264
    [39]F. Maroteaux, L. Noel.Development of a reduced n-heptane oxidation mechanism for HCCI combustion modeling[J]. Combustion and Flame 146 (2006) 246-267
    [40])黄豪中,苏万华.一个新的用于HCCI发动机燃烧研究的正庚烷化学反应动力学简化模型[J].内燃机学报2005,23(1)42-51
    [41]王艳辉,张金昌.水碳比变化对汽油氧化重整制氢影响的研究[J].环境污染治理技术与设备2002 3(6)29-32
    [42]S.-C. Kong, R.D. Reitz, Combust. Theory Modelling 7(2003) 417-433.
    [43]Zhaolei Zheng, Mingfa Yao Numerical study on the chemical reaction kinetics of n-heptane for HCCI combustion process Fuel 85 (2006) 2605-2615
    [44]J. F. Griffiths REDUCED KINETIC MODELS AND THEIR APPLICATION TO LU PRACTICAL COMBUSTION SYSTEMS Pwg Energy Comhusr. Scr Vol. 21, pp. 25 107. 1995
    [45]周鲁.物理化学教程[M].北京科学出版社
    [46]吴越,杨向光.现在催化原理[M].北京科学出版社
    [47]魏远洋,立健.化学反应机理导论[M].北京科学出版社
    [48]甄开吉.催化作用基础[M].北京科学出版社
    [49]林智信.物理化学[M].武汉大学出版社
    [50]Roland Wanker, Harald Raupen strauch, Gernot Staudinger.A fully distributed model for the simulation of a catalytic combustor[J]. Chemical Engineering Science 55 (2000) 4709-4718
    [51]Manuel Pacheco, Jorge Sira, John Kopasz.Reaction kinetics and reactor modeling for fuel processing of liquid hydrocarbons to produce hydrogen: isooctane reforming. Applied Catalysis A: General 250 (2003) 161-175
    [52]Olaf Deutschmann, Renate Schwiedernoch, Luba I. Maier, Daniel Chatterjee.Natural Gas Conversion in Monolithic Catalysts: Interaction of Chemical Reactions and Transport Phenomena. Natural Gas Conversion VI, Studies in Surface Science and Catalysis 136, E. Iglesia, J.J. Spivey, T.H.Fleisch (eds.), p. 251-258, Elsevier, 2001.
    [53]L.S. Mukadi, R.E. Hayes. Modelling the three-way catalytic converter with mechanistic kinetics using the Newton-Krylov method on a parallel computer[J].Computers and Chemical Engineering 26 (2002) 439-455
    [54]G. A. Petrachi, G. Negro, S. Specchia, G. Saracco, P. L. Maffettone, and V. Specchia Combining Catalytic Combustion and Steam Reforming in a Novel Multifunctional Reactor for On-Board Hydrogen Production from Middle Distillates[J]. Ind. Eng. Chem. Res. 2005, 44, 9422-9430
    [55]汪丛伟,潘立卫,张纯希,袁中山,王树东.蜂窝催化剂上甲醇自热重整制氢的动力学研究[J] 燃料化学学报.2005年12月.Vol.33 No 6
    [56]A. Tsolakis, A. Megaritis. Catalytic exhaust gas fuel reforming for diesel engines-e&ects of water addition on hydrogen production and fuel conversion efficiency[J]. International Journal of Hydrogen Energy 29 (2004) 1409 - 1419
    [57]A. Tsolakis, A. Megaritis, and M. L. Wyszynski. Low temperature exhaust gas fuel reforming of diesel fuel[J]. Fuel 83 (2004) 1837-1845
    [58]Mariagiovanna Minutillo.On-board fuel processor modelling for hydrogen-enriched gasoline fuelled engine 1[J]. International Journal of Hydrogen Energy 30 (2005) 1483 - 1490

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700