固体超强酸催化油脂和甲醇酯交换制备生物柴油
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油价格的不断攀升以及人们对环境问题的关注,生物柴油成为一个备受关注的领域,生物柴油是一种环境友好的可再生能源。在催化制备生物柴油的各种催化剂中,固体酸催化剂是一种有发展前景的催化剂,和液体酸相比,固体酸具有以下优势:容易从反应介质中分离;可重复使用;不存在腐蚀问题。和碱催化剂相比,固体酸更适用于那些脂肪酸含量高的原料油(比如油煎废油和一些不能食用的油料)。
     本实验制备了三种固体超强酸催化剂,SO_4~(2-)/TiO_2-SiO_2(catalyst A),SO_4~(2-)/SnO_2-SiO_2 (catalyst B),SO_4~(2-)/Zr-SBA-15(catalyst C)催化大豆油和甲醇的酯交换反应制备生物柴油,考察了催化剂的制备条件和酯交换的反应条件,用吡啶红外和NH_3-TPD考察了催化剂的酸性,研究了催化剂的重复使用性。
     (1)催化剂A的吡啶红外表明催化剂A具有L酸中心和B酸中心,NH_3-TPD测试表明催化剂A具有超强酸性。催化剂的制备因素中,焙烧温度是形成超强酸的最重要因素,当催化剂的钛硅摩尔比等于1/3,浸渍硫酸溶液的浓度大于1M,于450℃焙烧5h,催化剂表现出最高的催化活性,在最优化的反应条件:醇油摩尔比为13:1,每摩尔油使用1g催化剂,催化剂A在125℃催化反应3h,脂肪酸甲酯收率达90%。
     (2)催化剂B也具有超强酸性,催化剂B的制备条件类似于催化剂A,催化剂B的催化活性高于催化剂A,在最优化的反应条件:醇油摩尔比为13:1,每摩尔油使用1g催化剂,催化剂B在120℃催化反应3h,脂肪酸甲酯收率达90%。
     (3)反应体系的水抑制催化剂B的活性,但催化剂的活性不受体系中游离脂肪酸的影响,这意味着催化剂B能高效催化那些未精炼原油和那些不可食用的油料使酯化和酯交换一步完成。
     (4)从SO_4~(2-)/ZrO_2、SO_4~(2-)/ZrO_2-SiO_2和SO_4~(2-)/Zr-SBA-15对酯交换反应的活性差异,我们可以得出这样的结论:将介孔分子筛的孔结构优势和超强酸的酸性特征结合起来,能得到对酯交换更有前景的分子筛型超强酸材料。
     (5)实验对催化剂的失活和再生进行了研究,实验表明:催化剂表面的硫酸根被甲醇淋洗掉;催化剂表面的活性位被油和甲酯所覆盖,这两种原因导致了催化剂的失活。然而,可以通过简单的办法将使用过的催化剂再生:450℃焙烧催化剂,浸渍1M的硫酸溶液30分钟,过滤,干燥,再次于450℃焙烧。
     总之,在本实验制备的三种催化剂中,SO_4~(2-)/SnO_2-SiO_2的催化活性最高,它能在较低的温度(甚至100℃)催化油脂的酯化酯交换一步完成,通过简单再生使催化活性恢复,是一种有前景的酯交换油脂制备生物柴油的固体酸催化剂。
Due to the increase in the price of the petroleum and the environmental concerns, biodiesel is becoming a developing area of high concern. Biodiesel is an environmentally friendly and renewable energy. In different types of catalyst for the production of biodiesel, solid acid catalysts are a promising catalyst. Solid acid catalysts offer several advantages over homogeneous acid catalysts. They are easily removed from the reaction medium, can be reused and avoid corrosion problems. They have more adaptability than the base catalysts when the feed oil (e.g., used deep-frying oils and non-edible oils ) has high acidity.
     In this paper, biodiesel was obtained through transesterification of soybean oil with methanol, using SO_4~(2-)/TiO_2-SiO_2 (catalyst A), SO_4~(2-)/SnO_2-SiO_2 (catalyst B), SO_4~(2-)/ Zr-SBA-15(catalyst C) as solid superacid catalysts, catalyst preparation factors and transesterification reaction factors were investigated. The catalyst's acidity was characterized by FT-IR and NH_3-TPD. The catalyst's recyclability was studied.
     (1) Spectral analysis of absorbing pyridine IR of the catalyst A showed that there were Lewis and Bronsted acid centers on the catalyst. NH_3-TPD curves showed that the catalyst A had superacidity. Among the catalyst A preparation factors, the calcined temperature is most important factor for formation of superacid. The catalyst A exhibited the highest activity for transesterification under the condition of Ti/Si mol ratio 1/3, the concentration of impregnating sulfuric acid solution over 1.0M, calcination at 450℃for 5h. The yield of methylesters reached over 90% at the most optimized reaction factor: 13:1 methanol/oil mole ratio, 1.0g catalyst/mol oil, reacted at 125℃for 3h.
     (2) The catalyst B also had Lewis and Bronsted acid centers, and had superacidity. The catalyst B was similar to the catalyst A in preparation factors. The catalyst B exhibited higher activity than the catalyst A and gave 90% ME yield at the most optimized reaction factor: 13:1 methanol/oil mole ratio, 1.0g catalyst/mol oil, reacted at 120℃for 3h.
     (3) The activity of the catalyst B was strongly reduced by the presence of water. The acitivity of the catalyst B was not affected by the presence of fatty acid. This fact shows that a variety of unrefined crude oil and non-edible oils could be transesterificated over the catalyst B with high efficiency. With the catalyst B both the esterification and tranesterification could be conducted in a single-operation.
     (4) The difference of catalytic activity for transesterification between SO_4~(2-)/ZrO_2, SO_4~(2-)/ZrO_2-SiO_2 and SO_4~(2-)/Zr-SBA-15 was studied. It could be concluded that the combination of the porous structure of mesoporous molecular sieves and the acid properties of superacids could obtain more prospective molecular superacid materials for tranesterification.
     (5) The study on catalyst's deactivity and regeneration showed that the spent catalyst was partly deactivated, because SO_4~(2-) were slowly leached out from the catalyst surface by methanol and activity sites were covered by oil and ME, that the used catalyst could be regenerated by calcined at 450℃, impregnated 1MH_2SO_4 solution for 30 min, filtered, dried, and re-calcined at 450℃.
     In a word, SO_4~(2-)/SnO_2-SiO_2 had the most activity among the three catalysts investigated in this study. It could catalyze both the esterification and tranesterification of oil at lower temperature (even at 100℃) in a single-operation. The used catalyst could be easily regenerated and the same activity could be obtained. SO_4~(2-)/SnO_2-SiO_2 are a promising solid acid catalyst for production of biodiesel from oil by transesterification reaction.
引文
[1] 冀星,都小林,钱家麟等,我国石油安全战略探讨,中国能源,2004,26(1):1622
    
    [2] 曾培炎,中国新能源与可再生能源,北京,中国计划出版社,2000:19-20
    
    [3] 柏杰,发展生物柴油大有可为,中国科技产业,2002,9:63-64
    
    [4] Anjana Srivastava, Ram Prasad, Triglyceride-based fuels, Renewable & sustainable Energy Reviews, 2000,4:111-133
    
    [5] 黄震,国家能源安全与汽车清洁代用燃料技术,世界科学,2002,(3):24-25
    
    [6] 王一平,翟怡,张金利等,生物柴油制备方法研究进展,化工进展,2003,22(1):8-12
    
    [7] Scragg A.H., Morrison J., Shales S.W., The use of a fuel containing Chlorella vulgaris in a diesel engine, Enzyme and Microbial Technology, 2003, 33: 884-889
    
    [8] 韩德奇,生物柴油的现状与发展前景[J],石油化工技术经济,2002,18(4):34-36
    
    [9] 张无敌,江蕴华,余晓华,从绿色植物中获取石油,云南师范大学学报(自然科学版),1992,12(2):20-25
    
    [10] 黄庆德,黄凤洪,郭萍梅,生物柴油生产技术及其开发意义,粮食与油脂,2002,(9):8-10
    
    [11] 王述洋,谭文英,生物质液化燃油的开发前景及可持续发展意义,科技导报,2000,(6):52-55
    
    [12] 忻耀年,B.Sondermann,B.Emersleben,生物柴油的生产和应用,中国油脂,2001,(5):72-77
    
    [13] 朱建良,张冠杰,国内外生物柴油研究生产现状及发展趋势,化工时刊,2004,18(1):25
    
    [14] 朱行,世界可再生燃油生产现状和发展趋势,粮食与油脂,2001,(5):50
    
    [15] 罗明典,什么是生物柴油,科技日报[N],2001-10-22
    
    [16] Korbitz W. Renewable Energy. 1999,16:1078-1083
    
    [17] 冀星,王璇,各国生物柴油应用情况,国际化工信息,2002(9):1-4
    
    [18] 燕林,生物柴油的发展,炼油设计,1999,19:26
    
    [19] 郭卫军,闵恩泽,发展我国生物柴油的初探,石油学报(石油加工),2003,19(2):1-6
    
    [20] 郭志瑛,生物柴油—绿色环保汽车燃料,精细石油化工进展,2002,3(11):13-20
    
    [21] 朱行,可替代柴油的生物柴油,农业科技通讯,2003,9:41
    
    [22] 庚晋,白杉,积极推动生物柴油的发展,山西能源与节能,2003,(3):35-36
    
    [23] Ma F , Hanna M A. Biodiesel production: a review[J]. Bioresour Technol., 1999,70:1-15
    
    [24] Adams C , Peters J F , Rand M C , etc. Investigation of soybean oil as a diesel fuelextender[J]. J. Am. Oil Chem. Soc.,1983 ,60 :1574-1579
    
    [25] Recep. The potentiall of using vegetable oil fuels as fuel for dieselingines [J]. EnergyConversion and Management, 2001 ,42:529-538
    
    [26] Fangrui Ma, Milford A H. Biodiesel production : a review. BioresourceTechnology, 1999 ,70(1) :1-15
    
    [27] Geodring A. Engine durability screening test of a diesel oilPsoy oilPalcoholmicroemulsion fuel. JAOCS ,1984 ,61:1627-1632
    
    [28] Ziejewski M, Kaufman K R, Pratt GL. Vegetable oils as diesel fuel .Seminar,Northern Regional Research Center. Peoria Illiois, 1983 ,7(11):1123-1127
    
    [29] Schwab A W, Bagby M O, Freedman B. Preparation and properties of diesel fuels fromvegetable oils [J]. 1987, 66(10): 1372-1378
    
    [30] Pioch D, Lozano P. Rasoanantoanddro M C,etc. Preparation and properties of dieselfuels from vegetable oils[J]. Oleagineux, 1993,48(1): 289-291
    
    [31] Sake S, Kusidiana D. Biodiesel fuel from rapeseed oil in supercritical methanol[J]. Fuel, 2001, (80):225-231
    
    [32] Kusidiana D, Sake S. Methyl esterification of free fatty acids of rapeseed oil as treatedin supercritical methanol[J]. Fuel, 2001, (34):383-387
    
    [33] Sake S, Kusidiana D. Two-step preparation for catalyst-free biodiesel fuel production[J]. Appl Biochem Biotechnol, 2004, (115):789-792
    
    [34] Eiji M, Shiro S. Kinetics of hydrolysis and methyl esterification for biodieselproduction in two-step supercritical methanol process[J]. Fuel, 2006, (85): 2479-2483
    
    [35] 安文杰,许德平,田中坤,超临界法制备生物柴油[J],天然气化工,2006,31(2):20-24
    
    [36] 孙世尧,王连鸳,超临界甲醇法制备生物柴油的研究现状[J],精细石油化工,2006,23(1):53-57
    
    [37] Yuji Shimada, Yomi Watanabe, etc. Mol. Catal. B: Enzymatic, 2002,17:133-142.
    
    [38] Lara P V, Park E Y. Potential application of waste activated bleaching earth on the production of fatty acid alkyl esters using Candida cylindracea lipase in organic solvent system. Enzyme and Microbial Technology, 2004, 34 (3 /4): 270-277
    
    [39] Du Wei, Xu Yuanyuan, Liu Dehua. Biotechnology and Applied Biochemistry, 2003 , 38(2):103-106
    
    [40] 高静,王芳,谭天伟等,固定化脂肪酶催化废油合成生物柴油,化工学报,2005,56(9):1727-1730
    
    [41] Iso M , Chen B , Eguchi M , etc. Journal of Molecular Catalysis B : Enzymatic, 2001,16:53-58
    
    [42] Samukawa T, Kaieda M, Matsumoto T , etc. Journal of Bioscience and Bioengineering,2000,90(2):180-183
    
    [43] Shah S , Sharma S, Gupta M N. Energy and Fuels, 2004 ,18 (1):154-159
    
    [44] Fukuda H, Kondo A, Noda H. Journal of Bioscience and Bioengineering, 2001, 92(5): 405-416
    
    [45] Madras G, Kolluru C , Kumar R. Fuel, 2004, 83 (14-15): 2029-2033
    
    [46] Vicente G, Coteron A,MartinezM, etc. Application of the factorial design ofexperiments and response surface methodology to optimize biodiesel production [J].Industrial Crops and Products, 1998, 8 (1) : 29-35
    
    [47] 代永刚,马毓霞,南喜平等,生物柴油的现状及发展前景[J],粮油食品科技,2006,14(1):17-19
    
    [48] Ma F, HannaM A. Biodiesel production a review[J]. Bioresource Technol, 1999, 70(1):1-15.
    
    [49] Darnok D, CheryanM. Transesterification processes for vegetable oils[J]. Am. OilChem. Soc., 2000, 77 (12) : 1269-1272.
    
    [50] 陈和,王金福,棉籽油酯交换制备生物柴油固体碱催化过程研究,高校化学工程学报,2006,20(4):593-597
    
    [51] 李为民,郑晓林,李峰等,固体碱法制备生物柴油及其性能[J],化工学报,2005,(4):711-716
    
    [52] Schuchardt U,Vargas R M,Gelbard G. Journal of Molecular A:Chemical[J].1995,99:65-70
    
    [53] Pedro FelizardoM, Joana Neiva Correia, etc. Waste Management. 2006,26(5):487-494
    
    [54] Gryglewicz S. Bioresource Technology. 1999,70:249-253
    
    [55] Suppes G J, Bockwinkel K, Lucas S , etc. JAOCS , 2001,78 (2):139-145
    
    [56] Freedman B, Pryde EH, Mounts TL. Variables affecting the yields of fatty esters fromtransesterified vegetable oils. Journal of the American Oil Chemists' Society 1984,61,1638-43
    
    [57] Liu KS. Preparation of fatty acid methyl esters for gas chromatographic analysis oflipids in biological material. Journal of the American Oil Chemists' Society 1994,71,1179-87
    
    [58] Canakci K, Van Gerpen J. Biodiesel production via acid catalysis.Transactions of theAmerican Society of Agricultural Engineers.1999,42,1203-10.
    
    [59] Zhang Y, Dube' MA, McLean DD, Kates M. Biodiesel production from waste cookingoil: 1. Process design and technological assessment. Bioresource Technology, 2003,89:1-16
    
    [60] Freedman B, Pryde EH, Mounts TL. Variables affecting the yields of fatty esters fromtransesterified vegetable oils. JAOCS 1984, 61(10):1638-43.
    
    [61] Freedman B, Butterfield R, Pryde E. Transesterification kinetics of soybean oil.JAOCS 1986, 63(10):1375-80.
    
    [62] Harrington KJ, DA' rcy-Evans C. Ind Eng Chem Prod Res Dev 1985,24:314
    
    [63] 吴芹,陈和,韩明汉等,高活性离子液体催化棉籽油酯交换制备生物柴油[J],催化学报,2006,27(4):297-296.
    
    [64] Furuta S, Matsuhashi H, Arata K. Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure[J]. Catalysis Communications, 2004, 5 (12):721-723
    
    [65] Masakazu Toda, Atsushi Takagaki, Mai Okamura etc. Biodiesel made with sugar catalyst [J]. Nature Publishing Group, 2005:178
    
    [66] 曹宏远,曹维良,张敬畅,固体酸Zr(SO_4)_2·4H_2O催化制备生物柴油[J],北京化工大学学报,2005,32(6):61-63
    
    [67] Sreeprasanth P.S., Srivastava R., Srinivas D.etc.Hydrophobic, solid acid catalysts forproduction of biofuels and lubricants[J]. Applied Catalysis A: General, 2006,314:148-159
    
    [68] Guerreiro L., Castanheiro J.E., Fonseca I.M.etc.Transesterification of soybean oil oversulfonic acid functionalized polymeric membranes[J]. Catalysis Today, 2006,118:166-171
    
    [69] Furuta S, Matsuhashi H, Arata K. Biodiesel fuel production with solidamorphous-zirconia catalysis in fixed bed reactor [J]. Biomass and Bioenergy, 2006, 30:870-873
    
    [70] Jitputti J , Kitiyanan B , Rangsunvigit P etc.Transesterification of crude palm kernel oiland crude coconut oil by different solid catalysts[J]. Chemical Engineering Journal, 2006,116:61-66
    
    [71] 陈和,王金福,固体酸催化棉籽油酯交换制备生物柴油[J],过程工程学报,2006,6(4):571-575
    
    [72] Di Serio M., Cozzolino M., Tesser R.etc.Vanadyl phosphate catalysts in biodiesel production [J]. Applied Catalysis A: General, 2007,320:1-7
    
    [73] 杨丽特,朱金华,文庆珍,酸催化制备生物柴油的研究概况及发展,化工技术与开发,2007,2(36):33-37
    
    [74] 杨振强,谢文磊,李海涛,酸催化油脂酯交换反应研究进展,粮食与油脂,2006,3:13-15
    
    [75] 高滋,陈建民,唐颐,用常温正丁烷异构化反应表征固体超强酸性[J],物理化学学报,1994,10(8):698-703
    
    [76] 高滋,华伟明,陈建民,正戊烷异构化反应表征固体超强酸性[J],物理化学学报,1994,10(10):897-902
    
    [77] 张术华,毛友安,SO_4~(2-)/MxOy型固体超强酸及其催化酯化[J],化学研究与应用,??1997,9(4):327-331
    
    [78] 缪长喜,陈建民,高滋,SO_4~(2-)/ZrO_2超强酸制备方法的改进[J],高等学校化学学报,1995,16(4)::591-594
    
    [79] 高滋,陈建民,SO_4~(2-)/TiO_2和SO_4~(2-)/Fe_2O_3固体超强酸研究[J],高等学校化学学报,1994,15(6):873-877
    
    [80] 姚胜,MxOy-SO_4~(2-)型固体超强酸催化剂[J],化学通报,1990,(2)::23-25
    
    [81] 高滋,陈建民,姚宇宁,WO_3/ZrO_2和MoO_3/ZrO_2固体超强酸体系研究[J],高等学校化学学报,1995,16(1):111-115
    
    [82] 赵壁英,马华容,唐有祺,制备方法对MoO_3/ZrO_2结构的影响及MoO_3/ZrO_2固体超强酸的结构特征(1)[J],催化学报,1995,16(3):171-176
    
    [83] 赵壁英,马华容,唐有祺,制备方法对MoO_3/ZrO_2结构的影响及MoO_3/ZrO_2固体超强酸的结构特征(2)[J],催化学报,1995,16(3):177-182
    
    [84] 孙渝,乐红英,李惠云,MCM-41负载钨磷杂多酸催化剂的性能研究[J],化学学报,1999,57:746-753
    
    [85] 田京城,缪娟,固体超强酸催化剂的应用与发展,焦作大学学报,2005,(2):49-51
    
    [86] 张萍,刘占荣,牛辉,SO_4~(2-)/MxOy固体超强酸的制备及其应用,河北化工,2004,(4):10
    
    [87] 王新平,唐新硕,沉淀剂对SO_4~(2-)/ZrO_2-NiO催化性能的影响[J],石油化工,1996,25(1):20-27
    
    [88] 华卫琦,周力,吴肖群等,SO_4~(2-)/MxOy型固体超强酸及其制备技术[J],石油化工,1997,26(8):553-560
    
    [89] 张萍,刘占荣,牛辉,SO_4~(2-)/MxOy型固体超强酸的形成机理及研究趋势,河北化工,2004,(5):20-22
    
    [90] Otah G A. Batamaeh P Acidity Dependence of the Trifluromethanesutfonie Acid Catalyzed Isobutane-ksobutene AikyLation Modified with Triftureaeede Acid or Water. Appl. Catal A: General., 1996,146:107
    
    [91] 季山,廖世军,王乐夫,SO_4~(2-)/ZrO_2类固体超强酸的研究进展,石油化工,2000,29(9):701
    
    [92] Hiroto Matsuura, Naonobu Katada, Miki Niwa. Additional acid site on HZSM-5 treated with basic andac-idic solutions as detected by temperature-programmed??desorption of ammonia. Microporous and Mesoporous Materials, 2003, 66: 283-296
    
    [93] Carla Costa, Dzikh I.P., Jose' Manuel Lopes, etc. Activity-acidity relationship inzeolite ZSM-5. Application of Bro(?)nsted-type equations. Journal of Molecular CatalysisA: Chemical, 2000,154: 193-201
    
    [94] Fangrui Ma, Milford A. Hanna, Biodiesel production: a review, BioresourceTechnology, 1999, 70:1-15
    
    [95] 王广欣,用于生物柴油的非均相催化剂,[硕士论文],四川大学,2005
    
    [96] 顾良荧,合成脂肪酸化学与工艺学(上)[M],北京,轻工业出版社,1984,71
    
    [97] 闫鹏,郭海福,舒华等,固体超强酸SO_4~(2-)/SnO_2-Al_2O_3的红外光谱研究,化学研究与应用,2006,18(6):638-642
    
    [98] 廖世军,王乐夫,杨兆禧等,SO_4~(2-)/ZrO_2-SiO_2催化剂的结构及其形成过程,物理学学报,2000,16(3):278-282.
    
    [99] 张密林,丁立国,刘文彬,纳米固体超强酸SO_4~(2-)/SnO_2-La_2O_3-SiO_2制备及催化反应研究,化工科技,2004,12(1):44-46
    
    [100] Fangrui Ma, Milford A, Hanna. Biodiesel production: a review[J]. Bioresource Technology, 1999,70:1-152
    
    [101] 蒋平平,卢冠忠,固体超强酸催化剂改性研究进展,现代化工,2002,22(7):13-17
    
    [102] 张黎,王琳,陈建民,SO_4~(2-)/ZrO_2固体超强酸的研究,高等学校化学学报,2000,21(1):116
    
    [103] 缪长喜,高滋,引入Al_2O_3对SO_4~(2-)/ZrO_2固体超强酸的影响,工业催化,1999,(5):49
    
    [104] 廖世军,王乐夫,杨兆禧等,SO_4~(2-)/ZrO_2-SiO_2催化剂的结构及其形成过程,物理化学学报,2000,16(3):278
    
    [105] 缪长喜,高滋,SO_4~(2-)/ZrO_2-SiO_2固体酸催化剂的研究,化工科技,2000,8(1):17
    
    [106] 于世涛,高根之,杨锦宗,SO_4~(2-)/TiO_2-SnO_2-Al_2O_3超强酸合成DOP,精细石油化工,1997,(3):29
    
    [107] 缪长喜,华伟民,陈健民等,SO_4~(2-)促进多元氧化物固体超强酸研究,中国科学??(B辑),1996,26(3):275-281
    
    [108] 张云怀,稀土复合固体超强酸SO_4~(2-)/ZrO_2-La_2O_3催化剂催化合成己二酸二辛酯的研究,化学工程师,1998,(5):17
    
    [109] 郭锡坤,林绮纯,林维明,固体超强酸催化剂ZrO_2-Dy_2O_3/SO_4~(2-)HZSM-5的制备及结构性能关系的研究[J],分子催化,2000,14(5):369-372
    
    [110] 李远志,魏富智,周俊婷,含铈固体超强酸SO_4~(2-)/ZrO_2-Ce_2O_3的制备及对环己醇催化脱水制环己烯的研究,精细化工,2000,17(2):88
    
    [111] 王新平,唐新硕,固体超强酸SO_4~(2-)/ZrO_2-NiO异构化性能的研究,石油化工,1998,22(3):145
    
    [112] 林德娟,沈术发,潘海波等,纳米复合固体超强酸SO_4~(2-)/CoFe_2O_4的制备和表征,无机化学学报,2000,16(5):757
    
    [113] 毕颖丽,李伟峰,张玉玲等,在Pt-SO_4~(2-)-ZrO_2催化剂上正丁烷骨架异构反应,精细石油化工,1998,(5):29
    
    [114] Karosaka T, M atsuhashi H, Arata K, etc. Platinum-added Sulfated Zirconia Effective for Highly Selective Dehydrogenative Coupling of Methane. Chem. Lett., 1998, (3): 265
    
    [115] Xiao Xin, Chen Jianmin, Zhang Shuguang, etc. Alkylation of Isobutane over Amon-modified Zirconium Oxide Catalyst. Am Chem Soc. Dzv Fuel Chem., 1998,43(2):278
    
    [116] 张玉玲,华颖丽,崔相浩等,SO_4~(2-)/ZrO_2-Al_2O_3及载Pt催化剂上正丁烷异构化反应,高等学校化学学报,2000,(1):112
    
    [117] 雷霆,华伟明,唐颐等,MCM-41负载SO_4~(2-)/ZrO_2超强酸的性能研究,高等学校化学学报,2000,21(8):1240
    
    [118] Hua Weiming, Yue Yinghong, Gao Zi. Acidity enhancement of SBA mesoporous molecular sieve by modification with SO_4~(2-)/ZrO_2. Journal of Molecular Catalysis A: Chemical, 2001,170:195-202
    
    [119] 华卫琦,周力,吴肖群等,SO_4~(2-)/M_nO_m型固体超强酸及其制备技术,石油化工,1997,26(8):553-560
    
    [120] 胡正水,王德宝,古国华等,SO_4~(2-)/TiO_2固体超强酸的制备及用于催化酯化反应的研究,青岛化工学院学报,1997,18(4):326-331

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700