轻度颅脑损伤中应激因素对大鼠学习记忆的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     通过研究清醒状态下轻度创伤性脑损伤(traumatic brain injury,TBI)后对大鼠的学习记忆改变,探讨轻度TBI中急性应激对大鼠学习记忆的影响,为临床研究TBI后心理应激对学习记忆的影响提供实验依据。
     方法:
     将44只实验大鼠随即分为3组,A正常对照组14只、B惊吓组(急性应激组)14只、C损伤组16只。对Hall脑损伤装置进行改进,制造清醒状态下大鼠轻度脑损伤和急性应激动物模型。(1)伤后2小时、1、2、3d对损伤组进行Bederson症状评分,Longa评分和感觉运动功能测试。(2)伤前3d及伤后10、11d通过Morris水迷宫试验检测损伤组、惊吓组与正常对照组之间学习记忆能力的差异。(3)伤后1h随机选取2只损伤组大鼠,断头取脑,观察脑损伤程度;实验完毕后每组各随机抽取5只大鼠,进行尼氏染色,观察额、颞叶及海马结构神经细胞病理学变化。
     结果:
     行为学观察:损伤组伤后即刻见动物四肢痉挛,持续1-3min,昏迷4只,于3~5min后清醒,损伤组与惊吓组受伤动物均出现攻击性动作,行动迟缓,畏人,精神差。损伤组伤后均出现肢体运动障碍,3d后恢复正常。
     定位航行实验:损伤组、惊吓组组与正常对照组比较均有统计学差异(P<0.05),损伤组与惊吓组两组间比较无统计学差异(P>0.05)。见表2
     空间探索实验:各组大鼠游泳路线可见图2,正常对照组能依靠空间搜索寻找平台,运动轨迹多位于原平台所在象限(右上象限),而损伤组、惊吓组运动轨迹散乱,穿越原平台所在象限时间明显减少。
     病理学观察:损伤组伤侧顶叶常规HE染色可见毛细血管周围间隙增宽,细胞水肿,符合轻度脑损伤镜下改变。损伤组和惊吓组额叶、颞叶和海马CA1、CA3区尼氏染色与对照组比较尼氏体数目减少、细胞排列紊乱。
     结论:
     在轻度脑损伤中应激因素引起的病理生理改变对学习记忆的改变起重要作用,提示在临床工作中应重视应激因素对脑功能的影响。
Objective
    To investigate the effects of stress factor on learning and memory in mild head injury of rats in convalescence stage. Provide the experiment data for clinical studies.
    Methods
    44 rats were divided randomly into three groups : A. normal control group (14 cases), B. stress group(14 cases)and C. damaged group(16 cases). Animal model of mild head injury in rats was duplicated using a improved device of Hall's head injury installment. 1) the behavior changes of the damaged group were observed by using Bederson's, Longa's and sensorimotor function test at 2h、 ld、 2d and 3d after the rats' head were injured.2) Learning and memory ability was detected with Morris Water Maze before and after head injured. 3) after the test, processed for Nissl staining, we can observed the decrease of Nissl bodies in frontal lobe, temporal lobe and hippocampus.
    Results
    Behavioral changes: The damage and stress group to appear the aggressive movement, slow-acting, fear person after injury. The damage group appears movement barrier, restores normally after 3ds.
    Place navigation : the learning and memory ability has obvious difference between test and normal control group( P < 0. 05) , but there are no-difference between injured and stress group. ( P > 0. 05) .
    
    Spatial probe test: The two groups (frighten and damaged group) all showed a spatial bias towards the training target quadrant, spending significantly more time searching there, unlike the normal group( P < 0. 05).
    
    Morphological observe: In the frighten and damaged groups, the Nissl bodies in frontal lobe, temporal lobe and hippocampalCA1, CA3 are decreased compared to the normal group.
    Conclusions
    
    The stress factor may play an important role in learning and memory impairment after stress insult in rats.
引文
1. Hall ED. Hish—dose glucocorticoid treatment improves neurological recovery in head—injured mice. J Neurosurg, 1985, 62(6): 882~887.
    2. Parkinson D, Jell RM. Concussion. Acceleration limits causing concussion. Surg Neurol, 1988, 30(2): 102~107.
    3.李智勇,章翔,费舟,等.非麻醉型清醒大鼠颅脑外伤模型的建立.第四军医大学学报,2000,21(7):s173~s176.
    4. Dixon CE, Lyeth BG, Povlishock JT, et al. A fluid percussion model of experimental brain injury in the rat. J Neurosurg, 1987, 67(1):110~119.
    5. Hamm RJ, Jenkins LW, Lyeth BG, et al. The effect of age on outcome following traumatic brain injury in rats. J Neurosurg, 1991, 75 (6): 916~921.
    6. Foda MA. Marmarou A. A new model of diffuse brain injury in rats. Part Ⅰ1: Morphological characterization. J Neurosurg, 1994, 80(2): 301~313.
    7. Margulies SS, rhibault LE, Gennarelli TA. Physical mod el simulations of brain injury in the primate. J Biomech, 1990, 23(8): 823~836.
    8. Fox GB, Fan L, Levasseur RA, et al. Sustained sensory/motor and cognitive deficits with neuronal apoptosis following controlled cortical impact brain injury in the mouse. J Neurotrauma, 1998, 15(8): 599~614.
    9. Beaumont A, Marmarou A, Czigner A, et al. The impact—acceleration model of head injury: injury severity predicts motor and cognitive performance after trauma. Neurol Res, 1999, 21(8): 742Y754.
    10. Finnie JW, Van—den—Heuvel C, Gebski V, et al. Efect of impact on diferent regions of the head of lambs. J Comp Pathol, 2001, 124(2—3):159~164.
    11. Nataf S, Stahel PF, Davoust N, et al. Complement anaphylatoxin receptors on neurons: new tricks for old receptors? Trends Neurosci, 1999, 22(9): 397~402.
    12.费舟,章翔,刘恩渝,等.弥漫性脑损伤大鼠脑皮质Ⅰ、Ⅱ组代谢型谷氨酸受体表达及意义.中华神经外科疾病研究杂志,2002,1(1):57~59.
    13. AI—Samsam RH. Alessandri B. Bullock R. Extracelhlar N—acetyl—aspartale as a biochemical marker of the severity of neuronal damage following experimental acute traumatic brain injury. Neurotrauma, 2000, 17(1): 31~39.
    14. Koizumi H, Povlishock JT. Posttraumatic hypothermia in the treatment of axonal damage in an animal model of traumatic axonal injury. Neurosurg, 1998, 89(2): 303~309.
    15. Bauer R, W alter B, Torossian A, et al. A piglet model for evaluation of cerebral blood flow an d brain oxidative metabolism during gradual cerebral perfusion pressure decrease. Pediatr Neurosurg, 1999. 30 (2): 62~69.
    16. Morris R. Spatial localization does not require the presence of local cues. Learning and Motivation. 1981, 12(3): 239~260.
    17. Mari S. Golub. Behavioral characteristics of a nervous system -specificerb134 knock, out mouse. Behavioural Brain Research 2004. 153(3): 159~170.
    18. Markowska AL, Spangler EL. Behavioral assessment of the senescence accelerated mouse (SAM P8 and R1), Physiol. Behav, 1998, 64(1): 15~26.
    19. Arteni NS, Salgueiro J. Neonatal cerebral hypoxia ischemia causes lateralized memory impairments in the adult rat. Brain Research, 2003,973(2): 171~178.
    20. Braida D, Sacerdote P, Panerai AE. Cognitive function in young and adult IL(interleukin)-6 deficient mice. Behav brain Res, 2004, 153(2): 423~429.
    21. Olton DS, the radial arm maze as a tool in behavioral pharmacology. Physiol Behav, 1987,40(6):793~197.
    22. Gerlai R. A new continuous alternation task in T-maze detects hippocampal dysfunction in mice A strain comparison and lesion study. Behav Brain Res, 1998, 95(1):91 —101.
    
    23. Andrade C, Alwarshetty M. Efect of innate direction bias on T-maze learning in rats: implications for research. J Neurosci Methods, 2001, 110(1-2): 31—35.
    
    24. Silva RH. Efects of pre-or post-training paradoxical sleep deprivation on two animal mod els of learning and memory in mice. Neurobiology of Learning and Memory, 2004, 82(2): 90—98.
    
    25. Pastor AM. Effects of electrical stimulation of the nucleus basalis on two way active avoidance acquisition, retention, and retrieval. Behav Brain Res, 2004, 154(1): 41—54.
    
    26. F Josef van der Staay. Effects of the cholinesterase inhibitors donepezil and metrifonate on scopolamine induced impairments in the spatial cone field orientation task in rats. Behav Bra Res. 2005.156 (1) : 1 — 10.
    
    27.张守信,金连弘. 神经生物学. 科学出版社. 2002, 474.
    
    28 . Duzel E, Vargha Khadem F, Heinze HJ, et al. Brain activity evidence for recognition without recollection after early hippocampal damage. Proc Natl Acad Sei USA, 2001,98 (9) : 8101—8106.
    
    29. Hopkins KJ, Wang G, Schmued LC. Temporal progression of kainic acid induced neuronal and myelin degeneration in the rat forebrain. Brain Res, 2000. 864 (1) : 69—80.
    
    30. D' Ambrosio R, Marls DO, Grady MS, et al. Impaired K(+)ho-meostasis and altered electrophysiological properties of post— traumatic hippocampal glia. J Neurosci, 1999, 19 (12) : 8152—8162.
    
    31. Hicks, R. R., Smith, D. H., Lowenstein, D. H., Saint, M. R., & McIntosh, T. K. Mild experimental brain injury in the rat induces cognitive deficits associated with regional neuronal loss in the hippocampus. Neurotrauma, 1993, 10 (4) : 405—414.
    32. Kotapka, M. J., Gennarelli, T. A., Graham, D. I., Adams, J. H., Thibault, L. E., Ross, D. T., et al. Selective vulnerability of hippocampal neurons in acceleration-induced experimental head injury. J Neurotrauma, 1991, 8 (5): 247~258.
    33. Kotapka, M. J., Graham, D. I., Adams, J. H. et al. T. A.. Hippocampal damage in fatal paediatric head injury. J Neuropathology and Applied. Neurobiology, 1993, 19 (2): 128~133.
    34. Kotapka, M. J., Graham, D. I., Adams, J. H. et al. Hippocampal pathology in fatal human head injury without high intracranial pressure. Neurotrauma, 1994.11 (4): 317~324.
    35. Serra-Grabulosa, J. M., Junque, C., Verger, K. et al. Cerebral correlates of declarative memory dysfunctions in early traumatic brain injury. Neurology Neurosurgery and Psychiatry, 2005, 76 (2): 129~131.
    36. Hopkins, R. O., Tare, D. F., & Bigler, E. D. Anoxic versus traumatic brain injury: Amount of tissue loss, not etiology, alters cognitive and emotional function. Neuropsychology, 2005.19 (5) : 233~242.
    37. Tate, D. F., & Bigler, E. D. Fornix and hippocampal atrophy in traumatic brain injury. Learning and Memory, 2000. 7 (5): 442~446.
    38. Tomaiuolo, F., Carlesimo, G. A., Di Paola, M. et al. Gross morphology and morphometric sequelae in the hippocampus, fornix, and corpus callosum of patients with severe nonmissile traumatic brain injury without macroscopically detectable lesions: A T1 weighted MRI study. Neurology Neurosurgery and Psychiatry, 2004. 75 (11): 1314~1322.
    39. Kandel E. R. Principles of neural science. Elsevier, 1991, 136~139.
    40.洪岸.老年大鼠学习记忆减退的神经基础.生理科学进展,1995,26(3)261~264.
    41.王旭明,陈坚,朱吉林.血浆糖皮质激素升高条件下海马神经元的形态变化.解剖学杂志,1991,14(4):330~333.
    42.陶元祥,戴晓章,丁炯等.大鼠背海马内生长抑素MRNA神经元的老年变化. 解剖学报,1995,26(3):261~264.
    43.周丽华,陈以慈,姚志彬等.胚胎隔或隔与蓝斑组织联合移植治疗老年性痴呆动物模型的形态学研究.解剖学报,1996,27(2):169~173.
    44. Marr D.A theory of cerebellar cortex. Physiol 1969.202 (6) :437~470.
    45. Albus JS. A theory of cerebellar function. Math Biosci 1971.10 (1):25~61.
    46. Linciln JS, McCormick DA Thompaon RF. Ipsilateral cerebellar lesions prevent learning of classically conditioned nictitating membrane/eyelid response of rabbit, Brain Res. 1982.242 (3) :190~193.
    47. McCormick DA Thompaon RF. Cerebellum: essential involvement in the classically conditioned eyelind response. Science 1984 223 (6) :296~299.
    48.李继硕 2002 神经科学基础北京:高等教育出版社,221.
    49. Mizoguchi K, KunishcaT, Chui DH, et al. Stress induced neural death in the hippocampus of castrated rat. Neurosci. Lett, 1992,138 (4), 157~160.
    50. Sapolsky RM, Anmanini MP. Prolonged glucocorticoid exposure reduces hippocampus neuron number: implications for aging. J Neurosci, 1985, 5(10), 1222~1223.
    51. Sapolsky RM. Why stress is bad for your brain? Science, 1996, 273 (6), 749~750.
    52. Fordec DE, Wehner JM. Physical activity enhances spatial learning performance with all associated alteration in hippocampal protein kinase activity inC57B/6andDBA/2mice. Brain Res, 1993, 619 (2) : 111~119.
    53.马虹,田苏平,陈启盛,等.不同应激强度对小鼠衰老进程影响差异的研究.中国行为医学科学,1998,7(1):11~13.
    54.孙秀兰,田苏平,陈启盛,等.适宜应激延缓衰老的机制的研究.中国行为医学科学,2001,10(2),81~83.
    55. Quervain DJ, Rozendaal B, Mcgaugh JL. Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature, 1998, 394(6695), 787~790.
    56.李君,许世彤,区英琦.噪声对幼年和老年大鼠海马CA1区习得性突触长时程增强的影响.中国应用生理学杂志,1991,7(3),245~247.
    57. Bremner JD Does stress damage the brain? Biol Psychiatry. 1999 45(7): 797~805.
    58. Moradt AR, Doost HT, Taghavi MR, et al. Everyday memory Delicits in children and adolescents with PTSD: performance of the rivermead behavioral memory test. Child Psychol Psychiatry, 1999, 40(3): 357~361.
    59. Markowitsch HJ,, Kessler J, Weber-Luxenburger, et al. Neuroimaging and behavioural correlates of recovery from mnestic block syndrome and other cognitive deteriorations. Neuropsychiatry Neuropsychol Behav Neurol, 2000. 13(1): 60~66.
    60. McEwen BS, Stress and hippocarapal plasticity.Ann Rev Neurosci, 1999, 22 (3): 105~122.
    61. Xu L, Anwyl R, Rowan MJ. Behavioural stress facilitates the induction of long-term depression in the hippocampus, nature. 1997, 387 (6) : 497~500.
    62.柏树令.系统解剖学.北京:人民卫生出版社,2001:464.
    63. Kempski O. Cerebral edema. Semin Nephrol, 2001, 21 (3) :90~98.
    64.徐如祥.创伤性脑水肿研究进展.中国现代神经疾病杂志,2004,4(3):141.
    65. Kernie SG, Erwin TM, Parada LF. Brain remodeling due to neuronal and astrocytic proliferation after controlled cortical injury in mice Neurosci Res, 2001, 66(3): 317~326.
    66. Doestsch F, Caille I, Lim Da, et al, Subventricular zone are neural stem cell in the adult mammalian brain. Cell, 1999, 197 (6) : 703.
    67. Yanmmoto S, Nagao M. Transcription factor expression and Notch—dependent regulation of progenitors in the adult rat srinal cord. Neurooci, 2001, 21 (12) : 814.
    68. Jin K, Minami M, Lan JQ, et al. Neurogenenesis in zone fater focal cerebral Ischemia in the rat. Proc Nail Acad Sci USA, 2001, 98(8): 710.
    69. Magavi SS, Leavitt BR, Macklis JD. Induction of neurogenesis in the neocorte of adult mice. Nature, 2000, 405 (7): 951~960.
    70. Takagi Y, Nozaki R, Takahashi J, et al. Proliferation of neuronall precursor cells in the dentate gyms is accelerated after transient forebrain ischemia in mice. Brain Res, 1999, 831 (7) : 238~241.
    71. Li Y.Nozaki R. Proliferation of nestin expression after focal cerebral ischemia in adult rat. Brain Res, 1999, 838(1—2): 1~9.
    72. Lendahl U, Zimmerman LB, Mchay RDG. CNS stem cell express a new class of inter mediate filament protein. Cell, 1990, 60 (9) : 585.
    73.于春泳,魏学忠,宋振全等,成熟大鼠脑损伤后神经干细胞的表达与增殖.中国临床康复.2002.6(12):1744~1745.
    74.孙成春 张士善.脑内注射谷氨酸.使君子氨酸和卡固酸对中枢作用的比较.中国药理学报,1991,12(4):230~241.
    75.薛保建,王志安,何瑞荣.一氧化氮对谷氨酸诱发的海马脑片CA1神经元活动的抑制.生理学报,1998,50(1):55~60.
    76. Lkonomidou C, Mosinger JL, Salles KS, et al. Sensitivity of the developing ret brain to hypobaric/ischemic damage parallels sensitivity to N-methyl—aspartate neurotoxicity. Neurosci, 1998, 9(8): 2809~2818.
    77. Hablitz JJ, Langmoen 1A. N-methyl-D-aspartate receptor antagonists reduce synaptic excitation in the hippocampus. Neurosci, 1986, 6 (2):102~106.
    78. Markowttsch HJ, Kessler J, Van-Der-Ven C. Psychic trauma causing grossly reduced brain metabolism and cognitive deterioration. Neuropsychologia, 1998, 36,77~82.
    79.王琳,王天芳,康纯洁,等.消疲怡神口服液对应激大鼠神经-内分泌-免疫系统的影响.中国中医基础医学杂志,2000,6(3):22~25.
    80.杜雨苍.神经肚与脑功能.上海:上海科技教育出版社,1998,171~197.
    81. Jeansok JK, Kenneth SY. Stress: metaplastic effects on the hippocampus. Trends in Neuroscience, 1998, 21 (12): 505~509.
    82.杨来启,王晓峰,马文涛等.急性应激大鼠脑边缘系统生化病理变化.中国心理卫生杂志,2002,16(12):814~815.
    83. PELLMAR TC, HOHliden GE, SARVEY JM. Free radical accelerate the decay of long-tetra potentiation in CA1 of the guinea pig hippocampus. Neurosci, 1991, 44 (8): 353~359.
    84.赵玉华,沈钢,柴莹.机体应激强度与环核苷酸系统的动态变化.急诊医学,1999,8(3),171~172.
    85. Stone EA. Plait W, Trallas R. et al Reduction of the cAMP response to norepinephrine in rat cerebral cortex following repeated restraint stress. Psychopharmacology Berlin, 1984, 82 (4): 403~405.
    86.丁勤璋,符云峰,张世联等.手摇电针对大鼠恼内cAMP含量及N-K-ATP酶活性的影响.中华神经精神科杂志.1990,23(2),72~74
    87.陈晋文,黄远桂,宋东林等.实验性癫痫大鼠海马结构内一氧化氨-环磷酸鸟苷途径的研究.中华神经科杂志,1998.31(6),361~363.
    88.马文涛 橱来启 李淑艳等.急性应激时大鼠脑内环核苷酸含量的变化.中国心理卫生杂志.2002,16(6),371~372.
    89.刘耕陶.一氧化氮的研究前景 中华医学杂志,1996,8(8):563~564.
    90. Lipton SA, Choi YB, Pan ZH. et al Atede x—based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature. 1993, 12 (9): 626~632.
    91. Olivenza R, Moro MA, Lizasoain 1. et al Chronic stress induces the expression of inducihle nitric oxide synthase in rat brain cortex. J Neurochem, 2000. 74 (2): 785~791.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700