新型硅基SINP异质面蓝紫光电池及SIS异质结光电器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了不增加电池制造工艺的复杂性,同时又能有效地提高硅光电池在蓝紫光波段(400~600nm)的量子效率。根据半导体能带工程,我们独创性地设计并采用工艺优化的射频磁控溅射ITO减反射/收集电极膜且结合热扩散磷形成浅结、低温热氧化生长超薄SiO2层技术,在p型晶硅衬底上成功制备了高量子效率的蓝紫光增强型SINP异质面光电池(SINP是semiconductor/insulator/np结构的缩写)。另一方面,根据优化的直流磁控溅射、直流反应磁控溅射AZO薄膜工艺条件,并用低温热氧化生长超薄SiO2层在p型晶硅衬底上成功制备了新型SIS异质结光电器件(SIS是semiconductor/insulator/semiconductor结构的缩写)。通过X-光衍射(XRD)、扫描电镜(SEM)、紫外-可见光透射谱(UV-VIS),以及霍尔效应(Hall effect)测量方法,表征了射频磁控溅射ITO薄膜;直流磁控溅射、直流反应磁控溅射AZO薄膜的微结构、光学与电学特性。系统地研究了基片温度对ITO、AZO薄膜微结构、形貌、电学、光学性能的影响及机制。我们对制备得到的SINP硅光电池及SIS异质结器件I-V、C-V及光谱响应特性进行了详细地测试、分析与探讨,获得了以下主要结果:
     1.磁控溅射沉积的ITO薄膜结晶度高,并且具有较高的紫外—可见光透过率及优异的电学性能。系统研究了基片温度对射频磁控溅射ITO薄膜微结构、电学及光学性能的影响及机制。结果表明,当基片温度为480℃时,ITO薄膜性能最好,电阻率为9.42×10-5Ω·cm,载流子浓度高达3.461×1021/cm3,霍尔迁移率为19.1 cm2/V·s。ITO薄膜在可见光区域具有高的透射率,在95%以上。ITO薄膜为多晶晶体薄膜,具有高度(222)择优取向,结晶质量好。ITO薄膜在晶硅衬底上具有良好的钝化和减反射效果,尤其是在300~500nm紫外至蓝光区域。
     2.用X射线光电子能谱(XPS)对500℃不同氧化时间的超薄氧化硅层及SINP结构光电池样品成分、化学态进行分析。表明表面层中存在非化学态成分。
     3. SINP蓝紫光电池具有优异的整流特性及暗电流机制。室温下±1V时,SINP蓝紫光电池整流比为324.7,二极管理想因子n=1.84,AM1.5 100 mW/cm2光照下,光电转换效率η=12.26%。由于在SINP结构中,光电流可以通过高结晶度、高载流子迁移率的ITO薄膜横向输运,避免了高磷浓度n发射区中横向输运的复合,降低了发射区横向电阻影响引起的功率损耗,新型SINP蓝紫光电池短路电流密度高达JSC=38.7 mA/cm2,显示出良好的光伏特性。在500nm波长,蓝紫光增强型SINP光电池外量子效率及响应率高达70%及285 mA/W;在800nm波长,峰值响应率为487 mA/W。最近研制的采用60Ω/□n+—型发射极的浅结SINP光电池进一步提高短波光谱响应,蓝紫光灵敏度极高。器件光谱响应拟和计算结果表明,新型SINP蓝紫光电池的高量子效率得益于浅结,以及高导电率和对蓝紫光具有良好减反射效果的ITO薄膜的应用与结合。具有高蓝紫光以及其它可见光波段的光谱响应和光电转换的增强效果,是该器件的主要特征。其较高的短路电流密度,适合于发展成为新型结构的硅基太阳能电池。
     4.以ZnO和Al2O3烧结的陶瓷靶,用直流磁控溅射工艺在玻璃基片上沉积出高质量的AZO薄膜,系统研究了不同基片温度对薄膜微结构、电学和光学性能的影响。当基片温度为480℃时,AZO薄膜性能最好,电阻率为3.483×10-3Ω·cm。AZO薄膜在可见光区域具有高的透射率,在90%左右。AZO薄膜为微晶晶体薄膜,具有高度(002)择优取向,结晶质量好。
     5.以高纯度(99.99%)的锌铝合金(wt.98% Zn+wt.2%Al)靶,氩气和氧气为溅射工作气体,用直流反应磁控溅射工艺在玻璃基片上生长出高质量的AZO薄膜。系统研究了基片温度对直流反应磁控溅射AZO薄膜微结构、电学及光学性能的影响及机制。当基片温度为480℃时,AZO薄膜性能最好,电阻率为4.973×10-4Ω·cm,载流子浓度高达1.103×1021/cm3,霍尔迁移率为11.4 cm2/V·s。AZO薄膜在可见光区域具有高的透射率,在90%以上。AZO薄膜为六角纤锌矿结构的微晶晶体薄膜,具有高度(002)择优取向,结晶质量好。
     6. SIS异质结器件良好的整流特性表明AZO和p—Si间形成高质量的异质结二极管,在反向偏压下获得明显的光电流。通过对几种磁控溅射方法制备AZO薄膜及SIS异质结器件光电性能的比较可知,由于直流反应磁控溅射高结晶度、高导电率的AZO薄膜作AZO/SiO2/p-Si SIS异质结结构器件的发射极和顶层大面积透明收集电极,大量的光生载流子可以轻易地流过直流反应磁控溅射AZO薄膜进入Cu金属电极而收集到,从而在反向偏压下直流反应磁控溅射AZO/SiO2/p-Si SIS异质结比直流磁控溅射AZO/SiO2/p-Si SIS异质结可获得更高的光电流。通过射频磁控溅射沉积一层高导电率的ITO透明电极薄膜在直流磁控溅射AZO/SiO2/p-Si SIS异质结结构上,将会使异质结光电性能得到很大改进。因为高导电率的ITO薄膜极大地改善了AZO/SiO2/p-Si SIS异质结顶层电流输运结构,可收集到更多的光生载流子,所以在反向偏压下显示了明显的光电转换特性,可获得最高的光电流。SIS异质结不仅具有一定的光生伏特效应,而且在反向偏压下显示出很高的光电流。可以成为低成本的太阳电池及性能优良的紫外—可见—近红外增强型广谱光电探测器。
In order to reduce the technical complexity of the fabrication and simultaneously to improve the quantum efficiency in the range of 400-600 nm, a new type of ITO/SiO2/np-Silicon frame (named as SINP) hetero-interface solar cell has been designed and developed by combining the p-n junction with ITO transparent conductive oxide thin film as top layer of the device, according to the energy band evolution. A series of advanced techniques have been applied to the fabrication process, such as shallow junction, back surface field of aluminum, ultra-thin SiO2 passivation layer, and ITO coating. On the other hand, the novel semiconductor-insulator-semiconductor (SIS) hetero-junction structure has been fabricated by thermally growing an ultrathin silicon dioxide at low temperature and subsequently magnetron sputtering deposition of Al-doped n-ZnO (named as AZO) layer on p-Si (100) wafer. The microstructure, optics and electrical properties of the ITO and AZO films were characterized by XRD, SEM, UV-VIS spectrophotometer and Hall effect measurement, respectively. The influence of the substrate temperatures on the properties of ITO and AZO films were deeply studied. The current-voltage (I-V)、capacitance -voltage (C-V) and spectral response characteristics of SINP hetero-interface solar cell and SIS heterojunctions were analyzed in detail.
     1. ITO film possesses high quality in terms of antireflection and electrode functions. The influence of the substrate temperatures on the property of ITO film was deeply studied. The results indicated that ITO film possesses high quality , when the substrate temperature is at 480℃. The resistivity is as low as 9.42×10-5?·cm, the carrier concentration and mobility are as high as 3.46×1021 atom/cm3 and 19.1 cm2/V·s, respectively. The average transmittance of the film is about 95% in the visible region. The film has a bixbyite structure and a preferred growth along the (222) orientation, perpendicular to the substrate surface. The configuration of the ITO layer on the textured Si is suitable for the blue and ultraviolet cells owing to the less loss of the number of photons with a short wavelength, which is more favorable for high efficiency cells.
     2. The ultra-thin SiO2 layer and SINP structure samples were analyzed by x-ray photoelectron spectroscopy (XPS). The results showed that the non-stoichiometric matter were present on the surface layers and which resulted in the electronic defects to the minority carrier transportation.
     3. The I-V curves of SINP violet photoelectric cell showed the fairly good rectifying behaviors. The values of IF/IR (IF and IR stand for forward and reverse currents, respectively) at 1.0 V for the violet SINP device is as high as 324.7,and the ideality factor of the violet SINP photoelectric cell is 1.84. The conversion efficiencies of the violet SINP cell under illumination of continue light source (AM 1.5 class A) is12.26%. Because the high quality crystallite and the good conductivity of ITO film magnetron-sputtered on SiO2 lead to a great decrease of the lateral resistance, it is possible to decrease the power loss induced by the lateral resistance of emitter region in the new type solar cell with SINP structure. The short-circuit current density of the SINP violet solar cell is as high as JSC = 38.7 mA/cm2. The external quantum efficiencies (EQE) and responsivity of the violet SINP device are 70% and 285mA/W at 500nm, respectively. The spectral responsivity peak of the violet SINP photoelectric cell is 487mA/W at about 800nm.The latest result indicates that the violet SINP photoelectric cell with 60?/□shallow junction can greatly improve the violet response. The calculated results indicates that the high quantum efficiency and responsivity of violet and blue enhanced photovoltaic cell is attributed to the shallow junction and the good conducting, violet and blue antireflection coating of ITO optical film. We found that the main feature of our PV cell is the enhanced violet response and optoelectronic conversion. The improved short-circuit current, open-circuit voltage, and filled factor indicate that the device is promising to be developed into an ultraviolet and blue enhanced photovoltaic device in the future.
     4. The AZO films were prepared by direct-current (DC) magnetron sputtering. The target was sintered ceramic disks of ZnO doped with 2 wt% Al2O3 (purity 99.99%). The AZO film possesses high quality in terms of electrode functions, when substrate temperature is at 480℃. The resistivity is as low as 3.483×10-3?·cm. The average transmittance of the film is about 90% in the visible region. The AZO film has a hexagonal wurtzite structure with its dominant orientation along the c-axis perpendicular to the substrate surface.
     5. Polycrystalline AZO films were prepared by direct-current (DC) reactive sputtering technique with Zn/Al alloy target. The AZO film possesses high quality in terms of electrode functions, when substrate temperature is 480℃. The resistivity is as low as 4.973×10-4?·cm, the carrier concentration and mobility are as high as 1.103×1021 atom/cm3 and 11.4 cm2/V·s, respectively. The average transmittance of the film is about 90% in the visible region. The AZO film has a hexagonal wurtzite structure with its dominant orientation along the c-axis perpendicular to the substrate surface.
     6. The properties of the electronic junctions were investigated by I-V measurement, which reveals that the SIS heterojunction showed a rectifying behavior under a dark condition. It shows fairly good rectifying behavior indicating the formation of a diode between AZO and p-Si. By the comparison of AZO films and SIS heterojunction prepared by different sputtering technique, the conductivity of AZO film prepared by DC reactive sputtering is much higher than that of the AZO film prepared by DC sputtering. Therefore, more photon induced current can easily flow through AZO layer prepared by DC reactive sputtering and enter into the Cu front contact. Thus, higher photocurrent is obtained under a reverse bias. Because the resistivity of ITO film is much lower than that of AZO films, the magnetron- sputtering of the ITO film with the high quality crystallite and the good conductivity on AZO/SiO2/p-Si lead to a great decrease of the lateral resistance. The ITO layer was as the large area surface electrode. Thus, the photon induced current can easily flow through ITO layer entering the Cu front contact, since there is a parallel connection and a high mobility of the top layer of the ITO/AZO/SiO2/p-Si SIS heterojunction. Most high photocurrent can be obtained under a reverse bias. The results indicated that the novel SIS heterojunctions can be not only used for low cost solar cell, but also used for high quantum efficiency of UV and visible lights enhanced photodiode for various applications.
引文
[1].缪家鼎.光电技术.杭州:浙江大学出版社,2004:120—125
    [2].MartinA.Green.Solar Cells: Operating Principles, Technology and System Applications. New Jersey :Prentice-Hall,1982:344—360
    [3].陈秀峰,杨冬晓.信息电子学物理基础.杭州:浙江大学出版社,2002:133—140
    [4].施敏,伍国钰.半导体器件物理.西安:西安交通大学出版社,2008:541—547
    [5].王家骅,李长健,牛文成.半导体器件物理.北京:科学出版社,1982:335—339
    [6].伟纳姆,应用光伏学.上海:上海交通大学出版社,2008:26—30
    [7].Tom Markvart.太阳电池:材料、制备工艺及检测.北京:机械工业出版社, 2009:30—36
    [8].刘祖明.晶体硅太阳电池及其电子辐照研究.四川大学博士学位论文,2002:5—10
    [9].F. A. Lindholm, J. G. Fossum. Physics underlying the performance of back-surface-field solar cells.IEEE Transactions on Electron Devices,1980,ED27(4): 785-791
    [10].Shreesh Narasimha,Ajeet Rohatgi,A. W. Weeber. An optimized rapid aluminum back surface field technique for silicon solar cells. IEEE Transactions on Electron Devices,1999,46(7):1363—1369
    [11].Vichai Meemongkolkiat,Kenta Nakayashiki,Dong Seop Kim. Factors Limiting the Formation of Uniform and Thick Aluminum-Back-Surface Field and Its Potential. Journal of the Electrochemical Society, 2006, 153(1):53—58
    [12]. J. G. Fossum, E. L. Burgess. High‐efficiency p+‐n‐n+ back‐surface‐field silicon solar cells. Apple physics letter,1978,33(3):238—240
    [13].J. Lindmayer, J.F. Allison. The violet cell: An improved silicon solar cell. Solar Cells, 2003,29(2):151—166
    [14].Naima G. Gomaa. The stability of MIS solar cells and evaluation by C–V characteristics. Renewable Energy, 2001,23(3):369—374
    [15]. R. B. Godfrey, M. A. Green.655 mV open‐circuit voltage, 17.6% efficient silicon MIS solar cells. Applied Physics Letters, 1979, 34(11):790—793
    [16].Rudolf Hezel. Recent progress in MIS solar cells. Progress in Photovoltaics: Research and Applications,1998,5(2):109—120
    [17].W. A. Anderson1, J. K. Kim. Reliability studies on MIS solar cells. Applied Physics A: MaterialsScience & Processing, 1978, 17(4): 401—404
    [18]. P. Chattopadhyay. Effect of ageing on the open-circuit voltage of MIS-solar cell. Applied Surface Science, 1998, 126(1) :65—68
    [19].CHAUHAN R. K., CHAKRABARTI P. Influence of ionizing radiation on the performance of MIS solar cells: a theoretical model. International journal of electronics,2002, 89(7) : 525—535
    [20].Y.C.SHENG, H.L.CHAU. Effects of Nonuniformity of the Insulating Layer on MIS Solar Cells. IEEE Transactions on Electron Devices,1980, EDL—1(10):191—193
    [21].R.Singh. Native oxide and external dielectric polycrystalline GaAs MIS solar cells. International Journal of Electronics, 1979, 47(5):509—513
    [22].Houng M.P., Wang Y.H., Wang N.F. Effect of fluorine on metal-insulator-silicon solar cell performance with an low-temperature deposited SiO2 layer. Materials Chemistry and Physics, 1999, 59(1):36—41
    [23]. V. K. Goyal, D. Kumar, K. Sen. Effect of grain boundary states density in polycrystalline MIS solar cells. physica status solidi (a), 2006, 116(1):425—431
    [24]. R. B. Godfrey, M. A. Green. A 15% efficient silicon MIS solar cell. Applied Physics Letters, 1978,33(7) :637—640
    [25].Hiroyuki Matsunami, Shigenori Matsumoto,Tetsuro Tanaka. MIS Silicon Solar Cells with In2O3 Antireflective Coating. Japanese Journal of Applied Physics, 1977,16(6):1491—1492
    [26].Pulfrey, D.L. A minority carrier MIS solar cell. Solid-State Electron, 1977, 20(5):455—457
    [27].M. A. Green, R. B. Godfrey. MIS solar cell—General theory and new experimental results for silicon. Applied Physics Letters, 1976, 29(9):610—612
    [28].M. Grauvogl, R. Hezel. The truncated-pyramid MIS inversion-layer solar cell: a comprehensive analysis. Progress in Photovoltaics: Research and Applications, 1999,6(1):15—24
    [29].R.Hezel.Properties of inversion layers for MIS/IL solar cells studied on low-temperature-processed MNOS transistors. Solid-State Electronics, 1983, 26(10):993—997
    [30].R. Hezel.Silicon nitride for the improvement of silicon inversion layer solar cells. Solid-State Electronics, 1981,24(9):863—868
    [31]. CHARLES EDWARD NOMAN. Detailed Modeling of Inversion-Layer Solar Cells. IEEETransactions on Electron Devices, 1980,ED-27(4):731—737
    [32]. R. B. Godfrey, M. A. Green. High-temperature lifetesting of Al/SiOx/p-Si contacts for MIS solar cells. Applied Physics Letters, 1979,34(12):860—861
    [33].R. B. Godfrey, M. A. Green. Enhancement of MIS solar-cell 'efficiency' by peripheral collection. Applied Physics Letters,1977,31(15):705—707
    [34].WAYNE A. ANDERSON, JIM K. KIM, ALAN E. DELAHOY. Barrier Height Modification in Silicon Schottky (MIS) Solar Cells.1977,ED-24(4):453—457
    [35]. J. P. Ponpon, P. Siffert. Open‐circuit voltage of MIS silicon solar cells. Journal of Applied Physics, 1976, 47(7):3248—3251
    [36].Kuo-Chung Lee ,Jenn-Gwo Hwu. 17.3% Efficiency Metal-Oxide-Semiconductor (MOS) Solar Cells with Liquid-Phase-Deposited Silicon Dioxide. IEEE ELECTRON DEVICE LETTERS,1997,18 (11):565—567
    [37]. M. A. Green.Effects of pinholes, oxide traps, and surface states on MIS solar cells. Applied Physics Letters,1978,33(2):178—180
    [38]. Maeda, Y. A Be p-silicon MIS solar cell. Applied Physics Letters, 1978, 33(8):301—302
    [39].Anderson, W. A., Delahoy, A. E., Kim, J. K.High-efficiency Cr-MIS solar cells on single and polycrystalline silicon. Applied Physics Letters,1978,33(7):588—590
    [40].R. Ferraglio, W. A. Anderson. Proton radiation effects on Cr‐MIS single‐crystal Si solar cells. Applied Physics Letters,1979,35(1):18—20
    [41].Ferraglio, R., Anderson, W. A. Proton radiation effects on Cr-MIS single-crystal Si solar cells. Applied Physics Letters,1979, 35(7):18—20
    [42].Tarr, N. G., Pulfrey, D. L., Iles, P. A. MIS solar cells with back surface fields. Applied Physics Letters, 1979, 35(8):258—260
    [43].S.E.-D. Habib, M.Y. Soliman. A high efficiency Si solar cell using tunnel MIS front and back contacts. Solid-State Electronics, 1990, 33(8):1029—1034
    [44]. S.K. Krawczyk. Temperature dependence of the short-circuit current in MIS solar cells. Solar Cells, 1981,4(2):187—194
    [45].Shewchun, J., Singh, R., Burk, D. Temperature dependence of the current-voltage characteristics ofsilicon MIS solar cells. Applied Physics Letters,1979,35(9):416—418
    [46].Sutanu Mangal, Sarbani Adhikari, P. Banerji. Aluminum/polyaniline/GaAs MIS solar cell: Effect of tunneling on device performance. Applied Physics Letters,2009,94(22):223509
    [47].Dick Y. F. Wong, Y. W. Lam. Preprocessing heat treatment of metal‐insulator‐semiconductor solar cells. Applied Physics Letters,1986,48(15):981—982
    [48].A. Beyer, G. Ebest, R. Reich. Metal-insulator-semiconductor solar cells with silicon oxynitride tunnel insulator by using rapid thermal processing. Applied Physics Letters,1996,68(4):508—510
    [49].Naima G. Gomaa. The stability of MIS solar cells and evaluation by C–V characteristics. Renewable Energy, 2001, 23(3):369—374
    [50].Semsettin Alt?ndal. Density of interface states, excess capacitance and series resistance in the metal– insulator– semiconductor (MIS) solar cells. Solar Energy Materials and Solar Cells.2005,85(3):345—358
    [51].P. Chattopadhyay. Effect of ageing on the open-circuit voltage of MIS-solar cell. Applied Surface Science,1998,126(1):65—68
    [52].Swati Biswas,Abhai Mansingh. Influence of surface states on currentvoltage characteristics of M-I-p Si solar cells. Journal of Physics D: Applied Physics,1992,25(1):100—105
    [53].S Srivastavat, N K Swamit, GP Srivastava. Response of Schottky barrier solar cells at higher temperatures. Journal of Physics D: Applied Physics, 1981,14 (8):1495
    [54].M.THAYER. Reliability of MINP Compared to MIS, SIS, and N/P Silicon Solar Cells Under 1.0-MeV Electron Environmental Effects. IEEE Transactions on Electron Devices,1980, ED—31(5):619—621
    [55]. Axel Mrwa, Gunter Ebest, Michael Rennau. Comparison of different emitter diffusion methods for MINP solar cells: Thermal diffusion and RTP. Solar Energy Materials and Solar Cells, 2000, 61 (2):127—134
    [56]. Green, M. A., Blakers, A. W., Keller, E. M.19.1 percent efficient silicon solar cell. Applied Physics Letters ,1984, 44(6):1163—1164
    [57].EL-SAYED M. A.-G.Optimization of arbitrarily doped MINP+ solar cell performance. Renewable energy, 1998, 14(1):141—147
    [58]. Larry C. Olsen, F. W. Addis. Investigation of high efficiency silicon MINP solar cells. Solar Cells, 1986, 17(1):151—166
    [59].M.Y. Soliman, S.E.-D. Habib.Surface recombination velocity in MINP solar cells. Solid-State Electronics.1987, 30 (6):663—666
    [60].L. Frisson, Ph. Lauwers, R. Mertens. Screen Printed Metallization of Silicon Solar Cells. Electro- Component Science and Technology, 1980 ,7(1) :107—111
    [61].Robert Bock,Jan Schmidt, Rolf Brendel. n-type silicon solar cells with surface-passivated screen-printed aluminium-alloyed rear emitter. physica status solidi (RRL) - Rapid Research Letters, 2008, 2(6):248—250
    [62].Ajeet Rohatgi, Mohamed M. Hilali, Kenta Nakayashiki. High-efficiency screen-printed solar cell on edge-defined film-fed grown ribbon silicon through optimized rapid belt co-firing of contacts and high-sheet-resistance emitter. Applied Physics Letters,2004, 84(17):3409—3411
    [63].Mohamed M. Hilali, James M. Gee, Peter Hacke. Bow in screen-printed back-contact industrial silicon solar cells. Solar Energy Materials and Solar Cells,2007,91(13):1228—1233
    [64]. P N Vinod, B C Chakravarty, Mohan Lal. A novel method for the determination of the front contact resistance in large area screen printed silicon solar cells. Semiconductor Science and Technology, 2000,15(3):286—290
    [65].Jae-Hong Kwon, Soo-Hong Lee, Byeong-Kwon Ju. Screen-printed multicrystalline silicon solar cells with porous silicon antireflective layer formed by electrochemical etching. Journal of Applied Physics, 2007,101(10):104515
    [66].S. Kontermann, A. Wolf, D. Reinwand. Optimizing annealing steps for crystalline silicon solar cells with screen printed front side metallization and an oxide-passivated rear surface with local contacts. Progress in Photovoltaics: Research and Applications, 2009, 17(8):554—566
    [67].R. Lago. Screen printing metallization of boron emitters. Progress in Photovoltaics: Research and Applications,2009,18(1):20—27
    [68].J. Rentsch, S. Bau. Screen-printed epitaxial silicon thin-film solar cells with 13.8% efficiency. Progress in Photovoltaics: Research and Applications,2003,11(8):527—534
    [69].Jianhua Zhao, Aihua Wang, Pietro P. Altermatt.24% efficient perl silicon solar cell: Recentimprovements in high efficiency silicon cell research. Solar Energy Materials and Solar Cells, 1996, 41(6):87—99
    [70].S. R. Wenham, B. O. Chan, C. B. Honsberg. Beneficial and constraining effects of laser scribing in buried-contact solar cells. Progress in Photovoltaics: Research and Applications,1998, 5(2):131—137
    [71].D. S. Kim, K. Y. Lee, S. H. Won. Buried contact solar cell using tri-crystalline CZ silicon wafers. Current Applied Physics, 2001, 1(6):505—508
    [72].Young H. Cho, A. U. Ebong, E. C. Cho. Advanced buried contact solar cell structure. Solar Energy Materials and Solar Cells,1997,48(1):173—177
    [73].Abasifreke U. Ebong, Soo H. Lee, Christiana Honsberg. High Efficiency Double Sided Buried Contact Silicon Solar Cells. Japanese Journal of Applied Physics,1996,35(12):2077—2080
    [74].Chong, C. M. Davies, K. E. Wenham, S. R. Plasma‐grooved, buried contact silicon solar cells. Journal of Applied Physics, 1991, 69(7):4135—4136
    [75].John C. Zolper, Srinivasamohan Narayanan, Stuart R. Wenham.16.7% efficient, laser textured, buried contact polycrystalline silicon solar cell. Applied Physics Letters,1989,55(22):2363—2365
    [76].RICHARDS B. S. Comparison of TiO2 and other dielectric coatings for buried-contact solar cells: A review. Progress in photovoltaics,2004,12 (4) :253—281
    [77]. Morales-Acevedo A. Analysis of buried contact solar cells and some rules for their optimum design. Solid-State Electronics,1995,38(12):2081—2084
    [78].Stuart Wenham. Buried-contact silicon solar cells. Progress in Photovoltaics: Research and Applications,2007,1(1):3—10
    [79].Rudolf Hezel. Progress in Manufacturable High-Efficiency Silicon Solar Cells. Advances in Solid State Physics,2004,44(39):1205—1206
    [80].S. Narayanana, M.A. Green. Improvement in the open-circuit voltage and efficiency of silicon solar cells by rear aluminium treatment. Solar Cells,26(4):329—334
    [81]. Jianhua Zhao, Aihua Wang, M. A. Green. Emitter design for high-efficiency silicon solar cells. Part I: Terrestrial cells. Progress in Photovoltaics: Research and Applications,2007,1(3):193—202
    [82].Mikio Taguchi, Akira Terakawa, Eiji Maruyama. Obtaining a Higher Voc in HIT Cells. PROGRESSIN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS,2005,13(4):481—488
    [83].Yasufumi Tsunomura, Yukihiro Yoshimine, Mikio Taguchi. Twenty-two percent efficiency HIT solar cell. Solar Energy Materials and Solar Cells, 2009, 93 (6):670—673
    [84].Makoto Tanaka, Mikio Taguchi, Takao Matsuyama.Development of New a-Si/c-Si Heterojunction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer). Japanese Journal of Applied Physics, 1992, 31(9):3518—3522
    [85].Qin Liu ,Xiao-jun Ye , Cheng Liu. Performance of bifacial HIT solar cells on n-type silicon substrates. Optoelectronics Letters,6 (2):108—111
    [86]. Zhao L,Zhou CL,Li HL. Design optimization of bifacial HIT solar cells on p-type silicon substrates by simulation. Solar Energy Materials and Solar Cells, 2008,92(6):673—681
    [87].C. Voz, M. Fonrodona. Bifacial heterojunction silicon solar cells by hot-wire CVD with open-circuit voltages exceeding 600 mV. Thin Solid Films,2006,512(1):415—419
    [88].M. Tucci, M. della Noce, E. Bobeico. Comparison of amorphous/crystalline heterojunction solar cells based on n- and p-type crystalline silicon. Thin Solid Films,2004,451(3):355—360
    [89].Y. Xu, Z.H. Hu, H.W. Diao. Heterojunction solar cells with n-type nanocrystalline silicon emitters on p-type c-Si wafers. Journal of Non-Crystalline Solids,2006,352(3):1972—1975
    [90].H.D. Goldbach, A. Bink and R.E.I. Schropp. Thin p++μc-Si layers for use as back surface field in p-type silicon heterojunction solar cells. Journal of Non-Crystalline Solids,2006,352(4):1872—1875
    [91].Y. Veschetti, J.C. Muller, J.R. Damon-Lacoste Cabarrocas. Optimisation of amorphous and polymorphous thin silicon layers for the formation of the front-side of heterojunction solar cells on p-type crystalline silicon substrates. Thin Solid Films,2006, 511(6):543—547
    [92].M. Schmidt, L. Korte, A. Laades. Physical aspects of a-Si:H/c-Si heterojunction solar cells. Thin Solid Films,2007,515(1):7475—7480
    [93].M. Tucci,G. de Cesare.17% efficiency heterostructure solar cell based on p-type crystalline silicon. Journal of Non-Crystalline Solids,338(15):663—667
    [94].K. v. Maydell, E. Conrad, M. Schmidt. Efficient silicon heterojunction solar cells based on p- and n-type substrates processed at temperatures < 220°C. Progress in Photovoltaics: Research andApplications,2006,14(4):289—295
    [95].Shui-Yang Lien, Dong-Sing Wuu. Simulation and fabrication of heterojunction silicon solar cells from numerical computer and hot-wire CVD. Progress in Photovoltaics: Research and Applications,2009,17(7):489—501
    [96].R. BRüGGEMANN. Characterisation and optimisation of amorphous silicon /crystalline silicon heterojunction solar cells. JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS,2009,11(9):1072—1078
    [97].Shui-Yang Lien, Bing-Rui Wu, Jun-Chin Liu. Fabrication and characteristics of n-Si/c-Si/p-Si heterojunction solar cells using hot-wire CVD. Thin Solid Films,2008,516(5):747—750
    [98].Qi Wang. High-efficiency hydrogenated amorphous/crystalline Si heterojunction solar cells. Philosophical Magazine,2009,89(28):2587—2598
    [99].Weining Wang, Eric Schiff, Qi Wang. Amorphous silicon/polyaniline heterojunction solar cells:Fermi levels and open-circuit voltages. Journal of Non-Crystalline Solids,2008,354(2):2862—2865
    [100].A. S. Gudovskikh, J. P. Kleider. Capacitance spectroscopy of amorphous/crystalline silicon heterojunction solar cells at forward bias and under illumination. Applied Physics Letters, 2007,90 (3):034104
    [1].姜辛.透明导电氧化物薄膜.北京:高等教育出版社,2008:57—80
    [2].唐伟忠.薄膜材料制备原理、技术及应用(第2版).北京:冶金工业出版社,2003:67—80
    [3].田民波.薄膜技术与薄膜材料.北京:清华大学出版社,2006:124—135
    [4].李金丽.射频溅射掺铝ZnO薄膜工艺及其光电性能研究.电子科技大学硕士学位论文,2004:13—15
    [5].何波.离子束刻蚀HgCdTe环孔光电二极管及MIS器件研究.昆明理工大学硕士学位论文,2007:114—118
    [6].施罗德.半导体材料与器件表征技术.大连:大连理工大学出版社,2008:513—518
    [7].黄昆.半导体物理基础.北京:科学出版社,1979:21—25
    [8].施罗德.半导体材料与器件表征技术.大连:大连理工大学出版社,2008:59—61
    [1].L. R. Canfield, J. Kerner, and R. Korde . Silicon photodiodes optimized for the EUV and soft xray regions. SPIE,1990,1344:372—377
    [2].田等先,龚全宝,张幼平,陈若良.半导体光电器件.北京:机械工业出版社,1982:145—147
    [3].XianSong FU, SuYing YAO, JiangTao XU, Yao LU, YunGuang ZHENG. Study on high signal-to-noise ratio (SNR) silicon p-n junction photodetector. Optica Applicata,2006,36(2):421—428
    [4].何波,马忠权,徐静等.新型SINP硅蓝紫光电池的研究.中国科学E辑:技术科学, 2010, 40(3):1—10
    [5].郭向勇.低温氧化与超薄介质层的生长及应用.物理,1989,18(9): 555—558
    [6].He Bo, Ma Zhong Quan, Zhao Lei. Investigation of ultraviolet response enhanced PV cell with silicon-based SINP configuration. SCIENCE CHINA : Technological Sciences, 2010, 53(4): 1028-1037
    [7].叶志镇.氧化锌半导体材料掺杂技术与应用.杭州:浙江大学出版社,2009:58—62
    [8].M. Selmi, F. Chaabouni, M. Abaab and B. Rezig. Studies on the properties of sputter-deposited Al-doped ZnO films. Superlattices and Microstructures, 2008, 44(3):268—275
    [9].顾祖毅,田立林,富力文.半导体物理学.北京:电子工业出版社,1995:280—285
    [10].姜辛,孙超,洪瑞江.透明导电氧化物薄膜.北京:高等教育出版社,2008:260—264
    [11].萨法·卡萨普.电子材料与器件原理(下册).西安:西安交通大学出版社,2009:654—660
    [12].LiFeng,MaZhongQuan,HeBo.THE SURFACE AND INTERFACE BEHAVIOR OF EMITTER REGION OF SOLAR CELLS IN PRODUCT LINE. Surface Review and Letters, 2009,16(2): 241-248
    [13].刘芬,邱丽美,赵良仲.用XPS法精确测量硅片上超薄氧化硅的厚度.化学通报,2006,69(5): 393—398
    [14].Moulder J F, Stickle W F, Sobol P E. Handbook of X-ray Photoelectron Spectroscopy. Minnesota: Physical Electronics Inc, 1995,370—374
    [15].曾明刚,陈松岩,陈谋智. ITO薄膜微结构对其光电性质的影响.厦门大学学报(自然科学版),2004,43(4):496—499
    [16].S. Mridha, M. Dutta and D. Basak . Photoresponse of n -ZnO/ p -Si heterojunction towards ultraviolet/visible lights: thickness dependent behavior. Journal of Materials Science: Materials in Electronics, 2008,20 (1):376—379
    [17].吕建国. ZnO半导体光电材料的制备及其性能的研究.浙江大学博士学位论文, 2005:134—136
    [18].黄昆.半导体物理基础.北京:科学出版社,1979:110—140
    [19].何波,徐静,马忠权.离子束刻蚀HgCdTe环孔pn结I-V、RD-V特性的研究(上).红外,2009, 30(1):1—7
    [20].何波,徐静,马忠权.离子束刻蚀HgCdTe环孔pn结I-V、RD-V特性的研究(下).红外,2009, 30(2):33—40
    [21].史衍丽.垂直p-n结的碲镉汞光伏探测器暗电流特性分析.红外技术,2006,28(8):474—477
    [22].X. D. Chen, C. C. Ling, S. Fung and C. D. Beling. Current transport studies of ZnO/p-Si heterostructures grown by plasma immersion ion implantation and deposition. Applied Physics Letters, 2006, 88(13):132104
    [23].施敏,伍国钰.半导体器件物理.西安:西安交通大学出版社,2008:547—549
    [24].何波,马忠权,赵磊.新型SINP硅光电池C-V/I-V特性及光谱响应的研究.光电子技术,2009, 29(4):1—9
    [25].格林(Green, M. A.).太阳电池工作原理、工艺和系统的应用.北京:电子工业出版社,1987:138—142
    [26].Mikio Taguchi, Akira Terakawa, Eiji Maruyama. Obtaining a Higher Voc in HIT Cells. PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, 2005,13(4):481—488
    [1].余俊.溅射法制备ZAO透明导电薄膜及其光电性能的研究.武汉理工大学硕士学位论文,2004:8—12
    [2].叶志镇.氧化锌半导体材料掺杂技术与应用.杭州:浙江大学出版社,2009:54—56
    [3].姜辛,孙超,洪瑞江.透明导电氧化物薄膜.北京:高等教育出版社,2008:152—166
    [4].何波,马忠权,徐静等.新型SINP硅蓝紫光电池的研究.中国科学E辑:技术科学,2010,40(3):1—10
    [5].吕建国. ZnO半导体光电材料的制备及其性能的研究.浙江大学博士学位论文,2005:69—70
    [6].M. Selmi, F. Chaabouni, M. Abaab and B. Rezig. Studies on the properties of sputter-depositedAl-doped ZnO films. Superlattices and Microstructures, 2008, 44(3):268—275
    [7].顾祖毅,田立林,富力文.半导体物理学.北京:电子工业出版社,1995:281—283
    [8].姜辛,孙超,洪瑞江.透明导电氧化物薄膜.北京:高等教育出版社,2008:262—265
    [9].Singh, R. Rajkanan, K. Brodie, D.E. Optimization of oxide-semiconductor/base-semiconductor solar cells. IEEE Transactions on Electron Devices,1980,27(4):656—662
    [10].Ashok, S. Sharma, P.P. Fonash, S.J. Spray-deposited ITO—Silicon SIS heterojunction solar cells. IEEE Transactions on Electron Devices,1980,27(4):725—730
    [11].王家骅,李长健,牛文成.半导体器件物理.北京:科学出版社,1982:361—365
    [12].王东生,江国顺. PLD法生长n-Zn1-xCoxO/p-Si异质结的电学性能研究.光谱实验室,2007,24(5):768—772
    [13].吕建国. ZnO半导体光电材料的制备及其性能的研究.浙江大学博士学位论文,2005:135
    [14].虞丽生.半导体异质结物理.北京:科学出版社,2006:30—35
    [15].X. D. Chen, C. C. Ling, S. Fung and C. D. Beling. Current transport studies of ZnO/p-Si heterostructures grown by plasma immersion ion implantation and deposition. Applied Physics Letters, 2006, 88(13):132104
    [16].S. Mridha, M. Dutta and D. Basak . Photoresponse of n -ZnO/ p -Si heterojunction towards ultraviolet/visible lights: thickness dependent behavior. Journal of Materials Science: Materials in Electronics, 2008,20 (1):376—379
    [17].F. Chaabouni, M. Abaab and B. Characterization of n-ZnO/p-Si films grown by magnetron sputtering. Superlattices and Microstructures, 2006,39(4):171—178
    [18].Xiangping Li, Baolin Zhang, Huichao Zhu.Study on the luminescence properties of n-ZnO/p-Si hetero-junction diode grown by MOCVD. Journal of Physics D,2008,41(3):035101
    [19].A. A. Ibrahim, A. Ashour. ZnO/Si solar cell fabricated by spray pyrolysis technique. Journal of Materials Science: Materials in Electronics, 2006, 17(10):835—839
    [20].I.-S. Jeong, Jae Hoon Kim, and Seongil Im.Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure. Applied Physics Letter, 2003, 83(14): 2946-2948
    [21].J.Y.Lee,Y.S.Choi, J.H.Kim, M.O.Park and S.Im.Optimizing n-ZnO/p-Si heterojunctions for photodiode applications. Thin Solid Films,2002, 403(2): 553-557
    [1].姜辛,孙超,洪瑞江.透明导电氧化物薄膜.北京:高等教育出版社,2008:60—73
    [2].何波,马忠权,徐静等.新型SINP硅蓝紫光电池的研究.中国科学E辑:技术科学,2010,40(3):1—10
    [3].陈传祥,齐红霞.退火对ZnO薄膜晶体结构和ZnO/p-Si异质结光电性质的影响.光学学报,2008,28(7):1411—1413
    [4].姜辛,孙超,洪瑞江.透明导电氧化物薄膜.北京:高等教育出版社,2008:152—166
    [5].吕建国. ZnO半导体光电材料的制备及其性能的研究.浙江大学博士学位论文,2005:53—80
    [6].Mujdat Caglar, Saliha lican, Yasemin Caglar. Influence of dopant concentration on the optical properties of ZnO: In films by sol–gel method. Thin Solid Films, 2009,517(17):5023—5028
    [7].I.-S. Jeong, Jae Hoon Kim, and Seongil Im.Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure. Applied Physics Letter, 2003, 83(14): 2946—2948
    [8].J.Y.Lee,Y.S.Choi, J.H.Kim, M.O.Park and S.Im.Optimizing n-ZnO/p-Si heterojunctions for photodiode applications. Thin Solid Films,2002, 403(2): 553—557
    [1].M. Selmi, F. Chaabouni, M. Abaab.Studies on the properties of sputter-deposited Al-doped ZnO films. Superlattices and Microstructures,2008,44(3): 268—275
    [2].Yuantao Zhang, Guotong Du, Dali Liu. Crystal growth of undoped ZnO films on Si substrates under different sputtering conditions. Journal of Crystal Growth, 2002, 243(3): 439—443
    [3].王树林. ITO薄膜的制备及性能研究.武汉理工大学硕士学位论文,2004:50—55
    [1].孟庆巨,刘海波,孟庆辉.半导体器件物理.北京:科学出版社,2005:213—220
    [2].施敏,伍国钰.半导体器件物理.西安:西安交通大学出版社,2008:540—550
    [3].W.J. Yang, Z.Q. Ma, X. Tang. Internal quantum efficiency for solar cells. Solar Energy, 2008, 82(2) :106—110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700