4H-SiC射频/微波功率MESFETs新结构与模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化硅(SiC)是第三代半导体的典型代表,它以其特有的大禁带宽度、高临界击穿电场、高电子饱和漂移速度以及高热导率等特性,成为制作大功率、高温、高频、抗辐照等半导体器件的理想材料,在航空、航天、核能、通讯、雷达等军事和民用领域显示出了巨大的应用潜力。与GaAs基和Si基器件相比,4H-SiC MESFETs具有优越的击穿特性和功率处理能力。近年来,随着4H-SiC单晶衬底和外延材料质量的不断提高以及器件制造工艺的不断完善,国内外众多机构和学者围绕4H-SiC MESFETs的微波功率性能进行了广泛深入的实验和理论研究,报道了许多新的研究成果。但是由于器件结构的限制,常规SiC MESFETs的功率和频率特性已难以满足射频/微波功率放大系统进一步发展的要求;并且随着大栅宽器件的发展,自热效应的影响加剧,制约了SiC MESFETs功率密度的进一步提高。
     本文围绕4H-SiC MESFETs的射频/微波功率问题对其器件结构和相关模型开展研究,提出4H-SiC MESFETs二维器件新结构,并进行二维凹栅器件的实验研究;提出4H-SiC MESFETs三维新结构;建立4H-SiC MESFETs器件热模型。主要创新工作包括:
     (1)提出4H-SiC MESFETs二维器件新结构,包括源漏凹陷双凹栅结构和浮空金属条两种结构;并对二维凹栅器件进行了实验研究。针对4H-SiC MESFETs双凹栅器件结构的不足,提出了4H-SiC MESFETs源漏凹陷双凹栅器件新结构。新结构通过源、漏漂移区凹陷结构的形成抑制了栅下耗尽层向栅源和栅漏漂移区的扩展并减小了栅漏漂移区的厚度。数值分析结果表明,与双凹栅结构相比,源漏凹陷双凹栅新结构的fT和fmax由19.0GHz和76.4GHz分别提高到421.8GHz和81.5GHz,击穿电压由109V提高到145V,最大理论输出功率密度提高了33%。针对常规结构耐压的不足和场板结构复杂的制备工艺,通过在栅漏漂移区引入具有电场钳位作用的表面浮空金属条,提出了4H-SiC MESFETs浮空金属条器件新结构。数值分析结果表明,引入的浮空金属条对栅极电场具有很好的钳位作用。与常规结构相比,具有一个和两个浮空金属条的4H-SiC MESFETs器件击穿电压分别提高了95%和180%,最大理论输出功率密度由4.SW/mm分别提高到了10.0W/mm和14.5W/mm。小信号频率特性分析结果表明,虽然浮空金属条结构的高频特性有一定的退化,但两种结构仍具有可比拟的高频特性。在现有凹栅结构的基础上,通过对栅极结构的进一步优化设计,提出了4H-SiC MESFETs多凹栅结构,并对埋栅和多凹栅两种凹栅结构进行了实验研究。实验结果表明多凹栅结构比埋栅结构具有更好的频率和击穿特性。
     (2)提出4H-SiC MESFETs三维器件新结构,包括对称三维三栅和非对称三维三栅两种结构。针对二维器件结构的不足,通过纵向垂直沟道和三维三栅结构的形成,提出了4H-SiC MESFETs对称三维三栅器件新结构。提出的新结构增加了器件的等效沟道宽度,同时可保持器件其它参数基本不变。数值分析结果表明,在t=2μm, a=0.4μm, w=0.6μm时,与常规二维结构相比,最大理论输出功率密度从4.2W/mm提高到了15.5W/mm,同时保持了可比拟的频率特性。在对称三维三栅结构的基础上,通过源漏凹陷结构的引入,进一步提出了4H-SiC MESFETs源漏凹陷对称三维三栅新结构。与源漏凹陷双凹栅结构相似,该结构通过源、漏漂移区凹槽的形成抑制了栅下耗尽层向源、漏漂移区的扩展,同时减小了栅漏漂移区的沟道厚度。数值分析结果表明,与无凹陷的对称三维三栅结构相比,源漏凹陷新结构的fT和fmax分别由16.1GHz和55.9GHz提高到19.3GHz和74.1GHz,最大理论输出功率密度从15.5W/mm提高到了18.5W/mm。考虑栅长对MESFETs器件特性的显著影响,通过顶栅和侧栅的优化,在对称三维三栅结构的基础上,提出了4H-SiC MESFETs漏凹陷非对称三维三栅器件结构。数值分析结果表明,与对称结构相比,漏凹陷非对称结构的fT和fmax分别由16.1GHz和55.9GHz提高到20.6GHz和82.4GHz。同时,最大理论输出功率密度提高了约36%。
     (3)建立4H-SiC MESFETs热模型,包括三维热解析模型和直流Ⅳ特性电热经验模型。在深入分析SiC器件热特性的基础上,针对严重影响SiC MESFETs性能稳定性的自热效应,首次建立了SiC MESFETs多栅指器件的三维瞬态和稳态热解析模型。该模型给出了器件结构参数和温度的关系,通过该模型可以快速、准确的计算出SiC MESFETs器件各栅指的瞬态和稳态温度分布,从而有助于器件设计者进行热设计,最大限度的消除大栅宽器件自热效应的影响,提高器件工作稳定性。同时,该模型也可作为热子模型应用于电热解析模型中。针对现有MESFETs直流Ⅳ特性经验模型的不足,基于自热效应,通过温度参数的引入,建立了4H-SiC MESFETs非线性直流Ⅳ特性电热经验模型。分析结果表明该模型在很宽的电压范围内与实验结果吻合得很好。
Silicon carbide (SiC) is a representative of the 3rd generation semiconductor and it is a promising material for semiconductor device under high-power, high-temperature, high-frequency, and high-irradiation applications due to its superior properties, such as the wide bandgap, high critical electric field, high electron saturation velocity and high thermal conductivity. It is emerging as a highly promising technology for military and civil applications such as aerospace, nuclear energy, communications, radar, etc. Compared with GaAs and Si devices,4H-SiC MESFETs has better breakdown and power performance. In recent years, with fabrication process and quality improvement of SiC substrate and epitaxial material, impressive results were published after in-depth theoretical and experimental research on 4H-SiC MESFETs. However, the power and frequency performance of available SiC MESFETs still can not meet radio frequency (RF)/Microwave (MW) power system development requirement due to device structure limitation. And with large-periphery SiC MESFETs development, the impact of self-heating become worse and already limit the further improvement of power density of SiC MESFETs.
     To address the RF/MW power issue, device structure and related model of 4H-SiC MESFETs were studied in this dissertation. Novel 2D and 3D device structures were proposed and experiment for the 2D recessed gate strctures were conducted. The thermal models were proposed. The main innovation work is as following:
     (1) Two novel 2D 4H-SiC MESFETs device structures were proposed and experiment for the recessed gate strctures were conducted. To overcome the shortage of the double-recessed structure, an improved double-recessed 4H-SiC MESFETs structure with recessed source/drain drift region was proposed. For the proposed structure, the recessed source/drain drift region is to restrain gate depletion layer extension to source/drain as well as reduce channel thickness between gate and drain. The simulated results showed that the cut-off frequency (fT) and the maximum oscillation frequency (fmax) of the proposed structure are 21.8 GHz and 81.5 GHz compared to 19.0 GHz and 76.4 GHz of that of the double-recessed gate structure, respectively. The breakdown voltage of the proposed structure is 145 V compared to 109 V of that of the double-recessed gate structure. The output power density of the proposed structure is about 33% larger than that of the double-recessed gate structure. A new 4H-SiC MESFETs with floating metal strips (FMS) was proposed to address disadvantage of the conventional and filed-plate structures. The simulated results showed that the maximum electrical field of the MESFET gate is clamped after surface depletion layer punch through to FMS. The breakdown voltage of the 4H-SiC MESFETs with one strip and two strips are 95% and 180% larger than that of the conventional one without FMS, respectively. The maximum theoretical output power density of the 4H-SiC MESFETs with one strip and two strips are 10.0W/mm and 14.5W/mm compared to 4.8W/mm of the conventional structure. Although the frequency response of the FMS structure is a little bit worse than the conventional one, it still has comparable frequency characteristics. Based on available recessed gate structure, a multiple recessed gate device was proposed with further optimization of gate strcuture. The buried gate and the multiple recessed gate devices were fabricated and the result showed that the multiple recessed gate structure has better frequency and breakdown performance than that of the buried gate one.
     (2) Two novel 3D 4H-SiC MESFETs device structures were proposed. A symmetric 3D tri-gate 4H-SiC MESFETs structure was proposed in order to overcome the disadvantage of 2D device. With a vertical channel and 3D tri-gate formation, equivalent channel width for the proposed device is increased and simultaneously the structure maintains other device parameters at almost same level as conventional one. The simulation result showed that the maximum theoretical output power density of the proposed structure with t=2μm, a=0.4μm and w=0.6μm is 15.5 W/mm compared to 4.2W/mm for the conventional one and it maintains comparable frequency performance. With application of the source/drain recess structure, a new symmetric 3D tri-gate device with recessed source/drain drift region was proposed. Similar as the improved double-recessed 2D structure, the recessed source/drain drift region is to restrain gate depletion layer extension to source/drain as well as reduce channel thickness between gate and drain. The simulation result showed that the maximum theoretical output power density, the fT and fmax of the proposed structure are 18.5W/mm,19.3GHz and 74.1 GHz compared to 15.5 W/mm,16.1 GHz and 55.9GHz of that of the symmetric 3D tri-gate structure with no recess, respectively. Considering the effect of gate length on the MESFETs performance, an improved asymmetric 3D tri-gate 4H-SiC MESFETs with a recessed drain drift region was proposed after top and side gate optimization. The simulation result showed that the fT and fmax of the proposed asymmetric structure are 20.6 GHz and 82.4 GHz compared to 16.1 GHz and 55.9 GHz of those of the symmetric 3D tri-gate structure, respectively. The maximum theoretical output power density of the proposed structure is about 36% larger than that of the symmetric 3D tri-gate structure.
     (3) 4H-SiC MESFETs thermal models were proposed. A 3D transient and steady thermal model for multiple-finger SiC MESFETs was proposed based on the analysis of thermal characteristics of SiC devices. The relationship between structure parameters and temperature were established in the model and the transient and steady temperature of various fingers can be obtained quickly and precisely. The model can be used for designer to perform thermal design to alleviate the impact of self-heating effect as much as possible to improve the stability. It can also be used as a sub-model for electro-thermal analytical model. Based on analysis of available MESFETs DCⅣempirical model, a 4H-SiC MESFETs DCⅣelectro-thermal empirical model including self-heating effect was proposed with temperature related parameters. The analysis result showed that a good agreement between the model and experimental result with wide voltage range can be obtained for non-linear DCⅣcharacteristics.
引文
[1]C. E. Weitzel. Comparison of SiC, GaAs, and Si RF MESFET power densities. IEEE Electron Device Letters,1995,16(10):451-453
    [2]Zolper, J.C. Emerging silicon carbide power electronics components.2005 Applied Power Electronics Conference and Exposition (APEC2005), Vol.1:11-17
    [3]D.Planson, D.Tournier, P.Bevilacqua, et al. SiC Power Semiconductor Devices for new Applications in Power Electronics.2008 Power Electronics and Motion Control Conference (PEMC 2008),2008:2457-2463
    [4]S.T.Allen, W.L.Pribble, R.A.Sadler, et al. Progress in high power SiC microwave MESFETs. 1999 IEEE MTT-S International Microwave Symposium Digest,1999,1:321-324
    [5]S.TAKASHI.Progress in SiC Power Semiconductor Devices. IEIC Technical Report,2006, 106(138):25-30
    [6]L. Dopant, C. Coquery, K.Kriegel, et al. Accelerated active ageing test on SiC JFETs power module with silver joining technology for high temperature application. Microelectronics Reliability,2009,49(9-11):1375-1380
    [7]A. Sayed, G. Boeck. Two-stage ultrawide-band 5-W power amplifier using SiC MESFET. IEEE Transactions on Micro Theory and Techniques,2005,53(7):2441-2449
    [8]S. Azam, C. Svensson, Q.Wahab. T Pulse input Class-C power amplifier response of SiC MESFET using physical transistor structure in TCAD. Solid-State Electronics,2008,52(5): 740-744
    [9]D.G. Makarov, V.A.Printsovskii, V. G. Krizhanovski, et al. SiC MESFET class E microwave power amplifier.2008 International Conference on Microwaves, Radar and Wireless Communications (MIKON'08),2008:1-3
    [10]K. Andersson, J. Eriksson, N. Rorsman,et al. Resistive SiC-MESFET mixer. IEEE Microwave and Wireless Components Letters,2002,12 (4):119-121
    [11]M. Roschke, F. Schwierz. Electron mobility models for 4H,6H, and 3C SiC. IEEE Transactions on Electron Devices,2001,48(7):1442-1447
    [12]C. Codreanu, M. Avram, E. Carbunescu, et al.Comparison of 3C-SiC,6H-SiC and 4H-SiC MESFETs performances. Materials Science in Semiconductor Processing,2000,3:137-142
    [13]J. Feitknecht.Silicon carbide as a semiconductor. Berlin:Springer,2006
    [14]Cree. Inc., http://www.cree.com
    [15]北京天科合达蓝光半导体有限公司,http://www.tankeblue.com
    [16]N. Ohtani, Wide Bandgap Semiconductors, Berlin:Springer,2007
    [17]蒋民华.功能晶体材料的发展.功能材料,2004,35:11-20
    [18]Cree. Inc., http://www.cree.com/products/pdf/MAT-CATALOG.pdf
    [19]董捷,刘喆,徐现,等.SiC单晶生长热力学和动力学的研究.人工晶体学报,2004,33(3):283:287
    [20]J. Liu, J.Gao, J. Cheng, et al. Effects of graphitization degree of crucible on SiC single crystal growth process. Diamond and related materials,2006,15(1):117-120
    [21]R.X.Jia, Y.M.Zhang, Y.M.Zhang, et al.Deep level defects in unintentionally doped 4H-SiC homocpitaxial layer.-Journal of Semiconductors,2009,30 (3):1-3
    [22]M.Y. Gutkin, A.G. Sheinerman, T. S.Argunova, et al. Ramification of micropipes in SiC crystals. J. Appl. Phys,2002,92(2):889-894
    [23]J.W. Milligan, S. Sheppard, W. Pribble, et al. SiC and GaN Wide Bandgap Device Technology Overview. IEEE Radar Conference,2007:960-964
    [24]Y. Negoro, K. Katsumoto, T. Kimoto, et al. Electronic behaviors of high-dose phosphorus-ion implanted 4H-SiC (0001). J. Appl. Phys,2004,96(1):224-228
    [25]K. Ito, S. Tsukimoto, M. Murakami. Effects of Al ion implantation to 4H-SiC on the specific contact resistance of TiAl-based contact materials. Science and Technology of Advanced Materials,2006,7(6):496-501
    [26]K J. Crofton, L. Beyer, T. Hogue, et al. High temperature ohmic contacts to p-type SiC.1998 Fourth International High Temperature Electronics Conference (HITEC'98):84-87.
    [27]T. N. Oder, T. L. Sung, M. Barlow, et al. Improved Ni Schottky Contacts on n-Type 4H-SiC Using Thermal Processing. Journal of Electronic Materials,2009,38 (6):772-777
    [28]M. Sochacki, A. Kolendo, J. Szmidt, et al. Properties of Pt/4H-SiC Schottky diodes with interfacial layer at elevated temperatures. Solid-State Electronics,2005,49:585-590
    [29]F. Roccaforte, C. Bongiorno, F. La Via, et al. Tailoring the Ti-4H-SiC Schottky barrier by ion irradiation. Applied Physics Letters,2004,85 (25):6152-6154
    [30]T.Nakamura, T. Miyanagi, I.KamataA, et al. A 4.15 kV 9.07-m Ω·cm2 4H-SiC Schottky-Barrier Diode Using Mo Contact Annealed at High Temperature. IEEE Electron Device Letters,2005,26(2):99-101
    [31]K. V. Vassilevski, A. B. Horsfall, C. M. Johnson, et al.4H-SiC Rectifiers With Dual Metal Planar Schottky Contacts. IEEE Transactions on Electron Devices,2002,49(5):947-949
    [32]F. Roccaforte, F. L. Via, S. D. Franco, et al. Dual metal SiC Schottky rectifiers with low power dissipation. Microelectronic Engineering,2003,70:524-528
    [33]L.G. Fursin, J.H. Zhao, M. Weiner. Nickel ohmic contacts to p and n-type 4H-SiC. IEE Electronics Letters,2001,37(17):1092-1093
    [34]T.Ohyanagi, Y.Onose. Ti/Ni bilayer Ohmic contact on 4H-SiC. J. Vac. Sci. Technol. B,2008, 26, (4):1359-1362
    [35]Lee S-K, Zetterling C-M, O stling M. Microscopic specific contact resistance mapping and long term reliability on 4H-silicon carbide using sputtered titanium tungsten contacts for high temperature device applications. J. Appl. Phys.2002,92(1):253-260
    [36]L. Kolaklieva, R. Kakanakov, G. Lepoeva, et al. Au/Ti/Al contacts to SiC for power applications:electrical, chemical and thermal properties.24th International conference on microelectronics,2004,2:16-19
    [37]Cho Nam-Ihn, Junk Kyung-Hwa, Choi Yong. Improved ohmic contact to the n-type 4H-SiC semiconductor using cobalt silicides. Semicond Sci Technol,2004,19(3):306-310
    [38]H. Vanga, M. Lazara, P. Brosselard, et al. Ni-Al ohmic contact to p-type 4H-SiC. Superlattices and Microstructures,2006,40(4-6):626-631
    [39]K. Ito, T. Onishi, H. Takeda, et al. Simultaneous Formation of Ni/Al Ohmic Contacts to Both n-and p -Type 4H-SiC. Journal of Electronic Materials,2008,37(11):1674-1680
    [40]M. Sudow, K.Andersson, N. Billstrom, et al. An SiC MESFET-Based MMIC Process. IEEE Transactions on Microwave Theory and Techniques,2006,54(12):4072-4078
    [41]G. McDaniel, J. W. Lee, E. S. Lambers, et al. Comparison of dry etch chemistries for SiC. J. Vac. Sci. Technol. A,1997,15(3):885-889
    [42]N. Okamoto. Differential etching behavior between semi-insulating and n-doped 4H-SiC in high-density SF6/O2 inductively coupled plasma. J. Vac. Sci. Technol. A,27(3):456-460
    [43]U. Schmid, W. Wondrak. Process technology and high temperature performance of 6H-SiC MOS devices.1999 The Third European Conference on High Temperature Electronics (HITEN'99),1999:195-199
    [44]H. Ohyamaa, K. Takakura, K. Uemura, et al. Radiation-induced defects in SiC-MESFETs after 2-MeV electron irradiation. Physica B,2006,376-377:382-384
    [45]K. Takakura, H. Ohyama, K. Uemura, et al. Effects of radiation-induced defects on device performance in electron-irradiated SiC-MESFETs. Materials Science in Semiconductor Processing,2006,9(1-3):327-330
    [46]G.Ko, H.Y. Kim, J. Bang, et al. Electrical characterizations of Neutron-irradiated SiC Schottky diodes. Korean Journal of Chemical Engineering,2009,26(1):285-287
    [47]L. Zhang, Y. M. Zhang, Y. M. Zhang, et al. High energy electron radiation effect on Ni/4H-SiC SBD and Ohmic contact. Chinese Physics B,2009,18(08)/3490-3494
    [48]张波,李肇基,方健.功率半导体器件技术的研究与进展.中国集成电路,2003,50:8-12
    [49]M.Bhatnagar, B.J. Baliga. Comparison of 6H-SiC 3C-SiC and Si for power devices. IEEE Electron Devices,1993,40(3):645-655
    [50]L.M.Tolbert, B. Ozpineci, S. Islam, et al. Effects of silicon carbide (SiC) power devices on HEV PWM Inverter Losses.2002 IEEE Industrial Electronics Society Annual Conference, 2002:1061-1066
    [51]A.Agarwal, M. Das, B. Hull, et al. Krishnaswami, S. Progress in Silicon Carbide Power Devices.2006 Device Research Conference,2006:155-158
    [52]C. Winterhalter, H.-R. Chang, R. N. Gupta. Optimized 1200V Silicon Trench IGBTs with Silicon Carbide Schottky Diodes.2000 IEEE Industry Applications Society(IAS2000), Vol.5:2928-2933
    [53]M. Holz, G. Hultsch, T. Scherg, et al. Reliability considerations for recent Infineon SiC diode releases. Microelectronics Reliability,2007,47:1741-1745
    [54]K. J. Schoen, J. P. Henning, J. M. Woodall, et al. A Dual-Metal-Trench Schottky Pinch-Rectifier in 4H-SiC. IEEE Electron Device Letters,1998,19(4):97-99
    [55]Y. Singh, M. J. Kumar. A new 4H-SiC lateral merged double Schottky (LMDS) rectifier with excellent forward and reverse characteristics. IEEE Transactions on Electron Devices,2001, 48(12):2695-2700
    [56]J. Nishio, C. Ota, T. Hatakeyama, et al. Ultralow-Loss SiC Floating Junction Schottky Barrier Diodes (Super-SBDs). IEEE Transactions on Electron Devices,2008,55(8):1954-1960
    [57]P. A. Ivanov I. V. Grekhov, N. D. Il'inskaya, et al. High-voltage (1800 V) planar 4H-SiC p-n junctions with floating guard rings. Semiconductors,2009,43(4):505-507
    [58]C. F. Huang, J. R. Kuo, C. C. Tsai. High Voltage (3130V) 4H-SiC Lateral p-n Diodes on a Semiinsulating Substrate. IEEE Electron Device Letters,2008,29(1):83-85
    [59]S.C. Kim, W. Bahng, I. H.Kang, et al. Fabrication Characteristics of 1.2kV SiC JBS Diode. 2008 International Conference on Microelectronics (MIEL'08),2008:181-184
    [60]J. W. Palmour, H. S. Kong, R. F. Davis. High-temperature depletion-mode metal-oxide-semiconductor field-effect transistors in beta-SiC thin films. Appl. Phys. Lett.,1987,51(24): 2028
    [61]J.W. Palmour, J.A.Edmond, H.S. Kong, et al. Vertical power devices in silicon carbide.1994 Proceedings of International Conference on Silicon Carbide and Related material,1994:499
    [62]John Palmour. Advances in SiC Power Technology. DARPA MTO Symposium,2007
    [63]Y. Sui, T. Tsuji, and J. A. Cooper, On-State Characteristics of SiC Power UMOSFETs on 115μm Drift Layers. IEEE Electron Device Letters,2005,26(4):255-257
    [64]J. Tan, J. Cooper, and M. R. Melloch. Highvoltage accumulation-layer UMOSFET's in 4H-SiC. IEEE Electron Device Letters,1998,19(12):487-489
    [65]D. Takayama, Y. Sugawara, T. Hayashi, et al. Static and dynamic characteristics of 4-6 kV 4H-SiC SIAFETs. Proceedings of the 13th International Symposium on Power Semiconductor Devices and ICs(ISPSD'01), pp.41-44
    [66]Tsunenobu Kimoto, Hiroaki Kawano, Jun Suda.1330V,67mΩ.cm2 4H-SiC (0001) RESURF MOSFET. IEEE Electron Device Letters,2005,26(9):649-651
    [67]R. S. Howell, S. Buchoff, S. V. Campen, et al. A 10-kV Large-Area 4H-SiC Power DMOSFET with Stable Subthreshold Behavior Independent of Temperature. IEEE Electron Device Letters, 2008,55(8):1807-1815
    [68]F. Allerstam, G. Gudjonsson, H. Oafsson, et al. Comparison between oxidation processes used to obtain the high inversion channel mobility in 4H-SiC MOSFETs. Semiconductor Science and Technology,2007,22 (4):307-311
    [69]王德君,李剑,朱巧智,等.SiC MOS界面氮等离子体改性及电学特性评价.固体电子学研究与进展,2009,29(2):310-314
    [70]D. Okamoto, H. Yano, Y. Oshiro, et al. Investigation of Near-Interface Traps Generated by NO Direct Oxidation in C-face 4H-SiC Metal--Oxide--Semiconductor Structures. Applied Physics Express,2009,2 (2):021201:-021203
    [71]J. H. Zhao, P. Alexandrov,.J.H.Zhang, et al. Fabrication and characterization of 11-kV normally off 4H-SiC trenched-and-implanted vertical junction FET. IEEE Electron Device Letters,2004,25(7):474-476
    [72]Yongxi Zhang, Kuang Sheng, Ming Su, et al.1000-V 9.1-mΩ·cm2 Normally Off 4H-SiC Lateral RESURF JFET for Power Integrated Circuit Applications. IEEE Electron Device Letters,2007,28(5):404-407
    [73]M.G. Walden, M. Knight. Evaluation of commercially available SiC MESFETs for phased array radar applications.2002 IEEE International Symposium on Electron Devices for Microwave and Optoelectronic Applications (EDMO'02),2002,166-171
    [74]S.Azam, R. Jonnson, Q.Wahab. The limiting frontiers of maximum DC voltage at the drain of SiC microwave power transistors in case of class-A power amplifier.2007 International Semiconducotr Device Research Symposium (ISDRS'07),2007,1-2
    [75]Y. S. Lee, Y. H. Jeong. A high-efficiency class-E power amplifier using SiC MESFET. Microwave and Optical Technology Letters,2007,49 (6):1447-1449
    [76]吕红亮.4H-SiC MESFET理论模型与实验研究.西安电子科技大学博士学位论文,2007:3
    [77]H. J. Na, J. H. Moon, J. H. Yim, et al. Fabrication and characterization of 4H-SiC planar MESFETs. Microelectronic Engineering,2006,83:160-164
    [78]K. E. Moore, C. E. Weitzel, K. J. Nordquist, et al.4H-SiC MESFET with 65.7% Power Added Efficiency at 850 MHz. IEEE Electron Devices Letters,1997,18(2):69-70
    [79]商庆杰,潘宏菽,陈昊,等.SiC MESFET工艺技术研究与器件研制.半导体技术.2009,34(6):549-552
    [80]C.E.Weitzel, J.W.Palmour, C.H.Carter, et al.4H-SiC MESFET with 2.8 Wmm power density at 1.8 GHz. IEEE Electron Device Letters,1994,15(10):406-408
    [81]C.L. Zhu, Rusli, P. Zhao. Dual-channel 4H-SiC metal semiconductor field effect transistors. Solid-State Electronics,2007,51(3):343-346
    [82]H.-Y. Cha, C. I. Thomas, G. Koley, et al. Reduced Trapping Effects and Improved Electrical Performance in buried-gate 4H-SiC MESFETs. IEEE Electron Devices,2003, 50(7):1569-1574
    [83]C.L. Zhu a, Rusli, C.C. Tin, G.H. Zhang, et al. Improved performance of SiC MESFETs using double-recessed structure. Microelectronic Engineering,2006,83(1):92-95
    [84]H.Y. Cha, Y. C. Choi, L. F. Eastman, et al. Simulation study on breakdown behavior of field-plate SiC MESFETs. Int. J. High Speed Electron. Syst,2004,14(3):884-889
    [85]K. Andersson, M. Sudow, P. Nilsson, et al. Fabrication and Characterization of Field-Plated Buried-Gate SiC MESFETs. IEEE Electron Devices Letters,2006,27(7):573-75
    [86]P. Nilsson, F. Allerstam, M. Sudow,et al. Influence of Field Plates and Surface Traps on Microwave Silicon Carbide MESFETs. IEEE Electron Devices,2008,55(8):1875-1879
    [87]S. Bai, P. Wu, G. Chen, et al. Development of high-power SiC MESFETs for microwave applications.2008 International Conference on Microwave and Millimeter Wave Technology (ICMMT'08),2008,4:2032-2035.
    [88]X. C. Deng, B. Zhang, Z. J. Li,et al. Numerical analysis on the 4H-SiC MESFETs with a source field plate. Semicond. Sci. Technol.,2007,22:701-704
    [89]A.W. Morse, P.M. Esker, S.Sriram, et al. Recent application of silicon carbide to high power microwave. IEEE MTT-S Int. Microwave Symp. Dig.,1997, pp.53-56
    [90]W. L. Pribble, J. W. Palmour, S. T. Sheppard, et al. Application of SiC and GaN HEMTs in power amplifier design. IEEE MTT-S Int. Microwave Symp. Dig.,2002, pp.1819-1822
    [91]Cree. Inc. CRF24060D-Revl, Datasheet,2006
    [92]张义门.半导体器件计算机模拟.北京:电子工业出版社,1991
    [93]Integrated Systems Engineering, Manual for DESSIS, ISE TCAD Release 10.0,2004
    [94]W.J. Schaffer, G.H. Negley, K.G. Irvine, et al. Conductivity anisotropy in epitaxial 6H and 4H-SiC. Mat. Res. Soc. Sym.,1994,339:595-600
    [95]S. Selberherr. Analysis and Simulation of Semiconductor Devices. Springer-Verlag, Wien-New York.1984.
    [96]R. Van Overstraeten, H. Deman. Measurement of the Ionization Rates in Diffused Silicon p-n Junctions. Solid-State Electronics,1970,13(5):583-608
    [97]X. Q. Li, Design and simulation of high voltage 4H silicon carbide power device:[doctoral dissertation]. USA, the State University of New Jersey,2004, pp.32-34
    [98]U.Lindefelt. Doping-induced band edge displacements and band gap narrowing in 3C,4H, 6H-SiC, and Si. J.Appl. Phys.,1998,84(5):2628-2637
    [99]Y.S. Touloukian, E.H. Buyco. Specific Conductivity (Nonmetallic Solids) in Thermophysical Properties of Matter. IF/Plenum, New York, vol.4,1970
    [100]E.A. Burgemeister, W. von Muench, E. Pettenpaul. Thermal conductivity and electrical properties of 6H silicon carbide. J. Appl. Phys.,1979,50(9):5790-5794
    [101]D.T. Morelli, J.P. Heremans. Phonon-electron scattering in single crystal silicon carbide. Applied Physics Letters,1993,63(23):3143-3145
    [102]P. H. Ladbrooke, MMIC Design:GaAs FET's and HEMT's. Boston, MA:Artech House,1989
    [103]R.J. Trew, High-frequency solid-state electronic devices. IEEE Electron Devices,2005,52(5): 638-649
    [104]H. G. Henry, G. Augustine, G. C. DeSalvo, et al. S-band operation of SiC power MESFET with 20 W (4.4 W mm) output power and 60% PAE. IEEE Electron Devices,2004,51(6):839-845
    [105]G. Boris, S. Michael, J.M. Robert, Capacitance-Voltage Characteristics of Microwave Schottky Diodes. IEEE Transaction on Microwave Theory and Techniques,1991,39 (5):857-863
    [106]T. Ayalew, A,Gehring, T.Grasser, et al. Enhancement of breakdown voltage for Ni-SiC Schottky diodes utilizing field plate edge termination. Microelectronis Relaibility,2004,44: 1473-1478
    [107]Marc C. Tarplee, Member, IEEE, Vipin P. Madangarli, Member, IEEE, Quinchun Zhang,et al. Design Rules for Field Plate Edge Termination in SiC Schottky Diodes. IEEE Electron Devices,2001,48(12):2659-2664
    [108]陈刚 李哲洋 柏松等.采用场板和B+离子注入边缘终端技术的Ti/4H-SiC肖特基势垒二极管.半导体学报,2007,28(9):1333-1336
    [109]陈星弼.功率MOSFET与高压集成电路,南京:东南大学出版社,1990
    [110]H.Yilmaz, W. R.Van Dell. Floating metal rings (FMR), a novel high-voltage blocking technique. IEEE Electron Devices Letters,1985,6(11):600-601
    [111]S. C. Chang, S. J. Wang, K. M. Uang, et al. Design and fabrication of high breakdown voltage 4H-SiC Schottky barrier diodes with floating metal ring edge terminations. Solid-State Electronics 2005,49:437-444
    [112]C.H.Zhou,X.R.Luo,X.C. Deng,et al. High breakdown voltage 4H-SiC Schottky Barrier Diodes with floating metal rings for MMIC applications.2006 International Conference on Solid-State and Integrated Circuit Technology (ICSICT'06),2006:944-946
    [113]邓小川.4H-SiC MESFETs微波功率器件新结构与实验研究.电子科技大学博士学位论文,2007:70-87
    [114]I.A.Khan, J.A.Cooper. Measurement of high-field electron transport in silicon carbide. IEEE Trans. Electron Devices,2000,47, (2):269-273
    [115]Hirotake Honda, Makoto Ogata, Hiroshi Sawazaki, et al.RF Characteristics of Short-Channel SiC MESFETs. Materials Science Forum,2003,433-436:745-749
    [116]C. L. Zhu, Rusli, C.C. Tin, et al. Drain-induced barrier lowering effect and its dependence on the channel doping in 4H-SiC MESFETs.2004 International Conference on Solid-State and Integrated Circuit Technology (ICSICT'04),2004,3:2309-2312
    [117]F. Villard, J.P. Prigent, E. Morvan, et al. Trap-Free Process and Thermal Limitations on Large-Periphery SiC MESFET for RF and Microwave Power. IEEE Microwave therory and techniques,2003,51(4):1129-1133
    [118]K.Bertilsson, C. Harris, H. E. Nilsson. Calculation of lattice heating in SiC RF power devices. Solid-State Electronics,2004,48(12):2103-2107
    [119]C.M. Zetterling, W. Liu, M.Ostling. Thermal Modeling of Multi-finger SiC Power MESFETs. 2005 International Semiconductor Device Research Symposium,2005:290-291
    [120]P.C. Canfield, S. C. F. Lam, D. J. Allstot. Modeling of frequency and temperature effects in GaAs MESFETs. IEEE Journal of Solid-State Circuits,1990,25(1):299-306
    [121]A. S. Royet, T. Ouisse, B. Cabon, et al. Self-heating effects in silicon carbide MESFET's IEEE Electron Devices,2000,47(11):2221-2227
    [122]H. L. Lv, Y. M. Zhang, Y. M. Zhang, et al. Electrothermal simulation of the self-heating effects in 4H-SiC MESFETs. Chinese Physics B,2008,17(4):1410-1414
    [123]H. L. Lv, Y. M. Zhang, Y. M. Zhang, et al. Physically based model for trapping and self-heating effects in 4H-SiC MESFETs. Applied Physics A,2008,91:287-290
    [124]X. C. Deng, B. Zhang, Z. J. Li. Electro-thermal analytical model and simulation of the self-heating effects in multi-finger 4H-SiC power MESFETs. Semicond. Sci. Technol.,2007, 22:1339-1343
    [125]W. Liu. Electro-Thermal Simulations and Measurements of Silicon Carbide Power Transistors. Doctoral Thesis,2004
    [126]L. M. Hillkiek. Dynamic surface temperature measurements in SiC epitaxial power diodes performed under single-pulse self-heating conditions. Solid State Electronics,2004,48(12): 2181-2189
    [127]W.;.R. Curtice. A MESFET model for use in the design of GaAs integrated circuits. IEEE Trans Microwave Theory Tech,1980,28(5):448-456
    [128]W. R. Curtice. GaAs MESFET modeling and nonlinear CAD. IEEE Trans Microwave Theory Tech,1988,36(2):220-230
    [129]T. Kacprzak, A. Materka. Compact DC model of GaAs FETs for large-signal computer calculation. IEEE J Solid State Circ 1983,18:211-213
    [130]M. M. Ahmed, H. Ahmed, P.H. Ladbrooke. An improved DC model for circuit analysis programs for submicron GaAs MESFETs. IEEE Trans Electron Dev 1997,44(5):360-363
    [131]M. S. Islam, M. M. Zaman. A seven parameter nonlinear Ⅰ-Ⅴ characteristics model for sub-um range GaAs MESFETs. Solid-State Electron,2004,48:1111-1117
    [132]H. Statz, P.Newman, I. Smith, et al. GaAs FET device and circuit simulation in SPICE. IEEE Trans Electron Dev,1987,34(2):160-169
    [133]I. Angelov, H. Zirath, and N. Rorsman, A new empirical nonlinear model for HEMT and MESFET devices. IEEE Trans. Microw. Theory Tech.,1992,40(12):2258-2266
    [134]A.J. McCamant, G.D. McCormark, D.H.Smith. An improved GaAs MESFET model for SPICE. IEEE Trans Microwave Theory Tech,1990,38:822-824
    [135]N.M. Memon, M.M. Ahmed, F. Rehman.A comprehensive four parameters Ⅰ-Ⅴ model for GaAs MESFET output characteristics. Solid-State Electron,2007,51:511-516
    [136]T.J. Rodriguez, A. England. Five-parameter DC GaAs MESFET model for nonlinear circuit design.1992 IEE Proceedings G Circuits, Devices and Systems,1992,139(3):325-332
    [137]J.Dobes, L. Pospisil. Enhancing the accuracy of microwave element models by artificial neural networks. Radio Eng,2004,13(3):7-12
    [138]P. J. McNally, B. Daniels. Compact DC model for submicron GaAs MESFETs including gate-source modulation effects. Microelectronics Journal,2001,32:249-251
    [139]K. S. Yuk, G. R. Branner.An Empirical Large-Signal Model for SiC MESFETs with Self-Heating Thermal Model. IEEE Trans Microwave Theory Tech,2008,56(11):2671-2680
    [140]J. Zarebski, D.Bisewski. Modifications of the DC Raytheon-Statz model for SiC MESFETs. Int. J. Numer. Model.2008,21:583-590

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700