新型纳米器件的电学特性和可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成电路按照摩尔定律和按比例缩小的规律持续发展。在器件小型化的过程中,出现了许多新的问题。其中,纳米MOSFET的关键可靠性问题:偏压温度不稳定性(Bias Temperature Instability或BTI),便是其中之一。另外,传统Si工艺正在接近物理极限。因此,各种新型电子器件应运而生。其中,基于碳纳米管网络的薄膜晶体管(Carbon Nanotube Network-based Thin-Film Transistors或CNN-TFTs)以其优良的电学性能、工艺可控性和独特的柔性引起了广泛关注。
     随着新材料、新工艺和新器件的开发,传统的电学测量手段在纳米器件的研究中也面临很多新的问题,例如BTI中恢复效应的准确表征,目前在国际上尚未很好地解决。除此之外,对新型纳米器件CNN-TFT的电学特性如栅电容和迁移率也缺乏深入的研究。
     本论文针对新型纳米器件的制备、表征方法、电学特性以及可靠性展开前瞻性的研究。具体内容包括:(1)针对纳米MOSFET中BTI效应的恢复现象,我们建立了快速脉冲ID-VG测量(Fast Pulsed Measurement或FPM)系统,用于表征应力过程中的阂值电压漂移(△Vt);发展了改进的电荷泵(Modified Charge Pumping或MCP)方法,用于准实时地测量应力下产生的界面态(△Nit)。(2)结合上述新型测量方法,我们系统地研究了纳米MOSFET的BTI效应,包括pMOSFET的NBTI、pMOSFET的PBTI、nMOSFET的NBTI和nMOSFET的PBTI效应。(3)我们采用滴涂工艺和光刻技术,制备了CNN-TFTs.并且结合交变脉冲ID-VG和C-V测量方法,系统地研究了CNN-TFT的栅电容和转移特性。
     论文工作的主要结果有:(1)结合FPM和MCP两种方法,我们定量地区分了各种不同应力条件下,纳米MOSFET中界面态和氧化层电荷对BTI的贡献。(2)我们发现在BTI中,除了界面态的影响,氧化层电荷的俘获/释放效应也很重要,在建立BTI模型中必须加以考虑。(3)结合交变脉冲ID-VG和C-V测量,我们获得了无电滞特性的CNN-TFT的转移曲线,给出了器件栅电容随碳纳米管密度的变化关系。在此基础上,建立了一种提取CNN-TFT沟道迁移率的新的方法。
     论文工作为新型纳米器件的制备、电学表征、特性分析和可靠性研究提供了新的方法、模型和结果,对新型纳米器件的研究开发具有重要的科学意义和应用价值。
The Moore's Law and the rule of scaling-down have been the guiding principles for the development of Integrated Circuits (ICs) over the last 50 years. With the geometric shrinkage, many new effects appear, such as the most important reliability issue of nano MOSFETs-Bias temperature instability (BTI). In addition, traditional Si technology is approaching its physical limit and a variety of innovative electronic devices emerge. As one among them, carbon nanotube network based thin-film transistors (CNN-TFTs) have gained enormous attentions for their superior electrical properties, improved process controllability and unique flexibility.
     With the development of novel materials, technology and devices, the conventional electrical characterization methods face many new challenges, such as the characterization of the recovery effect in BTI, which are still not well-dissolved yet. In addition to the characterization methods, the electrical properties of the emerging deceives, for instance, the effective gate capacitance (CG) and the carrier mobility (μ) of the CNN-TFTs are still lack of complete studies.
     This thesis has launched some frontier researches mainly focusing on the fabrication, electrical characterization, electrical properties, and reliability of the nano-devices. It includes:(1) For the recovery effect of BTI in nano-MOSFETs, much effort was spent on building a new type of fast pulsed ID-VG measurement (FPM) system to accurately extract the stress induced threshold voltage shift (ΔVt) and developing a modified charge pumping (MCP) method to quasi real-time examining the generations of interface trapped charges (ΔNit). (2) By the new measurement techniques, the BTI effects of nano-MOSFETs have been systematically studied, including all four different configurations:NBTI of pMOSFETs, PBTI of pMOSFETs, NBTI of nMOSFETs and PBTI of nMOSFETs. (3) By the combination of drop-casting process and lithography technique, CNN-TFTs were fabricated. A pulsed ID-VG method with gate pulses of alternating polarities (AP) and conventional C-V measurements were innovatively employed to the CNN-TFTs. we have systematically investigated the effective gate capacitance and the transfer characteristics of the CNN-TFTs.
     Our main results are:(1) Combing FPM and MCP methods, we have quantitatively decomposed the contributions of interface trapped charges and oxide charges in BTI effects of nano-MOSFETs under different stress conditions. (2) We found that:in BTT effects, expect for the influence from interface traps, the contribution from the trapping/detrapping of oxide charges is also curial, which must be taken into account when modeling BTI effects. (3) With the AP pulsed ID-VG and C-V measurements on CNN-TFTs, we have obtained hysteresis-free transfer characteristics and the strong correlation between the gate capacitance and nanotube density. Based on these, a new methodology to obtain the apparent carrier mobility has been established.
     These studies have provided new methods, models and results for device fabrication, electrical characterization, electrical property analysis and reliability evaluation of nano-MOSFETs. It is of important scientific significance and practical value for the research and development of emerging devices.
引文
[1]J. Bardeen, W. Brattain. The transistor, a semiconductor triode [J]. Phys. Rev., 1948,71:230.
    [2]W. Shockley. The theory of p-n junction in semiconductors and p-n junction transistors[J]. Bell Syst. Tech. J.,1949,28:435.
    [3]F. M.Wanlass, C. T. Sah. Nanowatt logics using field-effect metal-oxide-semiconductor triodes[C].Tech. Digest, IEEE Int. Solid-State Circuit Conf., 1963:32.
    [4]G. E. Moore. Progress in digital integrated electronics [C]. IEEE Tech. Dig. Int. Electron Devices Meet,1975:11-13.
    [5]International technology roadmap for semiconductors. [Online]. Available: http://www.itrs.net,2005.
    [6]M. Van Rossum. Bottom-up and Top-down Nanoechnology[R], Belgium: IMEC,2008.
    [7]G. D. Wilk, R. M. Wallace, J. M. Anthony. High k gate dielectrics:Current status and materials properties considerations[J]. J. Appl. Phys.,2001,89(10): 5243.
    [8]Y. Taur, E. Nowak. CMOS devices below O.llum:How high will performance go[C]. IEEE Tech. Dig. Int. Electron Devices Meet, 1997:215-218.
    [9]Y. T. Hou, M. F. Li, Y. Jin and W. H. Lai. Direct tunneling hole currents through ultrathin gate oxides in metal-oxide-semiconductor devices[J]. J. Appl. Phys.,91(1):258-264.
    [10]J. F. Zhang, H. K. Sii, G. Groeseneken, R. Degraeve. Hole trapping and trap generation in the gate silicon dioxide[J]. IEEE Trans on Electron Devices, 2001,48(6):1127-1135.
    [11]D. A. Buchanan. Scaling the gate dielectric:Materials, integration, and reliability[J]. IBM J. Res. Develop.1999,43(3):245-264.
    [12]R. Woltjer, G. M. Paulzen, H. G. Pomp et al. Three hot-carrier degradation mechanism in deep-submicron PMOSFET's[J]. IEEE Trans on Electron Devices,1995,42(1):109-115.
    [13]T. Yamamoto, Uwasawa K and Mogami T. Bias temperature instability in scaled p+ polysilicon gate p-MOSFET's[J]. EEEE Trans on Electron Devices, 1999 46(5):921-926.
    [14]D. K. Schroder and J. A. Babcock. Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing[J]. J. Appl. Phys.,2003,94(1):1-18.
    [15]V. Huard, M. Denais, C. Parthasarathy. NBTI degradation:From Physical mechanism to modeling[J]. Microelectronics Reliab.,2006,46:1-23.
    [16]D. K. Schroder. Negative bias temperature instability:What do we understand?[J]. Microelectron Reliab.,2007,47:841-852.
    [17]J. H. Stathis, S. Zafar. The negative bias temperature in MOS devices:A review[J]. Microelectron Reliab.,2006,46:270-286.
    [18]G. Chen, K. Y. Chuah, M. F. Li, C. H. Ang, J. Z. Zhen and D. L. Kwong. Dynamic NBTI of PMOS transistors and its impact on device lifetime[C]. IEEE Int. Reliab. Phys. Symp.,2003:196.
    [19]H. Usui, M. Kanno, and T. Morikawa, Time and voltage dependence of degradation and recovery under pulsed negative bias temperature stress[C]. in Proc. Int. Rel. Phys. Symp.,2003,30:610-611.
    [20]M. A. Alam. A critical examination of the mechanics of dynamic NBTI for p-MOSFETs[C]. IEEE Tech. Dig. Int. Electron Devices Meet.,2003: 345-348.
    [21]S. Rangan, N. Mielke, E. C. C. Yeh. Universal Recovery Behavior of Negative Bias Temperature Instability[C]. IEEE Tech. Dig. Int. Electron Devices Meet.,2003:341-344.
    [22]M. A. Alam, and S. Mahapatra. A comprehensive model of PMOS NBTI degradation[J]. Microelectron Reliab.,2005,45:71-81.
    [23]M. Ershov, S. Saxena, H. Karbasi, S. Winters, S. Minehane, J. Babcock, R. Lindley, P. Clifton, M. Redford, and A. Shibkov. Dynamic recovery of negative bias temperature instability in p-type metal-oxide-semiconductor field-effect transistors[J]. Appl. Phys. Lett.,2003,83(8):1647-1649.
    [24]V. Huard and M. Denais. Hole trapping effect on methodology for DC and AC negative bias temperature instability measurements in pMOS transistors, in Proc. Int. Reliab. Phys. Symp.,2004:40-45.
    [25]Y. Mitani, M. Nagamine, H. Satake, and A. Toriumi. NBTI mechanism in ultrathin gate dielectric-Nitrogen-originated mechanism in SiON[C]. IEEE Int. Electron Devices Meet.,2002:509-512.
    [26]S. Mahapatra. P. Bharath Kumar, and M. A. Alam. Investigation and modeling of interface and bulk trap generation during negative bias temperature instability degradation of p-MOSFETs[J]. IEEE Tran. Electron Devices,2004,51(9):1371-1379.
    [27]T. Yang, M. F. Li, C. Shen, C. H. Ang, C. X. Zhu, Y. C. Yeo, G. Samudra, Subhash C. Rustagi, M. B. Yu, and D. L. Kwong. Fast and Slow Dynamic NBTIcomponents in p-MOSFET with SiON dielectric and their impact on device lifetime and circuit application[C]. Symposium on VLSI Technology, 2005:92-93.
    [28]A. T. Krishnan, S. Chakravarthi, P. Nicollian, V. Reddy, S. Krishnan. Negative bias temperature instability mechanism:The role of molecular hydrogen[J]. Appl. Phys. Lett.,2006,88:153518.
    [29]M. Denais, A. Bravaix, V. Huard, C. Parthasarathy,G. Ribes, F. Perrier, Y. Rey-Tauriac and N.Revil. On-the-fly characterization of NBTI in ultra-thin gate oxide PMOSFET's[C]. IEEE Tech. Dig. Int. Electron Devices Meet., 2004:109-112.
    [30]C. Shen, M.-F. Li, C. E. Foo, T. Yang, D. M. Huang, A. Yap, G. S. Samudra, and Y-C. Yeo. Characterization and physical origin of fast Vth transient in NBTI of pMOSFETs with SiON dielectric[C]. IEEE Tech. Dig. Int. Electron Devices Meet.,2006:333-336.
    [31]T. Grasser, P. Wagner, P. Hehenberger, W. Gos, and B. Kaczer. A Rigorous Study of Measurement Techniques for Negative Bias Temperature Instability[J]. IEEE Trans. Devices and Material Reliab.,2008,8(3):526-535.
    [32]Ming-Fu Li, Darning Huang, Shen Chen, T. Yang, W. J. Liu, Z. Y. Liu. Understand NBTI Mechanism by Developing Novel Measurement Techniques[J]. IEEE Trans. Device and Material Reliab.,2008,8(1):62-71.
    [33]S. Iijima. Helical microtubules of graphitic carbon[J]. Nature,1991, 354(6348):56-58.
    [34]R. Saito, M. Fujita, G. Dresselhaus, et al. Electronic structure of chiral graphene tubules[J]. Appl. Phys. Lett.,1992,60(18):2204-2206.
    [35]M. S. Dresselhaus, G. Dresselhaus, R. Saito. Physics of carbon nanotubes[J]. Carbon,1995,33(7):883-891.
    [36]S. J. Tans, A. R. M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube[J], Nature,1998,393(6680),49-52.
    [37]A. Javey, J. Guo, Q. Wang, M. Lundstrom and H. Dai. Ballistic carbon nanotube field-effect transistors[J], Nature,2003,424(6949),654-657.
    [38]T. Dulrkop, S. A. Getty, Enrique Cobas, et al. Extraordinary Mobility in Semiconducting Carbon Nanotubes [J]. Nano Letters,2004,4(1):35-39.
    [39]Ph. Avouris, Z. Chen and V. Perebeinos, Carbon-based electronics[J], Nat. Nanotechnol.2007,2(10):605-615.
    [40]Q. Cao, H. S. Kim, N. Pimparkar, et al. Medium-scale carbon nanotube thin film integrated circuits on flexible plastic substrates[J]. Nature,2008, 454(7203):495-500.
    [41]T. Takenobu, N. Miura, S.-Y. Lu, H. Okimoto, T. Asano, M. Shiraishi, and Y. Iwasa, Ink-jet printing of carbon nanotube thin-film transistors on flexible plastic substrates[J], Appl. Phys. Exp.,2009,2(2):025005.
    [42]J. Vaillancourt, H. Zhang, P. Vasinajindakaw, et al. All ink-jet-printed carbon nanotube thin-film transistor on a polyimide substrate with an ultrahigh operating frequency of over 5 GHz[J]. Applied Physics Letters.,2008,93(24): 243301.
    [43]J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G Alleyne, J. G. Georgiadis, P. M. Ferreira and J. A. Rogers, High-resolution electrohydrodynamic jet printing[J], Nat. Mater., 2007,6(10):782-789.
    [44]Yuan Taur and Tak H. Ning, Fundamentals of Modern VLSI Devices, Cambridge, Cambridge,1998.
    [45]S. M. Sze, " Physics of Semiconductor Devices ", Wiley,1981.
    [46]Y. D. Kim et al. Conventional n-channel MOSFET devices using single layer HfO2 and ZrO2 as high-k gate dielectrics with polysilicon gate electrode[C]. IEEE Tech.Dig. Int. Electron Devices Meet.,2001:221.
    [47]Y. C. Yeo, P. Ranade, T. J. King. Effective of high-k gate dielectric materials on metal and silicon gate workfunctions[J]. IEEE Electron Devices Lett., 2002,23(6):342-344.
    [48]Y. D. He, M. Z. Xu, C. H. Tan. Effects of plasma nitridation on ultra-thin gate oxide electrical and reliability characteristics[J]. Solid-state electronics, 2005,49:57-60.
    [49]J. Chen, T. Y. Chan,P. K. ko and Chenming Hu, Sub-Breakdown Drain Leakage Current in MOSFETs[J]. IEEE Electron Device Letter.,1987, 8(11):515-517.
    [50]A.Stesmans. Interaction of Pb defects at the (111) Si/SiO2 interface with molecular hydrogen:Simultaneous action of passivation and dissociation[J]. J.Appl. Phys.,2000,88(l):489-497.
    [51]A. Stesmans. Structural relaxation of Pb defects at the (111) Si/SiO2 interface as a function of oxidation temperature:The Pb-generation-stress relationship[J]. Phys. Rev. B,1993,48:2418.
    [52]A. Kerber, E. Cartier, L. A. Ragnarsson, M. Rosmeulen, L. Pantisano, R. Degraeve, T. Kauerauf, G. Groeseneken, H. E. Maes and U. Schwalke. Characterization of the VT instability in SiO2/HfO2 gate dieIectrics[C]. IEEE Int. Reliability Physics Symp.,2003:41-45.
    [53]C. Shen, M.-F. Li, X. P. Wang, Y.-C. Yeo and D.-L. Kwong. A fast measurement technique for MOSFET Id-Vg characteristics[J]. IEEE Electron Devices Lett.,2006,27(1):55-57.
    [54]D. K. Schroder, Semoconductor Material and Device Characterization. New York:Wiley-IEEE Press,2006.
    [55]A. Neugroschel, C. T. Sah, K. M. Han, M. S. Carroll, T. Nishida, J. T. Kavalieros, Y. Yu. Direct-Current Measurement of Oxide and Interface Traps on Oxidation Silicon[J]. IEEE Trans. Electron Devices,1995,42(9): 1657-1662.
    [56]M. F. Li. Modern CMOS Devices[M]. Fudan Lecture,2005, chapter 3.3.
    [57]J. S. Brugler and P. G. A. Jesper. Charge pumping in MOS devices[J]. IEEE Trans. Electron Devices,1969,16(3):297-302.
    [58]G. Groeseneken, H. Maes, N. Beltran, et al. A reliable approach to charge-pumping measurements in MOS transistors[J]. IEEE Trans. Electron Devices, 1984,31(1):42-53
    [59]G. Van den bosch, G. Groeseneken, and H. E. Maes. On the geometric component of charge-pumping current in MOSFETs[J]. IEEE Electron Device Lett.,1993,14(3):107-109.
    [60]W. J. Liu, Z. Y. Liu, D. M. Huang, et al. On-the-fly interface trap measurement and its impact on the understanding of NBTI mechanism for p-MOSFETs with SiON Gate dielectric[C]. IEDM Tech. Digest,2007, 813-816.
    [61]D. M. Huang, W. J. Liu, Z. Y. Liu, et al. A modified charge pumping method for the characterization of interface traps generation in MOSFETs[J]. IEEE Trans. Electron Devices,2009,56(2):267-274.
    [62]Ming-Fu Li, Daming Huang, Shen Chen, et al. Understanding NBTI mechanism by developing novel measurement techniques[C]. IEEE TDMR, 2008,8(1):62-71.
    [63]Z. Y. Liu, Daming Huang, W. J. Liu, C. C. Liao, L. F. Zhang, Z. H. Gan, W. Wong, and Ming-Fu Li. Comprehensive Studies of BTI Degradations in SiONGate Dielectric CMOS Transistors by New Measurement Techniques[C]. IEEE Int. Reliab. Phys. Symp.,2008:733-734.
    [64]Ming-Fu Li, Daming Huang, W. J. Liu, Z. Y. Liu and X. Y. Huang. New Insights of BTI degradation in MOSFETs with SiON Gate Dielectrics[J]. ECS,2009,19(2):301-318.
    [65]W. J. Liu, D. M. Huang, Z. Y Liu, Y. Luo, C. C. Liao, L. F. Zhang, Z. H. Gan, Waisum Wong, Ming-Fu Li. Investigations of NBTI by Conventional and New Measurement Methods for p-MOSFETs[C]. IEEE Nano-electronics Conference,2008:1758-1761.
    [66]E. S. Snow, J. P. Novak, P. M. Campbell, et al. Random networks of carbon nanotubes as an electronic material[J]. Applied Physics Letters,2003,82(13): 2145-2147.
    [67]E. Artukovic, M. Kaempgen, D. Hecht, S. Roth, and G. Gruner. Transparent and flexible carbon nanotube transistors[J]. Nano. Lett.,2005,5(4):757-760.
    [68]E. S. Snow, P. Campbell, M. Ancona, and J. Novak. High mobility carbon-nanotube thin-film transistors on a polymeric substrate[J]. Appl. Phys. Lett., 86(3):033105.
    [69]M. A. Alam, N. Pimparkar, S. Kumar, and J. Murthy. Theory of nanocomposite network transistors for macroelectroincs app!ications[C]. MRS Bulletin 2006,31:466-470.
    [70]C. Lee, C. Weng, L.Wei, Y. Chen, M. Chan-Park, C. Tsai, K. Leou, C. Poa, J. Wang, and L. Li. Toward high-performance solution-processed carbon nanotube network transistors by removing nanotube bundles[J]. J. Phys. Chem. C,112(32):12089-12091.
    [71]J. Li, Z. B. Zhang, S. L. Zhang. Percolation in random networks of heterogeneous nanotubes[J]. Applied Physics Letters.2007,91(25):253127.
    [72]P. G. Collins, M. Hersam, M. Arnold, et al. Current Saturation and Electrical Breakdown in Multiwalled Carbon Nanotubes[J]. Physical Review Letters, 2001,86(14):3128-3131.
    [73]R. Krupke, S. Linden, M. Rapp, and F. Hennrich. You have full text access to this contentThin Films of Metallic Carbon Nanotubes Prepared by Dielectrophoresis [J]. Adv. Mater.2006,18(11):1468-1470.
    [74]Y. Miyata,; Y. Maniwa,; H. Kataura. Selective oxidation of semiconducting single-wall carbon nanotubes by hydrogen peroxide[J]. J. Phys. Chem. B 2006,110(1):25-29.
    [75]A. Nish, J.Y-. Hwang, J. Doig, and R. J. Nicholas. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers[J]. Nature Nanotechnology,2007,2(10):640-646.
    [76]M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam. Sorting carbon nanotubes by electronic structure using density differentiation [J]. Nat. Nanotechnol.2006,1(1):60-65.
    [77]T. Tanaka, H. Jin, Y. Miyata, S. Fujii, H. Suga, Y. Naitoh, T. Minari, T. Miyadera, K. Tsukagoshi, and H. Kataura. Simple and Scalable Gel-Based Separation of Metallic and Semiconduting Carbon Nanotubes[J]. Nano Letters,2009,9(4):1497-1500.
    [78]H. Sirringhaus, T. Kawase, R. Friend, T. Shimoda, M. Inbasekararan, W. Wu, and E. Woo, High-Resolution Inkjet Printing of All-Polymer transistor circuits[J]. Science,290(5499):2123-2126.
    [79]H. Sirringhaus. Reliability of Organic Field-Effect Transistors[J]. Adv. Mater.,21(38-39):3859-3873.
    [80]Y. Wang, Z. Iqbal, and S. Mitra. Rapidly Functionalized, Water-Dispersed Carbon nanotubes at High Concentration[J]. J. Am. Chem. Soc,2006,128(1): 95-99.
    [81]M. F. Islam, E. Rojas, D. M. Bergey, et al. High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water[J]. Nano Letters, 2003,3(2):269-273.
    [82]M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson and N. G. Tassi. DNA-assisted Dispersion and Separation of Carbon Nanotubes[J]. Nature Materials,2003,2(877):338-342.
    [83]W. Kim, A. Javey, O. Vermesh, et al. Hysteresis Caused by Water Molecules in Carbon Nanotube Field-Effect Transistors[J]. Nano Letters,2003, 3(2):193-198.
    [84]J. Lee, S. Ryu, K. Yoo, I. S. Choi, W. Yoo, and J. Kim. Origin of Gate Hysteresis in Carbon Nanotube Field-Effect Transistors[J]. J. Phys. Chem. Lett,2007, 111(34):12504-12507.
    [85]D. Estrada, S. Dutta, A. Liao, and E. Pop. Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization [J]. Nanotechnology,2010,21(8):085702.
    [86]H. Lin, S. Tiwari. Localized charge trapping due to adsorption in nanotube field-effect transistor and its field-mediated transport[J]. Applied Physic Letters,2006,89(7):073507.
    [87]M. Mattmann, C. Roman, T. Helbling, D. Bechstein, L. Durrer, R. Pohle, M. Fleischer and C. Hierold. Pulsed gate sweep strategies for hysteresis reduction in carbon nanotube transistors for low concentration NO2 gas detection[J]. Nanotechnology,2010,21(18):185501.
    [88]C. G. Sodini, T. W. Ekstedt, J. L. Moll. Charge accumulation and mobility in thin dielectric MOS transistors[J]. Solid-state Electronics,1982,25(9): 833-841.
    [89]S.-H. Lo, D. A. Buchanan, Y. Taur, and W. Wang. Quantum-Mechanical Modeling of Electron Tunneling Current from the Inversion Layer of Ultra-Thin-Oxide nMOSFET's [J]. IEEE Electron Device Letter,1997,18(5): 209-211.
    [90]R. E. Paulsen and M. H. White. Theory and application of charge pumping for the characterization of Si-SiO2 interface and near-interface oxide-traps[J]. IEEE Trans. Electron Devices,1994,41(7):1213-1216.
    [91]B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken, M. Goodwin. Disorder-controlled-kinetics model for negative bias temperature instability and its experimental verification[C]. IEEE Int. Reliability Physics Symp.,2005:381-387.
    [92]Y. Shi, T. P. Ma, S. Prasad, and S. Dhanda. Polarity Dependent Gate Tunneling Currents in Dual-Gate CMOSFET's[J]. IEEE Tran on Electron Devices,1998,45(11):2355-2360.
    [93]V. Huard, C. Parthasarathy, N. Rallet, C. Guerin, M. Mammase, D. Barge, C. Ouvrard. New characterization and modeling approach for NBTI degradation from transistor to product level[C]. IEEE Tech. Dig. Int. Electron Devices Meet.,2007:797-801.
    [94]M. S. Fuhrer, J. Nygard, L. Shih, M. Forero, Y.-G. Yoon, M. S. C. Mazzoni, H. J. Choi, J. Ihm, S. G Louie, A. Zettl, and P. L. McEuen. Crossed nanotube junctions[J]. Science,2000,288(5465):494-497.
    [95]Dimatix Materials Printer DMP-2800 Series User Manual[M]. Fujifilm Dimatix, Inc.,2007, Ver.1.5.
    [96]Y. Huang, X. Duan, Q.Wei, and C.M. Lieber, Directed assembly of onedimensional nanostructures into functional networks[J]. Science,2001, 291(5504):630-633.
    [97]Z.-B. Zhang, S.-L. Zhang, and E. B. Campbell. Dielectrophoretic behavior of ionic surfactant-solubilized carbon nanotubes. Chem. Phys. Lett.,2006, 421(1-3):11-15.
    [98]S. Kumar, J.Y. Murthy, and M. A. Alam. Percolating Conduction in Finite Nanotube Networks [J]. Phys. Rev. Lett.,2005,95 (6):066802.
    [99]C. Kocabas, N. Pimparkar, O. Yesilyurt, S. J. Kang, M. A. Alam, and J. A. Rogers. Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors[J].Nano Lett,2007,7 (5):1195-1202.
    [100]J. Li, Z.-B. Zhang, Z.-J. Qiu, and S.-L. Zhang. Contact-electrode insensitive rectifiers based on carbon nanotube network transistors[J]. IEEE Electron Device Lett.2008,29(5):500-502.
    [101]P. L. McEuen, and J. Y-. Park. Electron Transport in Single-Walled Carbon Nanotunes[C]. MRS Bulletin,2004:272-275.
    [102]M. S. Further, B. M. Kim, T. Durkop, and T. Brintlinger. High-Mobility Nanotube Transistor Memory [J]. Nano Lett.,2002,2(7):755-759.
    [103]M. Radosavljevic, M. Freitag, K. V. Thadani, and A. T. Johnson. Nonvolatile Molecular Memory Elements Based on Ambipolar Nanotube Field Effect Transistors[J]. Nano Lett.,2002,2(7):761-764.
    [104]M. Qu, Z.-J. Qiu, Z.-B. Zhang, H. Li, J. Li and S.-L. Zhang. Charge-injection-induced time decay in carbon nanotube network-based FETs[J]. IEEE Elec. Dev. Lett,2010,31(10):1098-1100.
    [105]Q. Cao, M. Xia, C. Kocabas, M. Shim, and J. Rogers. Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors[J]. Appl. Phys. Lett.,2007,90(2):023516.
    [106]J. Guo, S. Goasguen, M. Lundstrom, and S. Datta. Metal-insulator-semiconductor electrostatics of carbon nanotubes[J]. Appl. Phys. Lett.,2002, 88 (8):1486-1488.
    [107]Z. Liu, J. Li, Z.-J Qiu, Z.-B Zhang, L.-R Zheng and S.-L Zhang. On gate capacitance of nanotube networks[J]. IEEE Elec. Dev. Lett.,2011, in pressing.
    [108]E. Snow and F. Perkins. Capacitance and conductance of single-walled carbon nanotubes in the presence of chemical vapors[J]. Nano. Lett.,2005, 5(12):2414-2417.
    [109]S. Ilani, L. Donev, M. Kindermann, and P. McEuen. Measurement of the quantum capacitance of interacting electrons in carbon nanotubes. Nature Phys.,2006,2(10):687-691.
    [110]G. Esen, M. Fuhrer, M Ishigami, and E. Williams. Transmission line impedance of carbon nanotube thin films for chemical sensing. Appl. Phys. Lett.,2007,90(12):123510.
    [111]S. Hur, M. Yoon, A. Gaur, M. Shim, A. Facchetti, T. Marks, and J. Rogers. Organic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates[J]. J. Amer. Chem. Soc,2005.127(40):13 808-13809.
    [112]C. Wang, J. Zhang, K. Ryu, A. Badmaev, L. G. D. Arco, and C. Zhou. Wafer-Scalie Fabrication of Seperated Carbon Nanotube Thin-Film Transistors for Display Applications[J]. Nano Letters.,2009,9(12): 4285-4291.
    [113]N. Pimparkar, S. Kumar, Q. Cao, J. Rogers, J. Murthy, and M. Alam, Current-voltage characteristics of long-channel nanobundle thin-film transistors:A'bottom-up'perspective[J]. IEEE Electron Device Lett.,2007, 28(2):157-160.
    [114]N. Pimparkar, and M. Alam. A "bottom-up" redefinition for mobility and the effect of poor tube-tube contact on the performance of CNT nanonet thin-film transistors [J]. IEEE Elec. Dev. Lett.,2008,29(9):1037-1039.
    [115]Z. Liu, Z.-J Qiu, Z.-B Zhang, L.-R Zheng and S.-L Zhang. Mobility Extraction for nanotube TFTs[J]. IEEE Elec. Dev. Lett., submitted.
    [116]N. Pimparkar, S. Kumar, J. Murthy, M. Alam. NanoNet. (2010). Available: [online] http://nanohub.org/resources/nanonet.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700