考虑任意干湿循环变化历史的非饱和土本构理论
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非饱和土在实际工程中分布广泛,工程性质复杂。本构理论是非饱和土研究的重点和难点。非饱和土本构理论主要包括土水特征关系和应力应变关系这两个方面的内容,以及这二者之间的耦合关系。本文首先完善和发展了可以描述任意吸湿脱湿循环滞回的土水特征曲线模型,进而建立了土水特征曲线和应力应变关系耦合的非饱和土弹塑性本构模型。研究工作主要包括以下几个方面。
     (1)基于毛细滞回内变量理论和传统的土水特征关系经验模型,提出了能模拟在任意加湿/脱湿循环路径下土水特征关系的修正模型。该模型比原模型增加了一个可逆参数,考虑了含水量的可逆变化,保证了扫描线在靠近边界线的时候斜率不会无限大,同时保留了原模型精度。通过与文献中的实验结果进行比较,修正模型可以更好的模拟非饱和土的土水特征关系的循环滞回特性。
     (2)岩土介质在经历任意加湿/脱湿循环之后,部分气体会以气泡的形式残留于孔隙中;这种残留的气体会对土水特征关系和流体的渗透系数产生重要影响。完整的土水特征曲线包括初始脱湿曲线(IDC),主吸湿线(MWC)和主脱湿线(MDC)三部分。传统的土水特征曲线实验需要花费较长的时间和精力。以文献中的实验数据为依据,对非饱和土土水特征关系和岩石的汞注入抽出实验的滞回现象进行了深入研究,提出一个经验模型。如果已经根据实验得到了孔隙介质的IDC和MWC,本模型只需要一个参数,即可得到增量形式的主脱湿线(MDC)。通过与实验结果相比较,验证了模型对MDC模拟的有效性。
     (3)基于毛细滞回内变量模型和传统的土水特征关系经验模型,提出了一个能模拟在任意加湿/脱湿循环路径下土水特征关系的数学模型。特别地,该模型考虑了介质中的残余含气量对循环土水特征关系的影响。在主滞回圈给定的情况下,该模型只包含一个材料参数。利用所提出的数学模型结合欧拉迭代计算方法,对已有文献中的烧结玻璃珠、石灰岩及白云岩等不同岩土介质在任意加湿/脱湿循环路径下的SWCC试验曲线进行了模拟。通过将预测结果与现有试验数据进行对比,验证了该模型对描述任意加湿/脱湿循环路径下的土水特征关系的有效性。
     (4)现有的非饱和土本构模型大多是在Alonso在1990年提出的巴塞罗那基本模型和Wheeler在2003年提出的模型的基础上建立的,对于非饱和土的水力学循环历史考虑不足。本文以内变量毛细滞回理论为基础,提出了一个非饱和土弹塑性本构模型。该模型可以考虑水力学历史对材料变形的影响,并描述非饱和土弹塑性变形和毛细循环滞回的耦合效应。通过与文献中的实验结果比较,模型能够较好的模拟非饱和土的各种力学和水力学特性。
Unsaturated soils are widely distributed earth materials, which display complex behaviours in engineering practice. A constitutive theory of unsaturated soils addresses the soil-water characteristics curve (SWCC) and the stress-strain relationship as well as their coupling effects. In this dissertation, a SWCC model is first developed and improved so that it can be used to describe arbitrary wetting/drying histories. An elasto-plastic constitutive model of unsaturated soils is then proposed, which is capable of addressing the coupling of SWCC and stress-strain relationship. This research is summarized as follows:
     (1) Based on an internal variable-based theory of capillary hysteresis, a SWCC model is developed, which can be used to simulate the soil-water characteristics of unsaturated soils subjected to arbitrary wetting/drying histories. A new material parameter is introduced to describe the reversible changes of water content and to ensure the slope of scanning curve not to become infinite when scanning curves approach the boundary of SWCC. The modified model retains the advantage of the original internal variable-based model, while can improve the performance of the proposaed model. Comparisons with experimental data show that the new model is able to simulate the soil-water characteristics of unsaturated soils under arbitrary wetting/dring cycles. Determination method of the new parameter is also discussed.
     (2) When a porou medium experiences drying/wetting cycles, part of air phase will be trapped as air bubbles in the pore space. Such air entrapment has significant influences on the soil-water characteristics and the permeability of theporous media. Full SWCC can be represented by 3 parts, i.e., the initial drying curve (IDC), the main drying curve (MDC) and the main wetting curve (MWC). Traditionally a hydraulic hesteresis test is very time-consuming. Based on the data from the literature, an empirical model is developed。Provided IDC and MWC have been determined, the proposed model has only one parameter and can be used to determine MDC. We show that the simulation results agree very well with the measured data.
     (3) By combining the proposed MDC relationship with the new SWCC model, a mathematical model is developed that can be used to describe the soil water characteristics of unsaturated soils under arbitrary drying-wetting paths. In particular, the effect of air entrapment is fully taken into account. Provided that the hysteresis loop is given, the proposed model includes only one new material parameter, which can be determined by using any first-order scanning curve (or one datum point on the curve). The model is numerically solved using the forward Euler iterative scheme. Numerical simulations are compared with the measurements of the soil-water characteristic curves for four different types of geotechnical media. It is found that the computational results agree very well with the measured data.
     (4) A comprehensive approach to modeling the constitutive behavior of unsaturated soils is presented. The new framework can be used to describe elasto-plastic deformation and capillary hysteresis of unsaturated soils in a unified way. A simple model of capillary hysteresis coupled with plastic deformation is developed. It is shown that the model can capture the main features of unsaturated soil behavior. Particularly, it can describe the effects of any wetting/drying history on the the elasto-plastic deformation of unsaturated soils.
引文
1.Aitehison GD. Relationship of moisture and effeetive stress functions in unsaturated soils, in Pore Pressure and Suction in soils Conf, organized by British Nat. Soe. Of Int. Soe. soilsMeeh. Found. Eng. At Inst. Civil Eng. London, England:Butterworths,1961, PP.47-52
    2. Alonso E E, Gens A, Josa A. A constitutive model for partially saturated soils. Geotechnique, 1990,40(3):405-430.
    3. Alonso E. E., Lloret A., Delahaye C. H., Vaunat J., Gens A. and Volckaert G. Coupled analysis of a backfill hydration test. Int. J. Numer. Anal. Meth. Geomech,1998,22:1-27.
    4.Alonso, E. E., A. Lloret, A. Gens, & D. Q. Yang. Experimental behavior of highly expansive double structure clay. Proc.1st Int. Conf. Unsaturated Soils, Paris,1,11-16,1995.
    5.Alonso, E.E., A. Gens, & A. Josa. A constitutive model for partially saturated soils. Geotechnique 40(3):405-430,1990.
    6.ASSOULINE S, TESSIER D, et al. A conceptual model of the soil water retention curve[J]. Water Resources Research,1998,34(2):223-231.
    7.BAROGHEL-BOUNY V, MAINGUY M, et al.Characterization and identification of equilibrium andtransfer moisture properties for ordinary andhigh-performance cementitious materials[J]. Cement andConcrete Research,1999,29:1225-1238.
    8. Biot, M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅰ. Low-frequency range, J. Acoust. Soc. Amen.,1956,28(2):168-178.
    9. Biot, M A, Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅱ. Higher frequency range, J. Appl. Phys.1956,28(2):179-191.
    10. Biot, M A., Willis D. G. The elastic coefficients of the theory of consolidation J. Appl. Mech. ASME.1957,24:594-601.
    11. Biot, M A. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 1962,33(4):1482-1498.
    12. Biot M A. Theory of finite deformation of porous solid. Ind. Univ. Math. J.1972,21(7): 597-620
    13. Biot, M A. Variational Lagrangian-thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion, Int. J. Solids Structures,1977,13:579-597.
    14. Bishop A. W. The principle of effective stress, Tek. Ukebl.1959,106(39):113-143.
    15. Bishop A. W., G. E. Blight. Some aspects of effective stress in saturated and partly saturated soils, Geotechnique,1963,13(3):177-197
    16.Bishop A W. The use of slip circle in the stability analysis of earth slopes. Geotechnique,1955, 5(1):7-17.
    17. Bishop A W, Alpan I, etal.Factors controlling the shear strength of Partly saturated cohesive soils[A].In ASCER esearch Conferenee on the Shear Strength of Cohesive soils[C], University of Colorado, Boulder,1960,503-532
    18.Bolzen, G., B. A. Schrefler, & O. C. Zienkiewicz. Elasto-plastic soil constitutive laws generalized to partially saturated states, Geotechnique 46(2):279-289,1996.
    19.BOUAZZA A, FREUND M, et al. Water retention of nonwoven polyester geotextile[J]. Polymer Testing,2006,25:1038-1043.
    20. Bowen, R. M. Theory of Mixtures, in Continuum Physics Volume Ⅲ, Mixtures and EM Field Theories, edited by A. C. Eringen, New York: Academic Press,1976.
    21. Bowen, R. M. Incompressible porous media models by use of the theory of mixtures. Int. J. Eng.Sci.1980,18:1129-1148.
    22. Bowen, R. M. Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci.1982,20(6):253-268.
    23.Brandes H.G. Predicted and measured geotechnical properties of gas-charged sediments[R].Report, UniversityofHawaii,1998.
    24. Brooks, H., Corey, A. T., Hydraulic properties of porous media. Colorado State Univ. Hydrol. Paper,1964,3.
    25.Buisson, M. S. R.. Influence of hydraulic hysteresis on the mechanical behavior of an unsaturated compacted clay. PhD theis, University of Glasgow, UK,2003.
    26.Buscarnera G, Nova R, Loss of controllability in unsaturated soils, EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING[J].2009.13(2):235-250.
    27.Cadoret, T., D. Marion, and B. Zinszner. Influence of frequency and fluid distribution on elastic wave velocities in partially saturated limestones. J. Geophys. Res.100,9789-9803,1995
    28.Cadoret, T., G. Mavko, and B. Zinszner. Fluid distribution effect on sonic attenuation in partially saturated limestones. Geophysics 63,154-160,1998.
    29.Celia, M. A., Reeves, P. C., Dahle H. K. On the use of pore-scale computational models for two-phase porous media flows. Computational Methods in Contamination and Remediation of Water resources. Comput. Mech. Publ., Boston, USA,1998:397-404.
    30.Christian H.A.,Cranston R.E. A methodology for deteching free gas in marine sediments.[J]. CanadianGeotechniealJournal,1996,34(2):293-304.
    31.Coussy, O. Thermodynamics of saturated porous solid in finite deformation. European J. Mech., A/Solid.1989,8:1-14
    32.Coussy,0. A general theory of thermoporoelastoplasticity for saturated porous materials. Transport in Porous Media.1989,4:281-293
    33. Coussy, O. Mechanics of Porous Continua, Wiley, New York,1995.
    34.Cui, Y. J., P. Delage, & N. Sultain. An elasto-plastic model for compacted soils. In: Proc.1st Int. Conf. on Unsaturated Soils, Paris, Balkema, Rotterdam, V.2, pp.703-709,1995.
    35. Dafalias, Y. F., Herrmann, L. R. Bounding surface plasticity II: application to isotropic cohesive soils. J. Eng. Mech. Div. ASCE,1986,112:1263-1291.
    36. Desai, C. S., Siriwardane, H. J. Constitutive Laws for Engineering Materials with Emphasis on Geological Materials, Prentice-Hall, Inc., New Jersy,1984.
    37. Desai. Finite Element Methods for Flow in Porous Media in Flulds.NewYork: Wiley,1975
    38.Duncan J. State of the art: Limit equilibrilum and finite element analysis of slopes. Journal of Geotechnical Engineering,1996,122(7):577-595.
    39. Enderby, J.A. The domain model of hysteresis - part 2:interacting domains. Transactions of the Faraday Society,1956,52:106-120.
    40. Enderby, J.A. The domain model of hysteresis. Transactions of the Faraday Society,1955,51: 835-848.
    41. Everett, D.H. A general approach to hysteresis - part 3:a formal treatment of the independent domain model of hysteresis.Transactions of the Faraday Society,1954,50:1077-1096.
    42.Fellenius W. Caculation of the stability of earth dams. Proceedings of the Second Congress of Large Dams,1936,4:445463.
    43.FENG M, FREDLUND D G. Hysteretic influence associated withthermal conductivity sensor measurements[C]//Proceedings of the 52nd Canadian Geotechnical Conference. Regina, Sask:[s.n.],1999:651-657.
    44.Feng, M., Fredlund, D.G. Hysteretic influence associated with thermal conductivity sensor measurements. In Proceedings from Theory to the Practice of Unsaturated Soil Mechanics in Association with the 52nd Canadian Geotechnical Conference and the Unsaturated Soil Group, Regina, Sask,23-24 October,1999,14(2):14-20
    45.FLYNN D, MCNAMARA H,O'KANE P, et al. Application of the Preisach model in soil-moisture hysteresis[M]. New York:Elsevier,2006.
    46.FREDLUND D G, XING A, FREDLUND M D, BARBOUR S L. The relationship of the unsaturated soil shear strength fuction to the soil water characteristic curve[J]. Canadian Geotechnical Journal,1995,32:440-448.
    47.Fredlund D G,, Xing A. Equation for the soil-water characteristic curve, Canadian Geotechnical Journal,1994 31:521-532.
    48.Fredlund, D.G., Hasan, J.U. One-dimensional consolidation theory of unsaturated soils. Canadian Geotechnical Journal,1979,16(3):521-531
    49. Fredlund, D G., Rahardjo, H. Soil Mechanics for Unsaturated Soils, John Wiley & Sons, Inc., New York,1993.
    50. Fredlund, D. G., Xing, A. Equations for the Soil-Water Characteristic Curve, Canadian Geotechnical Journal,1994,31:521-532.
    51.Fredlund D G, Morgenstern N R,Widger R A, The shear strength of unsaturated soils[J], Canadian Geotechnical Journal,1978,15:313-321
    52. Freeze, R. A. Three-dimensional transient saturated-unsaturated flow in a ground water basin. Water Resources Res,1971,7:347-366.
    53.GAO Ling-xia, LUAN Mao-tian, YANG Qing, etal. Experimental study of permeability of unsaturatedremolded clays[J]. Rock and Soil Mechanics,2008,29(8):53-54.
    54.Gardner T.N. An acoustic study of soils that model seabed sediments containing gas bubbles[J].Journal of Aeoustic Society of America,1999,107(1):163-176.
    55.Gardner W R. Some steady-state solutions of the moisture flow equations with application to evaporation from a water table. Soil Sci.1958,85:228-232.
    56. Gawin,D., Baggio,P., Schrefler,B.A. Coupled heat, water and gas flow in deformable porous media. Int. J. Num. Meth. Fluids,1995,20:969-87.
    57.Gens, A., Jouanna, P., and Schrefler, B. A. (1995):Modern issues in non-saturated soils, CISM Courses and Lectures No.357, Springer Verlag, Wien-New York.
    58.GIMENEZ D, PERFECT E, et al. Fractal models forpredicting soil hydraulic properties:a review[J]. EngineeringGeology,1997,48:161-183.
    59. Hassanizadeh, S. M., Gray,W. G. Thermodynamic basis of capillary pressure in porous media, Water Resour. Res.,1993,29:3389-3405.
    60. Hilber, H. M., Hughes, T. J. R., Taylor, R. L. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn.1977,5:283-292.
    61. Houlsby, G. T. (1997):The work input to an unsaturated granular material, Geotechnique 47, 193-196.
    62.HWANG S IL, CHOI S IL. Use of a lognormal distributionmodel for estimating soil water retention curves fromparticle-size distribution data[J]. Journal of Hydrology,2006,323: 325-334.
    63. Iverson, R. M.. Landslide triggering by rain infiltration. Water Resour. Res.36(7):1897-1910, 2000.
    64.Jennings. J. E.B, Burland. J. B Limitation to the use of effective stress in partially saturated soils[J]. Geotechnique.1962,12(2):125-144.
    65. Kawai, K., Karube, D., and Kato, S. The model of water retention curve considering effects of void ratio. In Proceedings of Asian Conference on Unsaturated Soils, Singapore. Edited by H.Rahardjo,D.G Toll, and E.C Leong. A.A. Balkema, Rotterdam,The Netherlands.2000, 329-334.
    66.Khalili, N., and Khabbaz, M. H. (1998): A unique relationship for x in the determination of the shear strength of unsaturated soils, Geotechnique,48,681-688.
    67.Khalili N, Habte MA Zargarbashi S, A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hystereses[J], COMPUTERS AND GEOTECHNICS 2008,35(6):872-889
    68. Klausner, Y. Fundamentals of continuum mechanics of soils. Springer-Verlag,1991, New York.
    69.Kohgo, Y, Nakano, M., and Miyazaki, T. (1993):"Theoretical aspects of constitutive modeling for unsaturated soils, Soils and Foundations,33(4),56-75.
    70.Knight, R., and R. Nolen-Hoeksema. A laboratory study of the dependence of elastic wave velocities on pore scale fluid distribution. Geophys. Res. Lett.17,1529-1532,1990.
    71. Kuppusamy T, Sheng J, Parker JC, Lenhard RJ. Finite element analysis of multiphase immiscible flow through soils. Water Resour. Res.,1987,23(4):625-31
    72. Lade, P. V., Nelson, R. B. Modeling the elastic behavior of granular materials. Int. J. Numer. Anal. Methods Geomech.1987,11:521-542.
    73. Lam, L., Fredlund, D. G., and Barbour, S. L. Transient Seepage Model for Saturated-Unsaturated Soil Systems: a Geotechnical Engineering Approach, Canadian Geotechnical Journal,1987,24:565-580.
    74.Lambe, TW, The principle of effective stress, lecture delivered in Oslo, Norway, in 1955: published in teknisk Ukehlad,1959,106(39):859-863
    75.Le Ravalec, M., Gueguen, Y., and T. Chelidze. Elastic wave velocities in partially saturated rocks: Saturation hysteresis. J. Geophys. Res.101(B1),837-844,1996.
    76.Li, X. S.. Modeling of hysteresis response for arbitrary wetting/drying paths. Comput. Geotech. 32:133-137,2005.
    77.Li X.S.Thermodynamics-based constitutive framework for unsaturated soils.1:Theory, Geotechnique,2007.57(5),411-422
    78. Li, X. Finite element analysis for immiscible two-phase fluid flow in deforming porous media and an unconditionally stable staggered solution, Communications in Applied Numerical Methods,1990,6(2):125-135.
    79. Li, X., Zienkiewicz, O. C. Multiphase flow in deforming porous media and finite element solutions. Comput. Struct.,1992,45(2):211-227.
    80. Li, X., Thomas, H. R., Fan, Y. Finite element method and constitutive modelling and computation for unsaturated soils. Comput. Methods Appl. Mech. Engrg.1999,169:135-159.
    81. Li, X. S. Modeling of hysteresis response for arbitrary wetting/drying paths, Computers and Geotechnics,2004,32:133-137.
    82. Liakopoulos, A. C. Transient flow through unsaturated porous media, PhD thesis, University of California, Berkeley,1965.
    83.LU Ying-fa, WU Yan-chun, YANG Li-ping, et al. Investigation on determination of thermal mechanical parameter of unsaturated soil [J]. Rock and Soil Mechanics,2008,29(7):1747-1 752.
    84.Mitchell, R. J., & A. S. Mayer. The significance of hysteresis in modeling solute transport in unsaturated porous media, Soil Sci. Soc. Am. J.,62,1506-1512,1998.
    85.Mualem, Y.. A conceptual model of hysteresis. Water Resour. Res.10:514-520,1984.
    86.MUALEM Y A. Conceptual model of hysteresis[J]. Water Resources Research,1974,10(3): 514-520.
    87. Muraleetharan, K. K., Mish, K. D., Arulanandan, K. A fully coupled analysis procedure and its verification using centrifuge test results. Int. J. Numer. Anal. Meth. Geomech.,1994, 18:305-325.
    88. Muraleetharan K. K., Granger, K. K. The use of miniature pore pressure transducers in measuring matric suction in unsaturated soils. Geotechnical Testing Journal, ASTM,1999, 22(3):226-234.
    89. Neel, L. Theorie des lois d'aimantation de Lord Rayleigh, 1.Cahiers de Physique,1942,12: 1-20.
    90. Neel, L. Theorie des lois d'aimantation de Lord Rayleigh,2.Cahiers de Physique,1943,13: 18-30.
    91.Ng, C. W. W., & Y. W. Pang. Influence of stress state on soil-water characteristics and slope stability. J. Geotch. Engrg. & Geoenviron. ASCE 126(2):157-166,2000.
    92.OR D, TULLER M. Liquid retention and interfacial area in variably saturated porous media: upscaling from single-pore to sample-scale model[J]. Water Resources Research,1999,35(12): 3591-3605.
    93.Parlange, J.-Y. Capillary hysteresis and relationship between drying and wetting curves. Water Resour. Res.12:224-228,1976.
    94. Parker,J.C.,Lenhard,R.J., and Kuppusamy T. A parametric model for constitutive properties governing multiphase flow in porous media. Water Resources Research,1987,23(4):618-624.
    95.Petterson K E. The early history of circular sliding surface.Geotechnique,1955,5:275-296.
    96. Poulovassilis, A. Hysteresis of pore water - an application of the concept of independent domains. Journal of Soil Science,1962.92:405-412.
    97. Poulovassilis, A.. Hysteresis of pore water in granular porous bodies. Journal of Soil Science, 1970a,109:5-12.
    98. POULOVASSILIS A, KARGAS G. A note on calculating hysteretic behavior[J]. Soil Science Society American Journal,2000,64:1947-1957.
    99. Preisach, F. Uber die magnetische Nachwirkung. Z. Physik,1935.94:277-302.
    100.RadN.S.,ViannaA.J.D.Berre T. Gas in soils,Ⅱ:Effeet of gas on undrained static and cyclic strength of sand. [J].Journal of geoteehnical engineering, ASCE,1994,120(4):716-737
    101. Richard, L. A. Capillary conduction of liquids through Porous medium. J. Physics.1931. 1:318-333.
    102. Scott, P.S., Farquhar, GJ., and Kouwen, N. Hysteretic effects on net infiltration. In Advances in infiltration. American Society of Agricultural Engineers Publication 11-83, St. Joseph, Mich. 1983,163-170.
    103.Sharma, R. S.. Mechanical behavior of an unsaturated highly expansive clays. PhD thesis, University of Oxford, UK,1998.
    104.Sheng, D., S. W. Sloan & A. Gens. A constitutive model for unsaturated soils: thermomechanical and computational aspects. Comput. Mech.33(6):453-465,2004.
    105.Sill.GC.,Wheeler S.J. The significance of gas for offshore operations.[J], Geotechnique, 1992,51(7):629-639.
    106.Sills G.C.Drained triaxial testing of gassy soils[R].Final report on SERC grant No. GR/D/67064,1991.
    107.Sills GC.GonzalezR.Consolidation of naturally gassy soft soil.[J].Geoteehnique,2001, 51(7):629 -639.
    108.Sparks A. D. W, Discussion on fundamentals and Theoretieal Developments-soils Suction Curves, In:2nd Int.conf. UNSAT'98, Beijing, Volume2, P237
    109.Sun, D. A., & D. C. Sheng. An elasto-plastic hydro-mechanical model for unsaturated compacted soils. In: Advanced Experimental Unsaturated Soil Mechanics, Tarantino A., Romero E., Cui Y.J. (eds.), pp.249-255,2005.
    110.Sun, D. A., D. C. Sheng, H. B. Cui, & S. W. Sloan. A density-dependent elastoplactic hydro-mechanical model for unsaturated compacted soils, Int. J. Numer. Anal. Meth. Geomech. 30,2006.
    111.Sun, D. A., Matsuoka, H., Cui, H. B., and Xu, Y. F. Three-dimensional elasto-plastic model for unsaturated compacted soils with different initial densities, Int. J. Num. Anal. Meth. Geomech., 27,1079-1098.2003
    112. Sun, D. A., D. C. Sheng, Elastoplastic modelling of hydraulic and stress-strain behaviour of unsaturated soils, Mechanics of Materials,39(2007),212-221
    113. Topp, G.C. Soil-water hysteresis measured in a sandy loam compared with the hysteretic domain model. Soil Science Society of America Proceedings,1969,33:645-651.
    114. Topp, G.C.. Soil-water hysteresis:The domain theory extended to poreinteraction conditions. Soil Science Society of America Proceedings,1971a,35:219-225.
    115. Topp, GC. Soil water hysteresis in silt loam and clay loam soils. Water Resources Research, 1971b,7:914-920
    115.TOPP G C. Soil-water hysteresis:the domain theory extended to pore interaction conditions[J]. Soil Science Society of America Journal,1972,35:219-225.
    117.TULLER M, OR D. Unsaturated hydraulic conductivity of structured porous media: a review of liquid configuration-based models[J]. Vadose Zone Journal,2002,1:14-37.
    118.VAN GENUCHTEN M T. A close-form equation for predictingthe hydraulic conductivity of unsaturated soils[J]. SoilScience Society American Journal,1980,44: 892-898.
    119.Vanapalli, S. K., Fredlund, D. G, and Pufahl, D. E.:The influence of soil structure and stress history on the soil-water,1999
    120.Vanapalli S K, Fredlund D G, Model for the prediction of shear strength with respect to soil suction[J], Canadian Geotechnical Journal,1996,33:379-392.
    121.van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal,1980,44:892-898.
    122.WANG Yu, WU Gang, Understanding and modelling soil-water characteristic curves, Chinese Journal of Geotechnical Engineering,2008,9:1282-1290 (in Chinese)
    123. Wardlaw, N. C., R. P. Taylor. Mercury capillary pressure curves and the interpretation of pore structure and capillary behavior in reservoir rocks. Bulletin of Canadian Petroleum Geology, 1976,24(2):225-262.
    124. Wei, C.F., Muraleetharan, K. K. A continuum theory of porous mdia saturated by multiple immiscible fluids:Ⅰ.Linear poroelasticity. International Journal of Engineering Science,2002, 40:1807-1833.
    125. Wei, C.F., Muraleetharan, K. K. A continuum theory of porous mdia saturated by multiple immiscible fluids:Ⅱ. Lagrangian description and variational structure. Journal of Engineering Science,2002,40:1835-1854.
    126. Wei, C.F, Dewoolkar, M. M. Formulation of capillary hysteresis with internal state variables. Water Resour. Res.,2006 42 (7) W07405.
    127.Wei, C.:A comprehensive theoretical framework for modeling unsaturated soils, Internal Report, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences.2006
    128. Wei, C.F., Muraleetharan, K. K. Linear viscoelastic behavior of porous media with nonuniform saturation. Journal of Engineering Science,2007,45:698-715.
    129. Weir G J, Kissing W M. The influence of airflow on the vertical infiltration of water into soil.Water Resource Research,1992,28:2765-2772.
    130.Wheeler, S. J., & V. Sivakumar. An elasto-plastic critical state framework for unsaturated soils, Geotechnique 45(1):35-53,1995.
    131. Wheeler, S.J., Sharma, R.J., and Buisson, M.S.R. Coupling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils. Geotechnique,2003,53:41-54.
    132.Wheeler, S.J.. Inclusion of specific water volume within an elasto-plastic model for unsaturated soil. Can. Geotech. J.33:42-57,1996.
    133.Wheeler, S. J., & D. Karube. Constitutive modeling, in Proc.1st Int. Conf. Unsaturated Soils, Paris,3,1323-1356,1995.
    134.Wheeler S.J.A conceptual model for soils containing large gas bubbles[J].Geoteehnique, 1988(38):389-397.
    135.Wheeler S.J. The undrained shear strength of soils containing large gas bubbles[J]. Geoteehnique,1998(38):399-413.
    136.Wheeler S.J.A naltemative framework for unsaturated soil behavior.[J].Geoteehnique, 1991(41):257-261.
    137.WhelanS.J.ColemanJ.M., SuhaydaJ.N., Roberts N.H. Acoustieal penetration and shength in gas chargedsediments.[J].Marine Geoteehnology,1977(2):147-159.
    138.XU Y F, DONG P. Fractal approach to hydraulic properties in unsaturated porous media[J]. Chaos Solutions & Fractals,2004,19:327-337
    139.包承纲.非饱和压实土的气相形态及孔隙压力消散问题[A].第三届全国土力学和基础工程会议论文集[C],北京:中国建筑工程出版社,1979
    140.曹雪山.非饱和膨胀土的弹塑性本构模型研究[J].岩土工程学报2005,27(7):832-836.
    141.曹雪山,殷宗泽.非饱和土二维固结简化计算的研究[J].岩土力学,2009,30(9),2575-2580.
    142.陈正汉,周海清.非饱和土的非线性模型及其应用[J].岩土工程学报,1999,21(5):603-608.
    143.陈正汉,王永胜,谢定义.非饱和土有效应力探讨[J].岩土工程学报,1994,16(3):62-69.
    144.李锡.非饱和土中的有效应力[J].大连理工大学学报,1997,37(4):381-385.
    145.陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,1994.
    146.陈祖煜.土力学经典问题的极限分析上、下限解[J].岩土工程学报,2002,24(1)
    147.陈祖煜.土质边坡稳定分析[M].北京:中国水利水电出版社,2003.
    148.崔鹏,杨坤,陈杰.前期降雨对泥石流形成的贡献-以蒋家沟泥石流形成为例[J].中国水土保持科学,2003,1(1):11-15.
    149.杜建成,张利民.广州地区软土应力应变特性研究[J].四川联合大学学报(工程科学版),1997,1(1):24-35.
    150.方祥位,陈正汉,申春妮等.剪切对非饱和土土水特征曲线影响的探讨[J].岩土力学,2004,25(9):1451-1454.
    151.高凌霞,栾茂田,杨庆,等.非饱和重塑黏土渗透性试验研究[J].岩土力学,2008,29(8):53-54.
    152.黄茂松,贾苍群.考虑非饱和非稳定渗流的土边坡稳定分析[J].岩土工程学报,2006,28(2):202-206.
    153.贾其军,赵成刚.低饱和度非饱和土的抗剪强度理论及其应用[J].岩土力学,2005,26(4):580-585.
    154.孔令伟等.浅层天然气对杭州湾大桥桩基性能的影响与防治对策研究报告[R].中国科学院武汉岩土力学研究所,2002.12.
    155.兰恒星,周成虎,李焯芬,王思敬,伍法权.瞬时孔隙水压力作用下的降雨滑坡稳定性响应分析:以香港天然降雨滑坡为例[J].中国科学E辑,2003,33(增刊):119-136,.
    156.李爱国,岳中琦,谭国焕等.野外土-水特征及其工程意义[J].岩石力学与工程学报,2004,23(6):969-973.
    157.李庆扬,王能超,易大义.数值分析[M].武汉:华中科技大学出版社,1986.
    158.李小军.土应力应变关系的粘-弹-塑模型[J].地震工程与工程振动,1989,9(3):65-72.
    159.李顺群,奕茂田,杨庆,等.考虑干燥裂缝时非饱和土垂直切坡的临界白稳高度[J].大连 理工大学学报,2004,44(5):704-709
    160.李志清,胡瑞林,王立朝.非饱和膨胀土SWCC研究[J].岩土力学.2006,27(6):730-734.
    161.缪林昌,殷宗泽.非饱和土的剪切强度[J].岩土力学,1999,3:1-6
    162.刘艳,赵成刚.土水特征曲线滞后模型的研究[J],岩土工程学报,2008.30(3),399-405
    163.陆明万,罗学富.弹性理论基础[M].北京:清华大学出版社,2001.
    164.卢应发,吴延春,杨丽平,等.非饱和土热力学参数确定的探讨[J].岩土力学,2008,29(7):1747-1752.
    165.卢应发,崔玉军,郑俊杰.土体在大气作用下吸力变化特征[J].岩土工程学报,2005,10:1111-1115.
    166.卢肇均,张惠明,陈建华.非饱和土的抗剪强度和膨胀压力[J],岩土工程学报,1992,14(3):1-8.
    167.卢肇钧,吴肖茗,孙玉珍,尹巍.膨胀力在非饱和土强度理论中的作用[J].岩土工程学报,1997,(05).
    168.钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996.
    169.沈珠江.广义吸力和非饱和土的变形理论[J].岩土工程学报,1996,18(2):1-9.
    170.孙冬梅,朱岳明,张明进,等.考虑气相影响的降雨入渗过程分析研究[J].岩土力学,2008,29(9):1-10.
    171.汤连生,王思敬.湿吸力及非饱和土的有效应力原理探讨[J].岩土工程学报,2000,22(1):83-88.
    172.涂平晖,张弥.非饱和土的临界状态面模型[J].华中科技大学学报(自然科学版),2006,34(8):113-117
    173.王金生,杨志峰.陈家军等.包气带土壤水分滞留特征研究[J].水利学报,2000,(2):1-6
    174.吴斌.弹性动力学及其数值分析[M].北京:中国建材工业出版社,2000.
    175.吴迪光.张彬.微积分学[M].杭州:浙江大学出版社,1997.
    176.邢义川,谢定义,李振.非饱和土的应力传递机理与有效应力原理[J].岩土工程学报,2001,23(1):53-57.
    177.徐干成,谢定义,郑颖人.饱和砂土循环动应力应变特性的弹塑性模拟研究[J].岩土工程学报,1995,17(2):1-12.
    178.许锡昌,陈善雄.备样方法对标准吸湿含水率的影响[J],岩石力学与工程学报,2006,25(10),2135-2139
    179.徐永福.非饱和膨胀土的结构模型和力学性质的研究[J],岩石力学与工程学报,1998,17(5),610-610
    180.徐永福.非饱和土本构模型研究综述[J].水利水电科技进展,1996,16(5):4-9.
    181.徐永福,董平.非饱和土的水分特征曲线的分形模型[J].岩土力学,2002,23(4):400-405
    182.徐晗,朱以文,蔡元奇,朱方敏.降雨入渗条件下非饱和土边坡稳定分析[J].岩土力学2005年26(12):1957.1962.
    183.杨代泉.非饱和土二维广义固结非线性数值模型[J].岩土工程学报,1992,14,Supplement:2-12
    184.俞培基,陈愈炯I乍饱和土的水气形态及其力学性质的关系[J].水利学报,1965,(1):16-23
    185.郑大同,王天龙.土的滞回特性及其模型化[C]//中国土木工程学会第四届土力学及基础工程学术会议论文选集,北京:中国建筑工业出版社,1986:302.308.
    186.周建.非饱和土本构模型中应力变量选择研究[J].岩石力学与工程学报,2009,28(6):1200.1207
    187.周建.非饱和土土水特征曲线主要影响因素研究综述[A].第二届全国非饱和土学术研讨会论文集[C].杭州.2005:390-400

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700