基于卫星影像的海洋信息检测能力与技术方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋环境的日益恶化,海洋灾害的频繁发生给我国经济带来了巨大损失,因而迅速、有效地监测海洋环境的变化,及时地督促海洋污染的治理,将损失降至最低,显得尤为重要。随着遥感技术的不断发展、传感器性能的不断改善,遥感技术已经成为大范围快速对海观测最具优势的手段。因此,应用海洋遥感技术,对海洋环境进行监测具有重大的研究意义和现实意义。
     但由于海洋是由不断运动的水体组成,海洋环境与陆地、大气环境存在很大的不同,此外,遥感监测有其自身特点,受制于海陆反差大、海水低反射率背景下弱信息提取和信号耀斑等,再加上海洋现象的动态性要求快速、持续监测,都导致海洋遥感实际应用的难度加大。论文通过大量的影像的实例分析,探讨了卫星遥感在渤海区域的监测能力,分析渤海不同环境背景、季节变化所呈现出的影像特征,在此基础上进一步探讨卫星影像快速异常处理的可行性。
     本文具体比较了不同卫星影像的海洋监测优劣,分析了基于MODIS数据进行卫星遥感影像海洋监测能力评估的可行性,并以渤海为研究区,依据MOD35源数据,统计分析MODIS影像渤海覆盖率及云覆盖面积百分比,对MODIS数据渤海区域监测能力进行了评估,表明了渤海常规、季节性以及应急等诸种海区要素监测的不同效果,弥补了以往类此工作的迟后性。
     根据MODIS数据渤海监测能力评估结果,得出了基于长时间序列MODIS数据提取渤海MODIS影像季节变化特征的可行性。通过对大量渤海MODIS 1B数据的彩色合成图、影像分层图以及渤海背景资料的分析,得出了渤海各海区不同环境背景、季节变化所呈现的影像特征。由于渤海悬浮物水平分布特点十分稳定,本文选取了渤海不同海区不同季节典型影像建立渤海MODIS影像标准库。
     由于二类水体光学性质的复杂性,仅靠基于应用目标的反演算法提取低反射率背景下的弱异常信息难度较大。本文以渤海标准库影像为基准,对渤海海区动态影像进行变化检测。考虑背景环境、噪声等的影响,分析光谱变化成因以探测渤海遥感影像的可疑异常信息,根据异常信息探测结果指导该异常区域的精细判读,实现异常信息的提取。本文最后以短时出现的溢油和具有较长时间变化过程的海冰为例,开展了渤海异常信息遥感快速检测的试验和实现的技术途径,提取了渤海溢油信息以及海冰的动态变化过程,效果良好。
The deteriorating marine environment and the frequent marine disasters have brought great damage to our economy. Thus, monitoring the changes of the marine environment timely and effectively, guiding the improvement of the marine environment and minimizing the damage become more and more important. With the continuous development of remote sensing technology and the improvement of sensor performance, remote sensing technology has become the most advantageous method to monitor a wide range of marine quickly. Therefore, the application of marine remote sensing technology to monitor the marine environment is of great research and practical significance.
     Firstly, ocean consists of water in constant motion and its environment is quite different from the environment of land and atmosphere. Secondly, remote sensing has its own characteristics, which is subject to the great difference between the land and ocean spectrum, the weak spectrum information extracted from the low-reflectivity ocean background and signal flares and so on. In addition, the dynamic ocean phenomena require fast and continuous monitoring. All of the above make the practical application of ocean remote sensing more difficulty. With the analysis of a large number of images, this thesis has investigated the ability of satellite remote sensing in ocean monitoring in the Bohai Sea, also analyzed the image features with different environment background and seasonal changes, and then further discussed the feasibility of fast anomaly detection to satellite images.
     By comparing the capabilities of several common remote sensing satellites in ocean monitoring, this thesis has analyzed the feasibility of evaluating the ability of satellite remote sensing in ocean monitoring based on the MODIS data in the Bohai Sea. The raw images are MOD35 data of the Bohai Sea in 2008, which are used to count the imaging capabilities of satellite remote sensing covering the Bohai Sea and their relevant cloud cover rate. This thesis has also evaluated the capabilities of remote sensing images of the Bohai Sea. The statistic results show different monitoring effects of regular, seasonal and emergency and other elements of the Bohai Sea.
     According to the results, it has showed the feasibility of extracting seasonal features of the MODIS image in the Bohai Sea based on the long time series MODIS images. By analyzing the true color composite maps of MODIS 1B data, the relevant layered maps and the background data of the Bohai Sea, the image features of different environment background and seasonal changes in each Bohai region have been found. Due to the quite stable horizontal distribution of suspended matter over the Bohai Sea, this thesis has selected the typical images in each region of the Bohai Sea in different seasons and has also established the standard MODIS image library of the Bohai Sea.
     Owing to the complicated optical properties of Case 2 waters, it is more difficult to extract the weak spectrum information from the low-reflectivity ocean background only based on the objective information extraction algorithms. On the basis of standard images of the Bohai Sea, this thesis has implemented the change detection of the dynamic images of the Bohai Sea. Considering the impacts of background environment, noise and other factors, it has analyzed the causes of spectral changes and has detected the possible abnormal area, which can be used to guide fine interpretation of this area to realize the extraction of abnormal information in the Bohai Sea. Finally, this thesis, taking the detection of short term oil spill and a longer time sea ice as examples, carried out the experiment of fast anomaly detection of satellite images in the Bohai Sea to get its technical methods and succeeded in extracting the oil spill and monitoring the dynamic process of sea ice in the Bohai Sea, both of which show desirable results.
引文
[1]韩震,陈西庆,恽才兴.海洋高光谱遥感研究进展.海洋科学[J],2003,27(1):22-25.
    [2]吴培中.海洋遥感及其在我国的应用和发展目标.国土资源遥感[J],1993,3(1):1-7.
    [3]李四海,刘百桥.海洋遥感特征及其发展趋势[J].遥感技术与应用,1996,11(2):65-69.
    [4]Gordon H R, Brown O B, Evans R H, et al. A Semianalytic Radiance Model of Ocean Color[J] .Journal of Geophysical Research,1988,93(D9):10909-10924.
    [5]Morel A. Optical Modeling of the Upper Ocean in Relation to its Biogenous Matter Content(Case Ⅰ Waters) [J] .Journal of Geophysical Research, 1988,93(C9):10749-10768.
    [6]毛庆文,施平,齐义泉.GEOSAT卫星遥感资料研究南海海面动力高度场和地转流场[J].海洋学报,1999,21(1):11-16.
    [7]贺志刚,王东晓,陈举,等.卫星跟踪浮标和卫星遥感海面高度中的南海涡旋结构[J].热带海洋学报,2001,20(1):27-35.
    [8]张鹰,丁贤荣,王文.水深遥感与潮滩地形冲淤变化分析[J].港口工程,1998,(2):26-30.
    [9]傅斌,黄韦艮,周长宝,等.星载SAR浅海水下地形和水深测量模拟仿真——水下地形高度、坡度和方向与可测水深分析[J].海洋学报,2001,23(1):35-42.
    [10]李四海,唐军武,恽才兴.河口悬浮泥沙浓度SeaWiFS遥感定量模式研究[J].海洋学报,2002,24(2):51-58.
    [11]赵辉,齐义泉,王东晓,等.南海叶绿素浓度季节变化及空间分布特征研究[J].海洋学报,2005,27(4):45-52.
    [12]修鹏.渤海海域水色遥感的研究[D].山东青岛:中国海洋大学,2008.
    [13]李四海,刘振民,王华,等.中巴卫星数据在海岸带环境监测中的应用[J].遥感技术与应用,2003,18(2):67-72.
    [14]赵冬至,张丰收,赵玲,等.近岸海域叶绿素和赤潮的AVHRR波段比值探测方法研究[J].海洋环境科学,2003,22(4):9-12.
    [15]马里.渤海海域溢油卫星遥感监测研究[D].辽宁大连:大连海事大学,2006.
    [16]白春江.遥感监测渤海海域溢油技术及系统研究[D].山东青岛:中国海洋大学,2007.
    [17]陈辉.MODIS数据对海上溢油事件的观测[D].山东青岛:中国海洋大学,2008.
    [18]黄润恒,王强,金振刚.渤海海冰卫星遥感监测业务系统[J].海洋预报,1991,8(3):57-63.
    [19]韩素芹,黎贞发,孙治贵.EOS/MODIS卫星对渤海海冰的观测研究[J].气象科学,2005,25(6):624-628.
    [20]朱小鸽,何执兼,邓明.最近25年珠江口水环境的遥感监测[J].遥感学报,2001,5(5):396-400.
    [21]顾文俊,赵忠明,王苓涓.基于变化监测技术的城区建筑变化目标提取[J].计算机工程与应用,2004,(1):198-200.
    [22]吴芳,刘荣,田维春,等.遥感变化检测技术及其变化综述[J].地理空间信息.2007.5(4):57-60.
    [23]许效.高分辨率遥感影像变化检测方法研究[D].北京:中国科学院地理科学与资源研究所,2010.
    [24]D. Lu, P. Mausel, E. Brondizio,et al. Change Detection Techniques[J].INT. J. Remote Sensing,2003,25(12):2365-2407.
    [25]李德仁.利用遥感影像进行变化检测[J].武汉大学学报信息科学版,2003,28(特刊):7-12.
    [26]Singh, A. Digital Change Detection Techniques Using Remotely Sensed Data[J].INT. J. Remote Sensing,1989,10(6):989-1003.
    [27]赵英时等.遥感应用分析原理与方法[M].北京:科学出版社,2003.187-189.
    [28]袁孝,陈诚,周军其.不同分辨率遥感图像变化检测研究[J].四川测绘,2008,31(3):137-140.
    [29]Robb D. Macleod, Russell G Congalton. A Quantitative Comparison of Change-Detection Algorithms for Monitoring Eelgrass from Remotely Sensed Data[J]. Photogrammetric Engineering & Remote Sensing,1998,64(3):207-216.
    [30]Wu G Y. Seasonal Change Detection of Water Quality in Texas Gulf Coast Using MODIS Remote Sensing Data[C]. UC GIS Summer Assembly 2003. Pacific Grove,California,2003.
    [31]I Nyoman Radiarta, Sei-Ichi Saitoh. Satellite-derived Measurements of Spatial and Temporal Chlorophyll-avariability in Funka Bay[C], southwestern Hokkaido,
    Japan. Estuarine,Coastal and Shelf Science,2008,97(3):400-408.
    [32]常军,刘高焕,刘庆生.黄河口海岸线演变时空特征及其与黄河来水来沙关系[J].地理研究,2004,23(5):339-346.
    [33]徐美,黄诗峰,李小涛,等.黄河口近十年变化遥感监测及水沙条件分析[J].泥沙研究,2007,6:39-46.
    [34]刘荣高,刘洋,刘纪远..MODIS科学数据处理研究进展[J].自然科学进展,2009,19(2):141-147.
    [35]郭广猛.关于MODIS卫星数据的几何校正方法[J].遥感信息,2002,(3):26-28.
    [36]Steve Ackerman, Kathleen Strabala, Paul Menzel,et al. Discriminating Clear-sky From Cloud With MODIS Algorithm Theoretical Basis Document (MOD35). Nasa MODIS Cloud Algorithm,2006.
    [371中国大百科全书编委会.中国大百科全书,大气科学、海洋科学、水文科学卷[M].北京:中国大百科全书出版社,1987,1-923.
    [38]冯士榨,李凤岐,李少菁.海洋科学导论[M].北京:高等教育出版社,1999,434.
    [39]姜义,李建芬,康慧等.渤海湾西岸近百年来海岸线变迁遥感分析[J].国土资源遥感,2003,4:54-58.
    [40]马小峰,赵冬至,邢小罡等.海岸线卫星遥感提取方法研究[J].海洋环境科学,2007,26(2):185-189.
    [41]仉天宇,杜勇,刘倬腾.利用NOAA卫星AVHRR图像对渤海表层水温年变化的初步分析[J].青岛海洋大学学报,1999,29(1):29-34.
    [42]毛克彪,覃志豪,刘伟.用MODIS影像和单窗算法反演环渤海地区的地表温度[J].测绘与空间地理信息,2004,27(6):23-25.
    [43]潘淑杰.EOS/MODIS卫星资料在渤海海冰监测中的应用研究[D].甘肃兰州:兰州大学,2008.
    [44]史培军,范一大,哈斯等.利用AVHRR和MODIS数据测算海冰资源量——以渤海海冰资源测算为例[J].自然资源学报,2002,17(2):138-143.
    [45]吴龙涛,吴辉碇,张蕴斐,等.MODIS渤海海冰遥感资料反演[J].中国海洋大学学报,2006,36(2):173-179.
    [46]丛丕福,赵冬至,曲丽梅.利用卫星遥感技术监测赤潮的研究[J].海洋技术,2001,20(4):69-72.
    [47]王其茂,马超飞,唐军武等.EOS/MODIS遥感资料探测海洋赤潮信息方法[J].遥感技术与应用,2006,21(1):6-10.
    [48]赵玲,赵冬至,张听阳.我国有害赤潮的灾害等级与时空分布[J].海洋环境科学,2003,22(2):15-19.
    [49]于五一,李进,邵芸,等.海上油气勘探开发中的溢油遥感监测技术——以渤海湾海域为例[J].石油探测与开发,2006,34(3):378-383.
    [50]苏伟光.海洋卫星遥感溢油监测技术与应用研究[D].湖南长沙:中南大学,2008.
    [51]丁静,唐军武,林明森.MODIS水色遥感数据的获取与产品处理综述[J].遥感技术与应用,2003,18(4):263-268.
    [52]刘江,张为成,王强.MODIS影像质量评价方法研究[J].黑龙江工程学院学报 (自然科学版),2009,23(1):32-35.
    [53]王云鹏,闵育顺,傅家谟,等.水体污染的遥感方法及在珠江广州河段水污染监
    测中的应用[J].遥感学报,2001,5(6):460-465.
    [54]李四海,王宏,许卫东.海洋水色卫星遥感研究与进展[J].地球科学进展,2000,15(2):190-196.
    [55]A General Introduction to MODIS:http://modis.gsfc.nasa.gov.
    [56]翟伟康.MODIS大气校正及渤海水色时空分布特征研究[D].辽宁大连:大连海事大学,2006.
    [57]秦蕴珊,李凡.渤海海水中的悬浮体的研究[J].海洋学报,1982,4(2):191-200.
    [58]江文胜,苏健,杨华,等.渤海悬浮物浓度分布和水动力特征的关系[J].海洋学报,2002,24(增刊1):212-217.
    [59]Wensheng Jiang, Thomas Pohlmann, Jurgen Sundermann,et al. A modelling Study of SPM Transport in the Bohai Sea[J]. Journal of Marine Systems,2000,24(3-4):175-200.
    [60]丁德文.工程海冰学概论[M].北京:海洋出版社,2000:202-204.
    [61]国巧真,顾卫,李宁,等.渤海海冰面积信息提取系统的建立及其应用研究[J].海洋通报,2007,26(3):105-111.
    [62]Grenfell T.C, D.K. Perovich. Spectral Albedos of Sea Ice and Incident Solar Irradiance in the Southern Beaufort Sea [J]. Journal of Geophysical Research-Oceans,1984,89(C3):3573-3580.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700