利用基因芯片技术发掘小麦内参基因及抗赤霉病相关基因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因表达分析在小麦的众多研究领域中变得日趋重要,在转录水平进行基因表达定量时,都需要应用内参基因对目标基因表达量进行校正和标准化,因此选择合适的内参基因显得十分重要,然而,目前还没有一种理想的小麦内参基因可以完全适用于不同类型的小麦组织。小麦赤霉病是一种世界性病害,是影响小麦高产、稳产和品质的重要因素之一。赤霉病的抗性受数量性状遗传控制,抗性分子标记QTL的研究越来越多,一大批数量性状QTL被定位,并且QTL的位点几乎存在于整个基因组,但是发掘及报道小麦赤霉病抗性相关基因的研究却很少。基因芯片技术是后基因组时代功能分析的重要技术之一,可以快速而高效地获得大量基因在mRNA水平的表达信息,从而能够在整个基因组范围对基因的表达进行分析,该技术已广泛的应用于小麦的基因表达研究。本文利用基因芯片技术发掘小麦内参基因及抗赤霉病相关基因。
     一、分析小麦基因表达谱芯片,筛选表达较为稳定的小麦内参基因,结果如下:
     1.收集及分析小麦基因表达谱芯片共333张,包括了盐胁迫、干旱胁迫、铝胁迫、氮胁迫、高温胁迫、锈病菌诱导、白粉病菌诱导、赤霉病菌诱导及不同发育时期的9个实验组,在倍数阈值为2的情况下筛选到基因表达相对稳定的探针117个。通过生物信息学分析,最终确定50个表达相对稳定的候选内参基因。
     2.应用实时荧光定量PCR技术,检测50个候选内参基因在不同时期根、茎、叶、种子及盐、旱、冻、脱落酸、铝、氮、病等不同胁迫下的表达情况。经geNorm、Normfinder及MINTAB分析处理,表明32个内参基因在各个组织及不同胁迫环境下表达量均相对稳定,其中7个内参基因表现出极高的稳定性,可作为表达水平的分子标记,用于校正目标基因表达量。
     3.选择7个新鉴定的内参基因与13个传统的内参基因进行表达稳定性分析,发现新鉴定的内参基因较传统的内参基因稳定。而在传统的内参基因中,EF1A表现出很更高的稳定性,传统的内参基因Gapdh和alpha-tubulin出现了很不稳定的表达。
     二、分析小穗病率、赤霉菌的含量及产生毒素(DON)含量来鉴定不同QTL材料的赤霉病抗性,采用基因芯片技术分析含有不同QTL材料基因表达谱,筛选与抗赤霉病QTL相关的基因,结果如下:
     1.含有抗赤霉病3BS、DL、5A-QTL材料的抗病性均高于不含有抗赤霉病QTL的材料,抗性亲本HC374的抗性最强,不含有抗赤霉病QTL的材料与感病亲本BW301的抗性基本相似,出现了极差的抗性。
     2.筛选到与抗赤霉病2DL-QTL相关的基因1个,该基因只在含有抗赤霉病2DL-QTL的材料中表达,并且确定该基因的来源于Wuhan,但是基因功能注释是未知的。
     3.筛选到与抗赤霉病3BS-QTL相关的基因4个,该基因只在含有抗赤霉病3BS-QTL的材料中低表达或不表达,4个基因的功能注释是未知的。
     4.筛选到与抗赤霉病5A-QTL相关的基因2个,其中一个基因只在含有抗赤霉病5A-QTL的材料中表达,并且确定基因来源于Nyubay,该基因编码了一个脂质转运蛋白,是一种重要的防御蛋白,在抵抗和适应外界胁迫中有着重要的作用。另一个基因在含有抗赤霉病5A-QTL的材料中诱导表达,其他材料中表达量不变,该基因编码了一个环氧化物水解酶,是生物体系中细胞保护、外源化合物代谢和信号调节的重要酶类。
With the development of genomics and bioinformatics, more and more researchers focus on the analysis and applications of gene expression and regulation. Microarray and qRT-PCR are increasingly becoming of the good choice for high-throughput gene expression analysis. To get reliable results from both methods of analysis, it is vital to get accurate normalization of gene expression against one or more control genes. Thus, it is required that more ideal internal control genes are identified for normalization using various methods. Fusarium head blight (FHB) is a devastating fungal disease of common wheat (Triticum aestivum L.) and durum wheat (T. turgidum L. var. durum) worldwide. And FHB is one of the main factors that could reduce wheat yields and change milling, baking and pasta-making properties. The genetic control of FHB resistance has been analyzed through lots of QTL mapping studies. While FHB resistance genes were rarely identified and reported in wheat during recently years. Microarray provides abundant information of gene expression in whole genome, and the technology has been widely used in Wheat, In this study, novel internal control genes and FHB resistance genes were identified and evaluated in wheat using microarray.
     Novel internal control genes were selected and evaluated using microarray and Q-PCR.
     1. In this study, fifty candidate genes for internal control were obtained from the analysis of 333 Affymetrix GeneChip Wheat Genome arrays from nine independent experiments (salt toleration, drought toleration, aluminium toleration, nitrogene toleration, high temperature toleration, rust toleration, powdery mildew toleration and different development stages). The two-fold ratio method was used to select potential genes/fragments with minimal changes between samples.
     2. Expression levels of the 50 selected genes were then evaluated by quantitative real-time PCR with cDNA samples from different tissues, stages of development and environmental conditions. Seven novel internal control genes of 32 which were relatively stable were selected for revising the expression of target genes after comparing their respective expression profiles using NormFinder, geNorm, Pearson correlation coefficients and the 2-fold-change method.
     3. The expression stabilities of the novel internal control genes from this study were compared with 13 traditional ones for their expression stability. It was observed that 7 of the novel internal control genes were better than the traditional ones in expression stability under all the tested cDNA samples. Among the traditional internal control genes, the elongation factor 1-alpha exhibited strong expression stability, whereas the alpha-tubulin and GAPDH genes had very poor expression stability in the range of wheat samples tested.
     FHB resistance was evaluated in some wheat lines (Null,2DL,3BS,5A-QTL), and some QTL related resistance genes were selected and analyzed.using Microarray and Q-PCR.
     1. The disease resistance analysis showed that QTL lines (2DL,3BS,5A-QTL) had higher resistance to FHB than the Null-QTL ones (Null). Parental material (HC374) had the most obvious resistance, while other parental material (BW301) and.3251 (Null) presented worse resistance to FHB.
     2. One gene related with 2DL-QTL was identified in 2DL-QTL lines. The gene only expresses in lines which included 2DL-QTL. The gene is from Wuhan according to the expression pattern which is same as that in Wuhan. But the gene annotation is unknown till now.
     3. Four genes related with 3BS-QTL were identified in 3BS-QTL line. Those genes are lower expression or no expression in lines which included 3BS-QTL, and the genes annotation are also unknown up to now.
     4. Two genes related with 5A-QTL were identified in 5A-QTL line. One gene only expresses in lines which included 5A-QTL, and it is from Nyubay according to the expression pattern which is same as that in Nyubay. This gene encodes a lipid transfer protein (LTP) which plays an important role in resistance to pathogen and adaptation to environmental stresses. Another gene was only induced expression in lines which included 5A-QTL, and encodes an epoxide hydrolase which presents in all living organisms and plays important roles in proceeding metabolism, cellular protective mechanisms and signaling pathways.
引文
1. Ali-Benali MA, Alary R, Joudrier P, Gautier MF:Comparative expression of five Lea genes during wheat seed development and in response to abiotic stresses by real-time quantitative RT-PCR. Biochem. Biophys. Acta (BBA) Gene Struct. Expr,2005, 1730:56-65.
    2. Al-Taweel K, Dilantha Fernando WG, Bruile-Babel AL. Construction and Characterization of a cDNA Library from Wheat Infected with Fusarium graminearum Fg 2.1nt J Mol Sci,2011,2(1):613-26.
    3. Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization,applied to bladder and colon cancer datasets.Cancer Res,2004, 64(15):5245-5250.
    4. Andreson JA, Stack RW, Liu S, Waldron BL, Fjeld AD, Coyne C, Moreno-Sevilla B, Mitchell FJ, Song QJ, Cregan PB, Frohberg RC. DNA markers for Fusarium head blight resistance QTL in two wheat populations. Theor Appl Genet,2001, 102:1164-1168.
    5. Andrew DS, Andrew JF, Frederick JB, David RAW, David LAG. A real-time PCR assay for the detection of Campylobacter jejuni in foods after enrichment culture. Applied and Environmental Microbiology,2003,69(3)1383-1390.
    6. Bai GH, Kolb FC, Shaner G, Domier CL. Amplified fragment length polymorphism markers linked to a major Quantitative Trait Locus controlling scab resistance in wheat. Phytopathology,1999,89:343-348.
    7. Bai GH, Plattner R, Desjardins A, Kolb F. Resistance to Fusarium head blight and deoxynivalenol accumulation in wheat. Plant Breed,2001,120:1-6.
    8. Bai GH, Shaner G. Scab of wheat: Prospects for control.Plant Disease,1994, 78:760-766.
    9. Bai G, Shaner G. Management and resistance in wheat and barley to fusarium head blight. Annu Rev Phytopathol,2004,42:135-161.
    10. Bellevik S, Zhang J, Meijer J. Brassica napus soluble epoxide hydrolase (BNSEH1). Eur J Biochem,2002,269(21):5295-302.
    11. Bernardo A, Bai G, Guo P, Xiao K, Guenzi AC, Ayoubi P. Fusarium graminearum-induced changes in gene expression between Fusarium head blight-resistant and susceptible wheat cultivars. Funct Integr Genomics,2007, 7(1):69-77.
    12. Blohm DH, Guiseppi-Elie A. New developments in microarray technology. Curr Opin Biotechnol,2001,12(1):41-47.
    13. Boddu J, Cho S, Muehlbauer GJ.Transcriptome analysis of trichothecene-induced gene expression in barley. Mol Plant Microbe Interact,2007,20(11):1364-1375.
    14. Boguski MS, Lowe TM, Tolstoshev CM. dbEST-database for"expressed sequence tags". Nature genetics,1993,4(4):332-333.
    15. Brazeau DA. Combining genome-wide and targeted gene expression profiling in drug discovery:microarrays and real-time PCR. Drug Disc Today,2004,9:838-845.
    16. Brunner AM, Yakovlev IA, Strauss SH. Validating internal controls for quantitative Plant gene exPression studies. BMC Plant Biol.,2004,4:14.
    17. Buerstmayr H, Lemmens M, Hartl L. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat.I. Resistance to fungal spread (type Ⅱ resistance). Theor Appl Genet,2002,104:84291.
    18. Bustin SA and Nolan T. Pitfalls of quantitative real-time reverse transcription polymerase chain reaction. J Biomol Tech,2004,15:155-166.
    19. Bustin SA, Benes V, Nolan T, Pfaffl MW. Quantitative real-time RT-PCR a perspective. J Mol Endocrinol,2005,34:597-601.
    20. Bustin SA. Quantification of mRNA using real-time reverse transcription PCR(RT-PCR):trends and problems. J Mol Endocrinol,2002,29(1):23-39.
    21. Cazalis R, Pulido P, Aussenac T, Perez-Ruiz JM., Cejudo FJ. Cloning and characterization of three thioredoxin h isoforms from wheat showing differential expression in seeds. J Exp Bot,2006,57(10):2165-2172.
    22. Chen J, Rider DA, Ruan R: Identification of valid housekeeping genes and antioxidant enzyme gene expression change in the aging rat liver. J Gerontol A Biol Sci Med Sci., 2006,61:20-27.
    23. Chen J, Griffey CA, Saghai Maroof MA, Stromberg EL, Biyashev RM, Zhao W, Chappell MR, Pridgen TH, Dong Y, Zeng Z. Validation of two major quantitative trait loci for Fusarium head blight resistance in Chi-nese wheat line W14. Plant Breed, 2006,125:99-101.
    24. Chen Y, Dougherty ER, Bittner ML. Ratio-Based Decisions and the Quantitative Analysis of cDNA Microarray Images. J Biomed Opt,1997,2(4):364-367.
    25. Chonmaitree T, Ford C, Sanders C, Lucia HL. Comparison of cell cultures for rapid isolation of enteroviruses. J Clin Microbiol,1988,26:2576-2580.
    26. Clarke B, Rahman S. A microarray analysis of wheat grain hardness. Theor Appl Genet 2005,110:1259-1267.
    27. Crismani W, Baumann U, Sutton T, Shirley N, Webster T, Spangenberg G, Langridge P, Able JA. Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat. BMC Genomics,2006,7:267.
    28. Czechowski T, Stitt M, Altman T, Udvardi MK, Scheible WR. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol,2005,139(1):5-17.
    29. Cuthbert PA, Somers DJ, Thomas J, Cloutier S, Brule'-Babel A. Fine mapping Fhbl. a major gene controlling Fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet,2006,112:1465-1472.
    30. Cuthbert PA, Somers DJ, Thomas J, Brule'-Babel A. Mapping of Fhb2 on chromosome 6BS:a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet,2007,114:429-437.
    31. Daud II, Scott ME. Validation of reference genes in cervical cell samples from human papillomavirus-infected and -uninfected women for quantitative reverse transcription-PCR assays. Clinical and Vaccine Immunology,2008,15(9):1369-1373.
    32. Denis AG, Andre L, Michele F, Rene H, Byron P. Cold induced expression of plant defensin and lipid transfer protein transcripts in winter wheat. Physiologia Plantarum, 2003,117(2):195-205.
    33. Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. BioTechniques,2004,37:112-119.
    34. Dobrowolski SF, Banas RA, Naylor EW, Powdrill T, Thakkar D. DNA microarray technology for neonatal screening. Acta Paediatr Suppl.,1999,88(432):61-64.
    35. Edqvist J, Farbos I. A germination-specific epoxide hydrolase from Euphorbia lagascae. Planta,2003,216(3):403-412.
    36. Exposito-Rodriguez M, Borges AA, Borges-Perez A, Perez JA. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol.,2008,8:131.
    37. Faccioli P, Ciceri GP, Provero P, Stanca AM, Morcia C, Terzi V. A combined strategy of "in silico" transcriptome analysis and web search engine optimization allows an agile identification of reference genes suitable for normalization in gene expression studies. Plant Mol Biol,2007,63:679-688.
    38. Faccioli P, Pecchioni N, Cattivelli L, Stanca AM, Terzi V. Expressed sequence tags from cold-acclimatized barley can identify novel plant genes. Plant Breeding 2001, 120:497-502.
    39. Faccioli P, Provero P, Herrmann C, Stanca AM, Morcia C, Terzi V. From single genes to co-expression networks:Extracting knowledge from barley functional genomics. Plant Molecular Biology,2005,58(5):739-50.
    40. Fleming AJ, Mandel T, Roth I, Kuhlemeier C. The patterns of gene expression in the tomato shoot apical meristem. Plant Cell,1993,5(3):297-309.
    41. Fodor SPA. Light-direeted Patialiy addressable Paralle lehemieal synthesis. Seience, 1991,251:767-773.
    42. Frericks M, Esser C. A toolbox of novel murine house-keeping genes identified by meta-analysis of large scale gene expression profiles. Biochimica et biophysica acta, 2008,1779(12):830-837.
    43. Gambini D, Ferrari A, Restagno G, Viora E, Campogrande M, Bastonero S, Pagliano M, Calza S, Ferrari M, Cremonesi L. Fetal DNA detection in maternal plasm a throughout gestation.-Hum Genet,2005,117(2-3):243-248.
    44. Gan XC, Liew AWC, Yan H. Microarray missing data imputation based on a set theoretic framework and biological knowledge. Nucl Acids Res,2006, 34(5):1608-1619.
    45. Gervais L, Dedryver F, Morlais JY, Bodusseau V, Negre S, Bilous M, Groos C, Trottet M. Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor Appl Genet,2003,106:961-970.
    46. Glare EM, Divjak M, Bailey MJ, Walters EH. Beta-actin and GAPDH housekeeping gene expression in asthmatic airways is variable and not suitable for normalizing mRNA levels. Thorax,2002,57:765-770.
    47. Gomi K, Yamamato H, Akimitsu K. Epoxide hydrolase:a mRNA induced by the fungal pathogen Alternaria alternata on rough lemon (Citrus jambhiri Lush). Plant Mol Biol.,2003,53(1-2):189-99.
    48. Guerbette F, Grosbois M, Jolliot-Croquin A, Kader JC, Zachowski A. Comparison of lipid binding and transfer properties of two lipid transfer proteins from plants. Biochemistry.1999,38(43):14131-14137.
    49. Guo PG, Bai GH, Shaner GE. AFLP and STS tagging of a major QTL for Fusarium head blight resistance in wheat. Theoretical and Applied Genetics,2003, 106(6):101121017.
    50. Guyon I, Weston J, Barnhill S, Vapnik V. Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning,2002,46(1):389-422.
    51. Han FP, Fedak G, Ouellet T, Dan H, Somers DJ. Mapping of genes expressed in Fusarium graminearum-infected heads of wheat cultivar'Frontana'. Genome,2005, 48(1):88-96.
    52. Heid CA, Stevens J, Livak KJ, Williams PM. Real-time quantitative PCR. Genome Research,1996,6(10):986-994.
    53. Hein I, Klein D, Lehner A, Bubert A, Brandl E, and Wagner M. Detection and quantification of the iap gene of Listeria monocytogenes and Listeria innocua by a new real-time quantitative PCR assay. Res Microbiol,2001,152:37-46.
    54. Higuchi R, Fockler C. Kinetic PCR analysis:real-time monitoring of DNA amplification reactions. Biotechnology,1993, 11(9):1026-1030.
    55. Huggett J, Dheda K, Bustin S, Zumla A. Real-time RT-PCR normalization; strategies and considerations. Genes Immun,2005,6:279-284.
    56. Jain M, Nijhawan A, Tyagi AK, Khurana JP. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun,2006,345(2):646-651.
    57. Jayatilake DV, Bai GH, Dong YH. A novel quantitative trait locus for Fusarium head blight resistance in chromosome 7A of wheat. Theor Appl Genet,2011,122:1189-1198.
    58. Jansen C, von Wettstein D, Schafer W, Kogel KH, Felk A, Maier FJ. Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proc Natl Acad Sci U S A,2005, 102(46):16892-16897.
    59. Kachroo A, Lapchyk L, Fukushige H, Hildebrand D, Klessig D, Kachroo P. Plastidial fatty acid signaling modulates salicylic acid- and jasmonic acid-mediated defense pathways in the Arabidopsis ssi2 mutant. Plant Cell,2003,15(12):2952-2965.
    60. Khimani AH, Mhashilkar AM, Mikulskis A, O'Malley M, Liao J, Golenko EE, Mayer P, Chada S, Killian JB, Lott ST. Housekeeping genes in cancer:normalization of array data. Biotechniques,2005,38:739-745.
    61. Kim BR, Nam HY, Kim SU, Kim SI, Chang YJ. Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Lett,2003, 25:1869-1872.
    62. Kong L, Anderson JM, Ohm HW. Induction of wheat defense and stress-related genes in response to Fusarium graminearum. Genome,2005,48(1):29-40.
    63. Kruger WM, Pritsch C, Chao S, Muehlbauer GJ. Functional and comparative bioinformatic analysis of expressed genes from wheat spikes infected with Fusarium graminearum. Molecular Plant Microbe Interaction,2002,15(5):445-455.
    64. Lee PD, Sladek R, Greenwood CM, Hudson TJ. Control genes and variability:absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res,2002,12:292-297.
    65. Li C and Wong WH. Model-based analysis of oligonucleotide arrays:model validation,design issues and standard error application. Genome Biology,2001, 2(8):research 0032.1-research 0032.11.
    66. Li C, Wong WH. Model-based analysis of oligonucleotide arrays:expression index computation and outlier detection. Proc Natl Acad Sci U S A,2001,98(1):31-36.
    67. Li T, Bai GH, Wu SY, Gu SL.Quantitative trait loci for resistance to fusarium head blight in a Chinese wheat landrace Haiyanzhong. Theor Appl Genet,2011, online.
    68. Lin F, Xue SL, Zhang ZZ, Zhang CQ, Kong ZX, Yao GQ, Tian DG, Zhu HL, Li CJ, Cao Y, Wei JB, Luo QY, Ma ZQ. Mapping QTL associated with resistance to Fusarium head blight in the Nanda 2419×Wangshuibai population: II. Type I resistance. Theor Appl Genet,2006,112:528-535.
    69. Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ. High density synthetic oligonucleotide arrays. Nat Genet,1999,21(1):20-24.
    70. Liu DW, Chen ST, Liu HP. Choice of endogenous control for gene expression in nonsmall cell lung cancer. Eur Respir J,2005,26(6):1002-1008.
    71. Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl, 1995,4(6):357-362
    72. Lossos IS, Czerwinski DK, Wechser MA, Levy R. Optimization of quantitative real-time RT-PCR parameters for the study of lymphoid malignancies. Leukemia,2003, 17(4):7892795.
    73. Ma HX, Zhang KM, Gao L, Bai H, Chen G, Cai ZX, Lu WZ. Quantitative trait loci for resistance to Fusarium head blight and deoxynivalenol accumulation in Wangshuibai wheat under field conditions. Plant Pathol,2006,55:739-745.
    74. Mackay IM. Real-time PCR in the microbiology laboratory. Clin Microbiol Infect, 2004,10:190-212.
    75. Marra MA, Hillier L, Waterson, RH. Expressed sequence tags-ESTablishing bridges between genomes. Trends in Genentics,1998,14:4-7.
    76. Marton MJ, DeRisi JL, Bennett HA, Iyer VR, Meyer MR, Roberts CJ, Stoughton R, Burchard J, Slade D, Dai H, Bassett DE Jr, Hartwell LH, Brown PO, Friend SH. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat Med,1998,4(11):1293-301.
    77. McCartney CA, Somers DJ, Fedak G, Cao W. Haplotype diversity at fusarium head blight resistance QTLs in wheat. Theor Appl Genet,2004,109:261-271.
    78. McMullen M, Jones R, Gallenberg D. FHB of wheat and barlye:Are-emerging disease of devastating impact. Plant Disease,1997,81:1340-1348.
    79. Meller M, Vadachkoria S, Luthy DA, Williams MA. Evaluation of housekeeping genes in placental comparative expression studies. Placenta,2005,26:601-607.
    80. Mesterhazy A. Types and components of resistance to Fusarium head blight of wheat. Plant Breed,1995,114:377-386.
    81. Mohammadi M, Kav NN, Deyholos MK. Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsive genes. Plant Cell Environ,2007,30:630-645.
    82. Molina A, Garcia OF. Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2. Plant J,1997,12:669-675.
    83. Mudgil Y, Shiu SH, Stone SL, Salt JN, Goring DR. A large complement of the predicted Arabidopsis ARM repeat proteins are members of the U-box E3 ubiquitin ligase family.2004, Plant Physiol,134:59-66.
    84. Mukesh J. Genome-wide identification of novel internal control genes for normalization of gene expression during various stages of development in rice. Plant Science,2009,176:702-706.
    85. Mutch DM, Berger A, Mansourian R, Rytz A, Rob erts MA. The limit fold change model:a practical approach for selecting differentially expressed genes from microarray data. BMC Bioinformatics,2002,3:17.
    86. Neuvians TP, Gashaw I, Sauer CG, von Ostau C, Kliesch S, Bergmann M, Hacker A, Grobholz R. Standardization strategy for quantitative PCR in human seminoma and normal testis. Biotechnol,2005,117:163-171.
    87. Nicot N, Hausman JF, Hoffmann L, Evers D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental,2005,56(421):2907-2914.
    88. Niu JS, Zhang LZ, Hong DF, Wang YH. Cloning, characterization and expression of wheat EDR1 (enhanced disease resistance) gene. J Plant Physiol Mol Biol,2005, 31:477.484.
    89. Nuwaysir EF, Bittner M, Trent J, Barrett JC, Afshari CA. Microarrays and toxicology: the advent of toxicogenomics. Mol Carcinog,1999,24(3):153-9.
    90. Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol,2009, 10:11.
    91. Parry DW, Nicholson P, Mcleod L. Fusarium ear blight (scab) in small grain cereals:a review. Plant Pathology,1995,44:207-238.
    92. Peltier HJ, Latham GJ. Normalization of microRNA expression levels in quantitative RT-PCR assays:Identification of suitable reference RNA targets in normal and cancerous human solid tissues. Rna,2008,14:844-852.
    93. Perez R, Tupac-Yupanqui I, Dunner S. Evaluation of suitable reference genes for gene expression studies in bovine muscular tissue. BMC Mol Biol,2008,9:79.
    94. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. Biotechnol Lett,2004, 26(6):509-515.
    95. Pfaffl MW. Quantification strategies in real-time PCR. In:Bustin S, editor. A-Z of Quantitative PCR. La Jolla, CA:International University Line.2004.
    96. Pongers-Willemse MJ, Verhagen OJ, Tibbe GJ, Wijkhuijs AJ, de Haas V, Roovers E, van der Schoot CE, van Dongen JJ. Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia,1998,12:2006-2014.
    97. Qi LL, Pumphrey MO, Friebe B, Chen PD, Gill BS. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat.Theor Appl Genet,2008,117:1155-1166.
    98. Quackenbush J, Cho J, Lee D, Liang F, Holt I, Karamycheva S, Parvizi B, Pertea G, Sultana R, White J. The TIGR Gene Indices:Analysis of gene transcript sequences in highly sampled eukaryotic species. Nucleic Acids Research,2001,29(1):159-164.
    99. Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun,2004,313(4):8562-862.
    100.Rotbart HA, Levin MJ, Villarreal LP, Tracy SM, Semler BL, Wimmer E. Factors affecting the detection of enteroviruses in cerebrospinal fluid with coxsackievirus B3 and poliovirus type 1 cDNA probes. J Clin Microbiol,1985,22:220-224.
    101.Ruth, JL, Morgan C, Pasko A. Linker arm nucleotide analogs useful in oligonucleotide synthesis. DNA 4,1985,93-97.
    102.Ryu DD, Nam DH. Recent progress in biomolecular engineering. Biotechnol Prog., 2000,16(1):2-16.
    103.Saiki, RK, Scharf S, Faloona F, Mullis KB, Horn G.T, Erlich HA, Arnheim N. Enzymatic amplification of 3-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science,1985,230:1350-1354.
    104.Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Seience,1995, 270(5235):467-470.
    105.Schmittgen TD, Zakrajsek BA. Effect of experimental treatment on housekeeping gene expression: Validation by real-time quantitative RT-PCR. Biochem Biophys Methods, 2000,46:69-81.
    106.Selinka HC, Wolde A, Sauter M, Kandolf R, Klingel K. Virus-receptor interactions of coxsackie B viruses and their putative influence on cardiotropism. Med Microbiol Immunol (Berl),2004,193:127-131.
    107.Steiner B, Kurz H, Lemmens M, Buerstmayr H. Differential gene expression of related wheat lines with contrasting levels of head blight resistance after Fusarium graminearum inoculation.Theor Appl Genet.2009,118(4):753-64.
    108.Selvey S, Thompson EW, Matthaei K, Lea RA, Irving MG, Griffiths LR. Beta-actin—an unsuitable internal control for RT-PCR. Mol Cell Probes,2001, 15:307-31.
    109.Snijders CHA. Breeding for resistance to fusarium in wheat and maize. In:Miller J D, Trenholm HL (eds) Mycotoxins in grain: compounds other than aflatoxin. Eagan St Paul Minn,1994, pp37-58.
    110.Snijders C H A. Fusarium head blight and mycotoxin contamination of wheat, a review. Neth J Plant Pathol,1990,96:187-198.
    111.Somers DJ, Fedak G, Savard M. Molecular mapping of novel genes controlling fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome,2003,46:555-564.
    112.Steiner B, Lemmens M, Griesser M, Scholz U, Schondelmaier J, Buerstmayr H. Molecular mapping of resistance to Fusarium head blight in the spring wheat cultivar Frontana. Theor Appl Genet,2004,109:215-224.
    113.Stroop W, Brahic GM, Baringer JR. Detection of tissue culture-adapted Theiler's virus RNA in spinal cord white matter cells throughout infection. Infect.Immun,1982, 37:763-770.
    114.Sun JY, Gaudet DA, Lu ZX, Frick M, Puchalski B, Laroche A. Characterization and antifungal properties of wheat nonspecific lipid transfer proteins. Mol Plant Microbe Interact,2008,21(3):346-360.
    115.Suzuki T, Higgins PJ, Crawford DR. Control selection for RNA quantitation. Biotechniques,2000,29:332-337.
    116.Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Henne G, Grisar T, Igout A, Heinen E. Housekeeping genes as internal standards:use and limits. J Biotechnol, 1999,75:197-200.
    117.Trail F. For blighted waves of grain:Fusarium graminearum in the postgenomics era. Plant Physiol,2009,149:103-110.
    118.Tricarico C, Pinzani P, Bianchi S, Paglierani M, Distante V, Pazzagli M, Bustin SA, Orlando C. Quantitative real time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for hunman tissue biopsies. Anal Biochem,2002,309:293-300.
    119.Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol,2002,3:research 0034.1-0034.11.
    120.Waldron BC, Moreno-Sevilla B, Anderson JA, Stack RW, Frohberg RC. RFLP mapping of QTL for Fusarium head blight resistance in wheat. Crop Science,1999, 39:805-811.
    121.Walker RA, Livermore DM. Detection of oxazolidinone-resistant Enterococcus faecalis and Enterococcus faecium strains by real-time PCR and PCR-restriction fragment length polymorphism analysis. J Clin Microbiol,2002,40:4298-4300.
    122.Wang JR, Wang L, Gulden S, Rocheleau H, Balcerzak M, Jiro H, Cao WG, Han F, Zheng YL, George F, Ouellet T. RNA profiling of fusarium head blight-resistant wheat addition lines containing the Thinopyrum elongatum chromosome 7E. Canadian Journal of Plant Pathology,2010,32(2):188-214.
    123.Wang Y Z. Epidemiology and management of wheat scab in China. In: CIMMY conference on Fusarium head scab:global status and future prospects. CIMMYT, El Batan,1997,97-105.
    124.Waldron Bl, Moreno-Sevilla B, Anderson JA, Stack RW, Frohberg RC. RFLP mapping of QTL for Fusarium head blight resistance in wheat. Crop Sci,1999,39:805-811.
    125.Whiley DM, LeCornec GM, Mackay IM, Siebert DJ, and Sloots TP. A real-time PCR assay for the detection of Neisseria gonorrhoeae by Light Cycler. Diagn Microbiol Infect Dis,2002,42:85-89.
    126.Winzeler EA, Richards DR, Conway AR, Goldstein AL, Kalman S, McCullough MJ, McCusker JH, Stevens DA, Wodicka L, Lockhart DJ, Davis RW. Direct allelic variation scanning of the yeast genome. Science,1998,281(5380):1194-1197.
    127.Xue S, Li G, Jia H, Xu F, Lin F, Tang M, Wang Y, An X, Xu H, Zhang L, Kong Z, Ma Z. Fine mapping Fhb4. a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet,2010,121:147-156.
    128.Yang YH, Buckley MJ, Speed TP. Analysis of cDNA microarray images. Brief Bioinform,2001,2(4):341-9.
    129.Yang Z, Gilbert J, Somers DJ, Fedak G, Procunier JD, McKenzie RIH. Marker-assisted selection of fusarium head blight resistance genes in two doubled-haploid populations of wheat. Mol Breed,2003,12:309-317.
    130.Yin JL, Shackel NA, Zekry A. Real-time reverse transeriPtase Polyerase chain reaetion (RT-PCR) for measurement of cytokine and growth factor mRNA expression with fluorogenic Probes or SYBR Green I. Immunol Cell Biol,2001,79(3):213-221.
    131.Yu YJ. Moncsomie arIalysis on the resistance to scab in wheat cultivar Sumai 3. Journal of Huazhong Agricultural College,1982,2(12):70-72.
    132.Zhang X, Lu X, Shi Q, Xu XQ, Leung HC, Harris LN, Iglehart JD, Miron A, Liu JS, Wong WH. Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. BMC Bioinformatics,2006,7:197.
    133.Zhang M, Zhang R, Yang JZ, Luo PG. Identification of a new QTL for Fusarium head blight resistance in the wheat genotype "Wang shui-bai". Molecular Biology Reports, 37(2):1031-1035.
    134.Zhou MP, Ren LJ, Zhang X, Scholten OE, Huang YH, Ma HX, Lu WZ. QTL analysis of resistance to Fusarium head blight in wheat (Triticum aestivum L.). Acta Agron Sin, 2004,30(8):739-744.
    135.Zhou WC, Kolb FC, Bai GH, Shaner G, Domier CL. SSR Mapping and sub2arm physical location of a major scab resistance QTL in wheat. National Fusarium Head blight Forum Biotechnology,2000,69-73.
    136.Zhu ZW, Dong CS. The stability comparison of housekeeping genes as internal standards. Biothechnology,2006,17:5.
    137.Zimmermann B, Holzgreve W, Wenzel F, Hahn S. Novel real-time quantitative PCR test for trisomy 21. Clin Chem,2002,48(2):362-363.
    138.柏贵华,周朝飞,钱存呜.小麦抗赤霉性及其他性状的配合力分析.江苏农业科学,1989,1:79-82.
    139.柏贵华,周朝飞,钱存鸣.小麦品种抗赤霉病扩展基因的遗传分析《主要农作物抗病性遗传研究进展》.江苏科学技术出版社,1990,171-175.
    140.陈凤花,王琳,胡丽华.实时荧光定量RT-PCR内参基因的选择.临床检验杂志,2005,23(5):393-395.
    141.陈建魁.定量PCR技术的研究进展.临床检验杂志,1997,15(2):121-123.
    142.封剑楠,胡志翔,钱蕴生.一起霉变米引起的食物中毒调查报告.中国卫生监督杂志,1999,1:22-23.
    143.付春华,陈孝平,余龙江.实时荧光定量PCR的应用和进展.激光生物学报,2005,14(6):466-471.
    144.郭杨,陈世界,郭万柱.荧光定量PCR技术及其应用研究进展.动物医学进展,2009,30(2):78-82.
    145.洪云,李津,汪和睦,赵铠.实时荧光定量PCR技术进展.国际流行病学传染病学杂志,2006,33(3):161-166.
    146.雷学忠,陈守春,赵连三.定量PCR技术研究进展.四川医学,2000,21(11):991.
    147.马璐琳,尚毅,亓增军,陈佩度,王秀娥,刘大钧.利用Affymetrix芯片分析DON诱导抗赤霉病小麦品种望水白的基因表达谱.麦类作物学报2009,29(6):959-964
    148.欧阳松应,杨冬等.实时荧光定量PCR技术及其应用.生命的化学.2004,24(1):74-76.
    149.王甜,陈庆富.荧光定量PCR技术研究进展及其在植物遗传育种中的应用.种子,2007,26(2):56-61.
    150.王小红.荧光定量PCR技术研究进展.国外医学分子生物学分册,2004,23(1):42-45.
    151.姚金宝.小麦品种苏麦3号抗赤霉病基因的染色体定位研究.作物学报1997.23:450-453.
    152.袁亚男,刘文忠.实时荧光定量PCR技术的类型、特点与应用.中国畜牧兽医,2008,35(3):72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700