线性方程组迭代法与预条件技术及在电磁散射计算中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究内容涉及数值计算方法中的两个方面.其一,主要发展了求解线性方程组的新的子空间投影法及其在计算电磁学、计算化学等科学与工程计算领域中的应用研究.其二,以开发基于物理问题的高效预条件子为出发点,对弱奇异积分处理技术及应用也做了研究.
     本文包括新算法的设计和算法的应用研究.算法设计方面主要创新成果包括:提出了一种新的求解对称正定线性方程组的算法–“二维双连续投影法(2D-DSPM)”,建立了带位移线性系统重开始的加权位移全正交法(RWS-FOM),开发了一类基于Lanczos双共轭A-标准正交过程的Krylov子空间投影法(BiCOR/CORS/BiCORSTAB).而推广应用方面的主要贡献包括:推广应用Lanczos双共轭A-标准正交法求解在计算电磁学和计算化学模型问题中产生的线性方程组以及将最新提出的处理弱奇异积分的机械求积技术推广应用于无限长金属柱体的散射计算问题.具体来说,本文研究内容组织为方法篇和应用篇,其中,下面前三部分归于方法研究篇,后三部分属于应用研究篇,具体内容如下:
     2D-DSPM方法.首先从科学计算领域广泛使用的投影技术角度重新解析了学者Ujevic′于2006年提出的一种新颖的数值迭代算法.然后结合投影技术和线性子空间理论,给出了一种新的求解对称正定线性方程组的算法–“二维双连续投影法(2D-DSPM)”.我们从理论上深入分析探讨了2D-DSPM方法较Ujevic′迭代算法的优越性,并且通过数值实验表明, 2D-DSPM方法在大部分实际问题求解时极其有效,收敛速度较Ujevic′方法快1~2倍.这方面研究工作可以说为定常迭代法和非定常迭代法之间搭建了一个桥梁,使我们进一步更加深刻地认识到了这两类方法之间的关系.目前为止,此研究工作已得到进一步推广和应用,例如3D-OPM、1V-DSMR和mD-DSPM方法的产生以及2D-DSPM方法在矩阵方程和边界层问题方面的推广应用.
     RWS-FOM方法.基于Essai于1998年给出的Arnoldi加权过程,提出了一种重开始的加权位移全正交法(RWS-FOM)用于求解带位移线性系统,并且对于该算法中涉及的权重选择策略进行了深入的探讨和研究.数值实验表明了RWS-FOM方法比重开始的位移全正交法(RS-FOM)在重开始次数方面所具有的加速性能.而且,RWS-FOM方法在一定程度上可以求解使用RS-FOM方法不收敛的带位移线性系统.
     BiCOR/CORS/BiCORSTAB方法.这部分研究内容是对用于求解复非Hermitian线性方程组的Krylov子空间方法作出的进一步发展与创新.在Sogabe和Zhang的COCR方法基础上,首先给出了一种Lanczos双共轭A-标准正交过程,然后在此过程基础上,提出了三种Krylov子空间投影法.前两种方法数值上改进和推广了Sogabe的相关方法.第三种方法是一个新算法,并且,第三种算法在某些情形下比前两种方法数值上更加稳定,收敛行为更加平滑.在大量数值比较实验的基础上,发现所提出的这三种算法无论从残差平滑性上,还是收敛速度上,都比经典的复双共轭梯度法(CBiCG)及其两个衍生方法(CGS, BiCGSTAB)以及Sogabe所提出的相关方法表现出色.特别是共轭A-正交残量平方法(CORS),某些情形下就收敛速度方面甚至可以与BiCGSTAB方法相媲美.目前为止,此研究工作已推广应用于计算电磁学、计算化学等科学与工程计算领域,例如应用Lanczos双共轭A-标准正交法求解通过矩量法(MoM)离散Maxwell方程组所得的稠密复非Hermitian线性系统以及求解由NERSC的Sherry Li提出的计算化学模型问题中产生的两个复非对称线性方程组的问题.
     Maxwell方程组和计算化学模型问题中迭代法应用研究.这两部分分别将我们提出的Lanczos双共轭A-标准正交法推广应用于求解在计算电磁学和计算化学模型问题中产生的大型线性方程组.其中,第一部分是对通过矩量法(MoM)离散Maxwell方程组所得的稠密复非Hermitian线性系统的迭代法应用研究.通过在一组表征计算实际目标雷达散射截面(RCS)的模型问题上进行的数值实验,展示了这类方法较其他流行的Krylov子空间方法所具有的竞争优势,特别是在存储量有一定限制要求的情况下.结果有助于评价Krylov子空间迭代法用于求解大尺寸电磁散射问题的潜力,同时也充实了该领域迭代法的求解技术.第二部分研究运用迭代法结合简单对角预条件技术求解由NERSC的Sherry Li提出的计算化学模型问题中产生的两个复非对称线性方程组的问题,进一步反映了BiCOR/CORS/BiCORSTAB方法与其他常用的迭代法相比所具有的竞争性.同时指出基于物理问题的特定预条件子对于Krylov子空间方法的成功运用起着关键性的作用.
     计算电磁学中弱奇异积分处理技术应用研究.最后一部分将最新提出的处理弱奇异积分的机械求积技术进行修正后应用于计算电磁学中的散射计算问题.其核心思想是高效计算阻抗矩阵,从而得到高精度的表面电流分布及雷达散射截面(RCS).通过计算无限长金属圆柱和椭圆柱的相关数据,所修正方法和计算电磁学界的经典矩量法相比在计算结果精度和求解速度方面具有明显的优越性.而且,所修正的机械求积方法对于电大问题也只需少量点就可以得到较好的表面电流分布及RCS.此工作将数学界的最新理论成果应用于电磁计算研究.另一方面,在应用的过程中又会产生新的数学问题,比如误差分析等,为今后的研究探明方向.同时,这方面的研究工作有助于深入理解阻抗矩阵的形成过程,为构造基于物理问题的高效预条件子奠定了坚实的算法理论基础.另外,采用迭代法求解此研究工作中产生的系数矩阵为复满阵的线性代数方程组的数值实验再一次验证了我们提出的Lanczos双共轭A-标准正交法所具有的有效性和实用性.
This thesis contributes to the development of numerical methods in two aspects. Onthe one hand, new subspace projection methods for solving systems of linear equationshave been further developed with application investigations in fields of, for instance, com-putational electromagnetics and computational chemistry. On the other hand, motivatedby recent development of efficient physics-based preconditioners, this thesis also has aninvestigation of techniques for dealing with weakly singular integrations as well as theirapplications in scattering problems.
     The research work herein involves designs of novel algorithms and application in-vestigations of pertinent algorithms. The main innovations with respect to algorithmdesign include: proposal of a new algorithm to solve symmetric positive definite lin-ear equations with the algorithm name as“two-dimensional double successive projectionmethod”(referred to as 2D-DSPM); establishment of the restarted weighted full orthogo-nalization method for shifted linear systems (referred to as RWS-FOM); development ofa novel class of Krylov subspace projection methods based on Lanczos Biconjugate A-Orthonormalizaion Procedure (referred to as BiCOR/CORS/BiCORSTAB). Some majorcontributions in applications comprise: extensive applications of Lanczos Biconjugate A-Orthonormalization methods for Method of Moments discretization of Maxwell’s equa-tions in computational electromagnetics as well as for linear systems arising in quantummechanics in computational chemistry model problems; adaptive application of recentlyproposed mechanical quadrature methods for an efficient solution of weakly singular in-tegral equations arising in two-dimensional electromagnetic scattering problems. Specif-ically, the contents of this thesis are organized into method study parts and applicationstudy parts, among which, the following first three parts are attributed to the first kind ofparts while the latter successive three parts belong to the second kind. They are illustratedin detail as follows:
     2D-DSPM method. A different interpretation of Ujevic′’s new iterative method isfirst given in terms of projection techniques widely used in scientific computing. Andthen a different new approach termed as“two-dimensional double successive projectionmethod”(referred to as 2D-DSPM) is obtained with the combination of projection tech- niques and theory of linear spaces. The proposed method is both theoretically and numer-ically proven in-depth to be better than (at least the same as) Ujevic′’s. As the presentednumerical examples show, in most cases, the convergence rate is more than one and ahalf that of Ujevic′. Such research work may build up a bridge between stationary andnonstationary iterative methods, further strengthening our profound understanding of therelationships between these two kinds of methods. So far, 2D-DSPM has been furthergeneralized and employed, such as presentations of 3D-OPM, 1V-DSMR and mD-DSPMmethods and applications of 2D-DSPM in areas of matrix equation and boundary layerproblems on heterogeneous cluster systems.
     RWS-FOM method. According to the weighted Arnoldi process proposed by Essaiin 1998, this part presents a hybrid algorithm, termed as restarted weighted full orthogo-nalization method (referred to as RWS-FOM) for shifted linear systems, which in effect,brings together the best of the restarted shifted full orthogonalization method (referred toas RS-FOM) on the one hand and the weighted Arnoldi process on the other. The issueon the strategy for the choice of the weights is investigated detailedly. Our method in-deed may provide accelerating convergence rate with respect to the number of restarts ata little extra expense, shown by the numerical experiments. In some circumstances whereour hybrid algorithm needs less enough number of restarts to converge than the RS-FOMmethod, it can amortize the extra cost in the weighted Arnoldi process and consequentlyit can reduce the CPU computing time. Moreover, our algorithm is able to solve certainshifted systems which the RS-FOM method cannot handle sometimes.
     BiCOR/CORS/BiCORSTAB methods. The contents in this part are to further de-velop and innovate Krylov subspace methods for complex non-Hermitian systems of lin-ear equations. Based on the recent Conjugate A-Orthogonal Conjugate Residual (COCR)method of Sogabe and Zhang, a version of the Biconjugate A-Orthonormalizaion Proce-dure is described first. Based on this new procedure, three Lanczos-type Krylov subspaceprojection methods are explored. The first two can be respectively considered as math-ematically equivalent but numerically improved popularizing versions of the BiCR andCRS methods for complex systems presented in Sogabe’s Ph.D. Thesis. And the last oneis somewhat new and is a stabilized and more smoothly converging variant of the firsttwo in some circumstances. Based on extensive numerical experiments, it is found thatthe presented algorithms can obtain smoother and, hopefully, faster convergence behav- ior in comparison with the CBiCG method as well as its two corresponding variants aswell as the counterparts of Sogabe. In particular, the Conjugate A-Orthogonal ResidualSquared method (CORS) gains a lot and sometimes may be amazingly competitive withthe BiCGSTAB method. So far, the methods developed in this work have been employedin scientific and engineering computing such as computational electromagnetics and com-putational chemistry. For instance, the Lanczos Biconjugate A-Orthonormalization meth-ods have been already used for the solution of dense complex non-Hermitian linear sys-tems arising from the Method of Moments discretization of Maxwell’s equations as wellas for the solution of two complex-valued nonsymmetric systems of linear equations aris-ing from a computational chemistry model problem proposed by Sherry Li of NERSC.
     Comparative study of iterative solutions to linear systems arising from Maxwellequations and computational chemistry model problems. These two parts respectivelyapply the Lanczos Biconjugate A-Orthonormalization methods developed to solve large-scale linear systems arising from model problems in computational electromagnetics andcomputational chemistry. Specifically, the first part considers the Lanczos BiconjugateA-Orthonormalization methods for the solution of dense complex non-Hermitian linearsystems arising from the Method of Moments discretization of Maxwell’s equations. Nu-merical experiments are reported on a set of model problems representative of realisticradar-cross section calculations to show their competitiveness with other popular Krylovsolvers, especially when memory is a concern. The results presented in this study willcontribute to assess the potential of iterative Krylov methods for solving electromag-netic scattering problems from large structures, enriching the database of this technol-ogy. While the second part is mainly focused on iterative solutions with simple diagonalpreconditioning to two complex-valued nonsymmetric systems of linear equations arisingfrom a computational chemistry model problem proposed by Sherry Li of NERSC, show-ing again the competitiveness of the Lanczos Biconjugate A-Orthonormalization meth-ods to other classical and popular iterative methods. By the way, experiment results alsoindicate that application specific preconditioners may be mandatory and required for ac-celerating convergence.
     Investigation of techniques for coping with weakly singular integral in computationalelectromagnetics as well as their applications. The focus of the last part is to exploreand adapt a novel mechanical quadrature method (MQM) to deal with weakly singular integral equations arising in two-dimensional electromagnetic scattering problems. Thepresented MQM method takes the essential strategy of splitting the integrands into appro-priate parts to obtain the solutions of high accuracy to two–dimensional TM–polarized in-duced currents and scattered fields of infinite two–dimensional cylinders under impressedelectric field illumination. It is numerically demonstrated that the MQM method is ob-viously superior to the classical method of moments (MoM) in both terms of accuracyand calculation speed. Moreover, the adapted MQM method can get nice surface currentdistribution and radar cross section (RCS) with a few discretization points for electri-cally large problems. This work applies the latest theoretical results in the mathematicalcommunity into research of electromagnetic computation. On the other hand, new math-ematical problems, such as error analysis, will be encountered during the applicationprocess, directing further research. Moreover, this research effort helps us to understandthe formation of the impedance matrix so as to provide a solid algorithmic and theoreticalfoundation for constructing physics-based preconditioners for linear systems. In addition,experiments on iterative solution to the generated dense complex nonsymmetric linearsystems in this study will again contribute to assess the validity and practicality of ourLanczos Biconjugate A-Orthonormalization methods.
引文
[1]石钟慈,袁亚湘.大规模科学与工程计算的理论和方法.湖南:湖南科学技术出版社, 1998
    [2]石钟慈.科学和工程计算.大自然探索. 1999, 18(68): 1-3
    [3]廖晓钟,赖汝.科学与工程计算.北京:国防工业出版社, 2003
    [4]孟大志,刘伟.现代科学与工程计算.北京:高等教育出版社, 2009
    [5]陈传淼.科学计算概论.北京:科学出版社, 2007
    [6]蔺小林.计算方法.西安:西安电子科技大学出版社, 2009
    [7]张韵华,奚梅成,陈效群.数值计算方法与算法.第二版.北京:科学出版社, 2006
    [8]吕同富,康兆敏,方秀男.数值计算方法.北京:清华大学出版社, 2008
    [9]奚梅成.数值分析方法.合肥:中国科学技术大学出版社, 1995
    [10]钟尔杰,黄廷祝.数值分析.北京:高等教育出版社, 2004
    [11]张平文,李铁军.数值分析.北京:北京大学出版社, 2007
    [12] J. W. Demmel. Applied Numerical Linear Algebra. Philadelphia: SIAM, 1997
    [13]徐树方,高立,张平文.数值线性代数.北京:北京大学出版社, 2002
    [14]曹志浩.数值线性代数.上海:复旦大学出版社, 1996
    [15]张凯院,徐仲.数值代数.北京:科学出版社, 2006
    [16]徐树方.矩阵计算的理论与方法.北京:北京大学出版社, 1995
    [17] G. W. Stewart. Matrix Algorithms, Volumns 1 to 5. Philadelphia: SIAM, 2002
    [18] M. Lundstrom. Fundamentals of Carrier Transport. Reading, MA: Addison-Wesley PublishingCompany, 1990
    [19] S. Selberherr. Analysis and Simulation of Semiconductor Devices. Wien: Springer-Verlag, 1984
    [20] W. M. Coughran and R. W. Freund. Recent advances in Krylov-subspace solvers for linear sys-tems and applications in device simulation. Simulation of Semiconductor Processes and Device.Cambridge, MA, USA: IEEE, 1997, 9-16
    [21] H. C. Elman, D. J. Silvester and A. J. Wathen. Finite Elements and Fast Iterative Solvers, withApplications in Incompressible Fluid Dynamics, Numerical Mathematics and Scientific Compu-tation, 21. Oxford, New York: Oxford University Press, 2005
    [22]胡家赣.线性代数方程组迭代解法.北京:科学出版社, 1997
    [23] G. Meurant. Computer Solution of Large Linear Systems, Volumn 28, Studies in Mathematicsand Its Applications. Amsterdam: Elsevier, 1999
    [24] Y. Saad. Iterative Methods for Sparse Linear Systems, second ed.. Philadelphia: SIAM, 2003
    [25]盛新庆.计算电磁学要论.北京:科学出版社, 2004
    [26] J. M. Jin. The Finite Element Method in Electromagnetics. New York: John Wiley & Sons, 1993
    [27]王秉中.计算电磁学.北京:科学出版社, 2002
    [28] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear equa-tions. ACM Trans. Math. Soft., 1983, 9: 302-325
    [29] J. W. H. Liu. Modification of the minimum degree algorithm by multiple elimination. ACMTrans. Math. Soft., 1985, 11: 141-153
    [30] J. W. H. Liu. The multifrontal method for sparse matrix solution: theory and practice. SIAMRev., 1992, 34: 82-109
    [31] T. A. Davis and I. S. Duff. A combined unifrontal/multifrontal method for unsymmetric sparsematrices. Technical Report TR-95-020, Computer and Information Sciences Department, Uni-versity of Florida, Gainesville, 1995
    [32] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, et al.. A supernodal approach to sparse partialpivoting. SIAM J. Matrix Anal. Appl., 1999, 20: 720-755
    [33] D. J. Rose and R. A. Willoughby. Sparse Matrices and Their Applications. New York and Lon-don: Plenum Press, 1972
    [34] G. H. Golub and C. F. Van Loan. Matrix Computations. 3rd ed., Baltimore, MD: Johns HopkinsUniversity Press, 1996
    [35] W.F. Tinney and J. W. Walker. Direct solution of sparse network equations by optimally orderedtriangular factorization. Proc. of IEEE, 1967, 55: 1801-1809
    [36] J. R. Bunch and B. N. Parlett. Direct methods for solving symmetric indefinite systems of linearequations. SIAM J. Numer. Anal., 1971, 8: 639-655
    [37] D. J. Evans. Direct methods of solution of partial differential equations with periodic boundaryconditions. Math. Comput. Simulation, 1979, XXI: 270-275
    [38] A. George and J. W. H. Liu. Computer solution of large sparse positive definite systems. Prentic-Hall, 1981
    [39] I. S. Duff, A. M. Erisman and J. K. Reid. Direct Methods for Sparse Matrices. Oxford: OxfordUniversity Press, 1986. Reprinted in paperback, 1989
    [40] P. R. Amestoy, T. A. Davis and I. S. Duff. An Approximate Minimum Degree Ordering Algo-rithm. SIAM J. Matrix Anal. Appl., 1996, 17: 886-905
    [41] I. S. Duff. MA57-a code for the solution of sparse symmetric indefinite systems. ACM Trans.Math. Soft., 2004, 30: 118-144
    [42] I. S. Duff and J. A. Scott. A parallel direct solver for large sparse highly unsymmetric linearsystems. ACM Trans. Math. Soft., 2004, 30: 95-117
    [43] M. M. Abu-Elnaga, M. A. El-Kady and R. D. Findlay. Sparse formulation of the transient energyfunction method for applications to large-scale power systems. IEEE Trans. Power Syst., 1988,3: 1648-1654
    [44] H. D. Simon. Direct sparse matrix methods. Modern Numerical Algorithms for Supercomputers,Center for High Performance Computing. Austin: The University of Texas, 1989, 325-344
    [45] R. W. Freund, G. H. Golub and N. M. Nachtigal. Iterative solution of linear systems. Acta Nu-merica, 1992, 1: 57-100
    [46] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear systems of whichthe coefficient matrix is a symmetric M-matrix. Math. Comp., 1977, 31 (137): 148-162
    [47] J. A. Meijerink and H. A. van der Vorst. Guidelines for the usage of incomplete decompositionsin solving set of linear equations as they occur in practical problems. J. Comput. Phys., 1981,44: 134-155
    [48] C. Pommerell. Solution of large unsymmetric systems of linear equations: [Ph.D. Thesis],Zu?rich: Swiss Federal Institute of Technology, 1992
    [49] I. S. Duff. Combining direct and iterative methods for the solution of large linear systems in dif-ferent application areas. Technical Report RAL-TR-2004-033, Rutherford Appleton Laboratory,Chilton, Didcot, Oxfordshire, U.K., 2004. Also TR/PA/04/128, CERFACS, Toulouse, France.
    [50] I. Gustafsson. A class of first order factorization methods. BIT, 1978, 18: 142-156
    [51] M. A. Ajiz and A. Jennings. A robust incomplete Choleski-conjugate gradient algorithm. Int. J.Numer. Methods Eng., 1984, 20: 949-966
    [52] P. Concus, G. H. Golub and G. Meurant. Block preconditioning for the conjugate gradientmethod. SIAM J. Sci. and Stat. Comp., 1985, 6: 220-252
    [53] X.-C. Cai, W. D. Gropp and D. E. Keyes. A comparison of some domain decomposition and ILUpreconditioned iterative methods for nonsymmetric elliptic problems. Numer. Linear AlgebraAppl., 1994, 1: 477-504
    [54] M. Benzi, C. D. Meyer and M. Tu¨ma. A sparse approximate inverse preconditioner for the con-jugate gradient method. SIAM J. Sci. Comput., 1996, 17: 1135-1149
    [55] X. Wang, K. A. Gallivan and R. Bramley. CIMGS: An incomplete orthogonal factorizaion pre-conditioner. SIAM J. Sci. Comput., 1997, 18: 516-536
    [56] M. J. Grote and T. Huckle. Parallel preconditioning with sparse approximate inverse. SIAM. J.Sci. Comput., 1997, 18: 838-853
    [57] Y. Saad. Preconditioning techniques for nonsymmetric and indeffinite linear systems. J. Comput.Appl. Math., 1988, 24: 89-105
    [58] Y. Saad. ILUT: A dual threshold incomplete LU factorization. Numer. Linear Algebra Appl.,1994, 1: 387-402
    [59] Y. Saad and J. Zhang. BILUM: Block versions of multielimination and multilevel preconditionerfor general sparse linear systems. SIAM J. Sci. Comput., 1999, 20: 2103-2121
    [60] E. Chow and Y. Saad. Experimental study of ILU preconditioners for indefinite matrices. J.Comp. Appl. Math., 1997, 86: 387-414
    [61] E. Chow and Y. Saad. Approximate inverse preconditioners via sparse-sparse iterations. SIAMJ. Sci. Comput., 1998, 19: 995-1023
    [62] G. Alleon, M. Benzi and L. Giraud. Sparse approximate inverse preconditioning for dense linearsystems arising in computational electromagnetics. Numer. Algo., 1997, 16: 11-15
    [63] M. Benzi and M. Tu¨ma. A sparse approximate inverse preconditioner for nonsymmetric linearsystems. SIAM J. Sci. Comput., 1998, 19: 968-994
    [64] M. Benzi and M. Tu¨ma. A comparative study of sparse approximate inverse preconditioners.Appl. Numer. Math., 1999, 30: 305-340
    [65] M. Benzi, D. B. Szyld, and A. van Duin. Orderings for incomplete factorization preconditioningof nonsymmetric problems. SIAM J. Sci. Comput., 1999, 20: 1652-1670
    [66] M. Benzi, D. B. Szyld and G. Mateescu. Numerical experiments with parallel ordering for ILUpreconditioners. Elec. Trans. Numer. Anal., 1999, 8: 88-114
    [67] M. Benzi, J. K. Cullum, and M. Tu¨ma. Robust approximate inverse preconditioning for theconjugate gradient method. SIAM J. Sci. Comput., 2000, 22: 1318-1332
    [68] M. Benzi, R. Kouhia, and M. Tu¨ma. Stabilized and Block Approximate Inverse Precondition-ers for Problems in Solid and Structural Mechanics. Computer Methods in Applied Mech. andEngineer., 2001, 190: 6533-6554
    [69] M. Benzi. Preconditioning techniques for large linear systems: A survey. J. Comput. Phys., 2002,182: 418-477
    [70] S. H. Cheng and N. J. Higham. A modified Cholesky algorithm based on a symmetric indefinitefactorization. SIAM J. Matrix Anal. Appl., 1998, 19: 1097-1110.
    [71] M. I. M. Gould and J. A. Scott. Sparse approximate-inverse preconditioners using norm-minimization techniques. SIAM J. Sci. Comput., 1998, 19: 605-625
    [72] S. W. Kim and J. H. Yun. Block ILU factorization preconditioners for a block-tridiagonal H-matrix. Linear Algebra and its Applications, 2000, 317: 103-125
    [73] Z. Z. Bai, I. S. Duff and A. J. Wathen. A class of incomplete orthogonal factorization methods.I: methods and therorems. BIT, 2001, 41: 053-070
    [74] Z. Z. Bai, G. H. Golub, and J. Y. Pan. Preconditioned Hermitian and skew-Hermitian splittingmethods for non-Hermitian positive semidefinite linear systems. Technical Report SCCM-02-12,Scientific Computing and Computational Mathematics Program, Stanford, CA: Department ofComputer Science, Stanford University, 2002
    [75] Z. Z. Bai, Iain S. Duff and J. F. Yin. Numerical study on incomplete orthogonal factorizationpreconditioners. J. Comput. Appl. Math., 2009, 226: 22-41
    [76] M. Bollho¨fer and Y. Saad. On the relations between ILUs and factored approximate inverses.SIAM J. Matrix Anal. Appl., 2002, 24: 219-237
    [77] M. Bollho¨fer and Y. Saad. A factored approximate inverse preconditioner with pivoting. SIAMJ. Matrix Anal. Appl., 2002, 23: 692-705
    [78] C. Shen and J. Zhang. Parallel two level block ILU preconditioning techniques for solving largesparse linear systems. Parallel Comput., 2002, 28: 1451-1475
    [79] B. Carpentieri. Sparse preconditioners for dense linear systems from electromagnetic applica-tions: [Ph.D. Thesis], France: CERFACS, 2002
    [80] B. Carpentieri, I. S. Duff and L. Giraud. A class of spectral two-level preconditioners. SIAM J.Sci. Comput., 2003, 25(2): 749-765
    [81] B. Carpentieri, I. S. Duff, L. Giraud, et al.. Combining fast multipole techniuqes and an approx-imate inverse preconditioner for large electromagnetism calculations. SIAM J. Sci. Comput.,2005, 27(3): 774-792
    [82] B. Carpentieri. A matrix-free two-grid preconditioners for solving boundary integral equationsin electromagnetism. Computing. 2006, 77: 275-296121
    [83] B. Carpentieri. Algebraic preconditioners for the Fast Multipole Method in electromagnetic scat-tering analysis from large structures: trends and problems. Elec. J. Bound. Elem., 2009, 7(1):13-49
    [84] A. T. Papadopoulos, I. S. Duff and A. J. Wathen. A class of incomplete orthogonal factorizationmethods. II: Implementation and results. BIT, 2005, 45: 159-179
    [85] J. F. Yin and K. Hayami. Preconditioned GMRES Methods with Incomplete Givens Orthogonal-ization Method for Large Sparse Least-Squares Problems. J. Comput. Appl. Math., 2009, 226:277-286
    [86] R. S. Varga. Matrix Iterative Analysis, second ed.. New York: Springer-Verlag, 2000
    [87] A. S. Householder. Theory of Matrices in Numerical Analysis. Johnson: Blaisdell PublishingCompany, 1964
    [88] D. M. Young. Iterative Solution of Large Linear Systems. New York: Academic Press, 1971
    [89] A. L. Hageman and D. M. Young. Applied iterative methods. New York: Academic Press, 1981
    [90] O. Axelsson. Iterative Solution Methods, Cambridge University Press, New York, 1994
    [91] W. Hackbusch. Iterative Solution of Large Linear Systems of Equations. New York: Springer-Verlag, 1994
    [92] A. Greenbaum. Iterative Methods for Solving Linear Systems, Frontiers in Applied Mathematics,17. Philadelphia: SIAM, 1997
    [93] C. Brezinski. Projection Methods for Systems of Equations. Amsterdam: North-Holland, 1997
    [94] R. Barrett, M. Berry, T. Chan, et al.. Templates for the Solution of Linear Systems: BuildingBlocks for Iterative Methods. Philadelphia: SIAM, 1994
    [95] Y. Saad and H. A. van der Vorst. Iterative solution of linear systems in the 20th century. J.Comput. Appl. Math., 2005, 43: 1155-1174
    [96] T. Sogabe. Extensions of the conjugate residual method: [Ph.D. Thesis], Tokyo: University ofTokyo, 2006
    [97] S. Frankel. Convergence rates of iterative treatments of partial differential equations. MTAC.1950, 4: 65-75
    [98] D. M. Young. Iterative methods for solving partial differential equations of elliptic type: [Ph.D.Thesis], Cambridge, MA, USA: Harvard University, 1950
    [99] C. Greif and J. Varah. Block stationay methods for nonsymmetric cyclically reduced systemsarising from discretization of the three-dimensional elliptic equation. SIAM J. Matrix Anal.Appl., 1999, 20: 1038-1059
    [100] L. F. Richardson. The approximate arithmetical solution by finite differences of physical prob-lems involving differential equations with an application to the stresses to a masonry dam. Philos.Trans. Roy. Sco. London Ser. A, 1910, 210: 307-357
    [101] G. H. Golub and R. S. Varga. Chebyshev semi iterative methods successive overrelaxation iter-ative methods and second order Richardson iterative methods. Numer. Math., 1961, 3: 147-168
    [102] A. Neumaier and R.S. Varga. Exact convergence and divergence domains for the symmetricsuccessive overrelaxation iterative SSOR method applied to H-matrices. Linear Algebra Appl.,1984, 58: 261-272
    [103] M. Neumann. On bounds for the convergence of the SSOR method for H-matrices. Linear andMultilinear Algebra, 1984, 15: 13-21
    [104] R. S. Chen, E. K. N. Yung, C. H. Chan, et al.. Application of the SSOR preconditioned CGalgorithm to the vector FEM for 3-D full-wave analysis of electromagnetic-field boundary-valueproblems. IEEE Trans. on Microwave Theory and Techniques, 2002, 50(4): 1165-1172
    [105] Z. Z. Bai, G. H. Golub and M. K. Ng. On successive-overrelaxation acceler-ation of the Hermitian and skew-Hermitian splitting iteration. Available online athttp://www.sccm.stanford.edu/wrap/pub-tech.html, 2004
    [106] D. Z. Ding, R. S. Chen and Z. H. Fan. SSOR preconditioned inner-outer ?exible GMRESmethod for MLFMM analysis of scattering of open objects. Progress In Electromagnetics Re-search, PIER, 2009, 89: 339-357
    [107] W. Hackbusch and U. Trottenberg. Multigrid Methods, Lecture Notes in Mathematics 960.Berlin: Springer, 1982
    [108] W. Hackbusch. Multi-Grid Methods and Applications, Volumn 4, Springer Series in Computa-tional Mathematics. Berlin: Springer-Verlag, 1985
    [109] J. W. Ruge and K. Stu¨ben. Algebraic Multigrid (AMG). Philadelphia: SIAM, 1986
    [110] S. F. McCormick. Multigrid Methods. Philadelphia: SIAM, 1987
    [111] P. Wesseling. An Introduction to Multigrid Methods. Chichester, U.K.: J. Wiley and Sons, 1992
    [112] W. L. Briggs, V. E. Henson and S. F. McCormick. A Multigrid Tutorial, second ed.. Philadel-phia: SIAM, 2000
    [113] K. Stu¨ben. Algebraic Multigrid (AMG): an Introduction with Applications. New York: Aca-demic Press, 2000
    [114] U. Trottenberg, C. Oosterlee and A. Schu¨ller. Multigrid. New York: Academic Press, 2001
    [115] A. Brandt. Algebraic multigrid theory: The symmetric case. Appl. Math. Comput., 1986, 19:23-56
    [116] L. Zaslavsky. An adaptive algebraic multigrid for reactor critically calculations. SIAM J. Sci.Comput., 1995, 16: 840–847
    [117] P. Vane¨k, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggregation for secondand fourth order elliptic problems, Computing, 1996, 56: 179-196.
    [118] A. J. Cleary, R. D. Falgout, V. E. Henson, et al.. Robustness and scalability of algebraic multi-grid. SIAM J. Sci. Comput., 2000, 21: 1886-1908
    [119] M. Brezina, A. J. Cleary, R. D. Falgout, et al.. Algebraic multigrid based on element interpola-tion (AMGe). SIAM J. Sci. Comput., 2000, 22: 1570-1592
    [120] K. Stu¨ben. A review of algebraic multigrid. J. Comput. Appl. Math., 2001, 124: 281-309
    [121] M. Brezina, R. Falgout, S. MacLachlan, et al.. Adaptive smoothed aggregation (αSA). SIAM J.Sci. Comput., 2004, 25: 1896–1920
    [122] J. Gopalakrishnan, J. E. Pasciak and L. F. Demkowicz. Analysis of a multigrid algorithm fortime harmonic Maxwell equations. SIAM J. Numer. Anal., 2004, 42: 90-108
    [123] M. J. Antonelli and T. Chartier. Improving algebraic multigrid efficiency for immersed interfaceproblems. Int. J. Pure Appl. Math., 2004, 10: 365-385
    [124] J. K. Kraus. Computing interpolation weights in AMG based on multilevel Schur complements.Computing, 2005, 74: 319-335
    [125] D. Peaceman and H. Rachford. The numerical solution of elliptic and parabolic differentialequations. J. SIAM, 1955, 3: 28-41
    [126] J. Douglas and H. Rachford. On the numerical soluton of heat conduction problems in two orthree space variables. Trans. Amer. Math. Soc., 1956, 82: 421-439
    [127] G. Birkhoff. Solving elliptic problems: 1930-1980. Elliptic Problem Solver. New York: Aca-demic Press, 1981, 17-38
    [128] G. Birkhoff, R. S. Varga and D. M. Young. Alternating direction implicit methods. Advances inComputers. New York: Academic Press, 1962, 189-273
    [129] E. L. Wachspress. CURE, a generalized two-space-dimension multigroup coding for the IBM-704. Technical Report KAPL-1724. New York: Knolls Atomic Power Laboratory, Schenectady,1957.
    [130] E. L. Wachspress. Iteraive Solution of Elliptic Systems and Applications to the Neutron Equati-nos of Reactor Physics. Englewood Cliffs, NJ: Prentice-Hall, 1966
    [131] G. Cimmino. Calcolo approssimato per le solzioni dei sistemi di equazioni lineari. Ric. Sci.Progr. Tecn. Econom. Naz., 1938, 9: 326-333
    [132] S. Kaczmarz. Angenaherte Au?osung von systemen linearer Gleichungen. Bull. Internat. Acad.Pol. Sci. Lett. A, 1937, 35: 355-357
    [133] W. Spakman and G. Nolet. Imaging algorithms, accuracy and resolution in delay time tomog-raphy. Mathematical Geophysics: A Survey of Recent Developments in Seismology and Geody-namics. Dordrecht: Reidel, 1987, 155-188
    [134] C. C. Paige and M. A. Saunders. LSQR: an algorithm for sparse linear equations and sparseleast squares. ACM Trans. Math. Soft., 1982, 8: 43-71
    [135] J. Dongarra and F. Sullivan. The top 10 algorithms in the 20th century (guest editors’introduc-tion). Comp. Sci. Eng., 2000, 2: 22-23
    [136] B. A. Cipra. The Best of the 20th Century: Editors name top 10 algorithms. from SIAM News,2000, 33(4): 1-2
    [137] A. Greenbaum. Krylov subspace approximations to the solution of a linear system. Linear andnonlinear conjugate gradient-related methods(Seattle, WA, 1995). Philadelphia: SIAM, 1996,83-91
    [138] G. H. Golub and H. A. van der Vorst. Closer to the solution: Iterative linear solvers. The Stateof the Art in Numerical Analysis. Oxford: Clarendon, 1997, 63-92
    [139] Z. Strakosˇ. Convergence and numerical behavior of the Krylov space methods. Proceedings ofthe NATO ASI Institute“Algorithms for Large Sparse Linear Algebraic Systems: The State ofthe Art and Applications in Science and Engineering”(invited lectures). Kluiver Academic, 1998,175-196
    [140] J. Liesen. Construction and analysis of polynomial iterative methods for non-Hermitian systemsof linear equations: [Ph.D. Thesis], Germany: Universita¨t Bielefeld, 1998
    [141] V. Simoncini and D. B. Szyld. Recent computational developments in Krylov subspace methodsfor linear systems. Numerical Lin. Alg. Appl., 2007, 14: 1-59
    [142] R. Suda. New iterative linear solvers for parallel circuit simulation: [Ph.D. Thesis], Tokyo:University of Tokyo, 1996
    [143] C. Greif and J. Varah. Iterative solution of cyclically reduced systems arising from discretizationof the three-dimensional convection-diffusion equation. SIAM J. Sci. Comput., 1998, 19: 1918-1940
    [144] W. Cheung and M. Ng. Block-circulant preconditioners for systems arsing from discretizationof the three-dimensional convection-diffusion equation. J. Comp. Appl. Math., 2002, 140: 143-158
    [145] Y.-F. Jing, B. Carpentieri, and T.-Z. Huang. Experiments with Lanczos biconjugate A-orthonormalization methods for MoM discretizations of Maxwell’s equations. Prog. Electro-magn. Res., PIER, 2009, 99: 427-451
    [146] Y.-F. Jing, T.-Z. Huang, Y. Duan and B. Carpentieri. A comparative study of iterative solutionsto linear systems arising in quantum mechanics. J. Comput. Phys., 2010, 229: 8511-8520
    [147] H. C. Elamn, Y. Saad and P. E. Saylor. The hybrid Chebyshev Krylov subspace algorithm forsolving nonsymmetric systems of linear equations. SIAM J. Sci. Stat. Comput., 1986, 7: 840-855
    [148] N. M. Nachtigal, L. Reichel and L. N. Trefethen. A hybrid GMRES algorithm for nonsymmetriclinear systems. SIAM J. Matrix Anal. Appl., 1992, 13: 796-825
    [149] T. A. Manteuffel and G. Strake. On hybrid iterative methods for nonsymmetric systems of linearequations. Numer. Math., 1996, 73, 489-506
    [150] I. C. F. Ipsen and C. D. Meyer. The idea behind Krylov methods. Technical Report, CRSC-TR97-3, NCSU Center For Research In Scientific Computation, January 31, 1997 (To Appear inAmerican Mathematical Monthly)
    [151] M. R. Hestenes and E. L. Stiefel. Methods of conjugate gradients for solving linear systems. J.Res. Nat. Bur. Standards Section B, 1952, 49: 409-436
    [152] C. Lanczos. Solution of systems of linear equations by minimized iterations. J. Res. Nat. Bur.Standards, 1952, 49: 33-53
    [153] J. H. Wilkinson and C. Reinsch. Handbook of Automatic Computation, Linear Algebra, Vol. II.New York: Springer, 1971.
    [154] G. H. Golub and D. P. O’Leary. Some history of the conjugate gradient and Lanczos algorithm:1948-1976. SIAM Rev., 1989, 31: 50-102
    [155] M. Engeli, T. Ginsburg, H. Rutishauser, et al.. Refined iterative methods for computation of thesolution and the eigenvalues of self-adjoint boundary value problems. Basel: Birha¨user, 1959
    [156] S. Kaniel. Estimates for some computational techniques in linear algebra. Math. Comp., 1966,20: 369-378
    [157] J. W. Daniel. The conjugate gradient method for linear and nonlinear operator equations. SIAMJ. Numer. Anal., 1967, 4: 10-26
    [158] J. W. Daniel. The approximate minimization of functionals. Englewood Cliffs, NJ: Prentice-Hall, 1971
    [159] J. K. Reid. On the method of conjugate gradients for the solution of large sparse systems oflinear equations. Large Sparse Sets of Linear Equations. New York: Academic Press, 1971, 231-254
    [160] J. Stoer. Solution of large linear systems of equations by conjugate gradient type methods.Mathematical Programming-The State of the Art. Berlin: Springer, 1983, 540-565
    [161] E. Stiefel. Relaxationsmethoden bester Strategie zur Lo¨sung linearer Gleichungssystems. Com-ment. Math. Helv., 1955, 29: 157-179
    [162] E. J. Craig. The N-step iteration procedures. J. Math. Phys., 1955, 34: 64-73
    [163] O. Axelsson. Conjugate gradient type-methods for unsymmetric and inconsistent systems oflinear equations. Linear Algebra Appl., 1980, 29: 1-16
    [164] O. Axelsson. A generalized conjugate gradient, least squares methods. Numer. Math., 1987, 51:209-227
    [165] C. C. Paige and M. A. Saunders. Solution of sparse indefinete systems of linear equations.SIAM J. Numer. Anal., 1975, 12: 617-629
    [166] R. Fletcher. Conjugate gradient methods for indefinite systems. Lecture Notes in Math., 1976,506: 73-89
    [167] P. K. W. Vinsome. ORTHOMIN: an iterative method for solving sparse sets of simultaneouslinear equations. Proceedings of the Fourth Symposium on Reservoir Simulation. Society ofPetroleum Engineers of AIME, 1976, 149-159
    [168] P. Concus and G. H. Golub and D. P. O’Leary. A generalized conjugate gradient method for thenumerical solution of elliptic partial differential equations. Sparse Matrix Computations. NewYork: Academic Press, 1976, 309-332
    [169] K. C. Jea and D. M. Young. Generalized conjugate gradients acceleration of nonsymmetrizableiterative methods. Lin. Algebra Appl., 1980, 34: 159-194
    [170] Y. Saad. Krylov subspace methods for solving large unsymmetric linear systems. Math. Com-put., 1981, 37: 105-126
    [171] Y. Saad. The Lanczos biorthogonalization algorithm and other oblique projection methods forsolving large unsymmetric systems. SIAM J. Numer. Anal., 1982, 19: 470-484
    [172] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for solving anonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 1986, 7: 856-869
    [173] S. C. Eisenstat, H. C. Elman and M. H. Schultz. Variational iterative methods for nonsymmetricsystems of linear equations. SIAM J. Numer. Anal., 1983, 20: 345-357
    [174] D. A. H. Jacobs. A generalization of the conjugate-gradient method to solve complex systems.IMA J. Number. Anal., 1986, 6: 447-452
    [175] H. A. van der Vorst and J. B. M. Melissen. A Petrov-Galerkin type method for solving Ax = b,where A is symmetric complex. IEEE Trans. Mag., 1990, 26(2): 706-708
    [176] H. A. van der Vorst. Iterative Krylov Methods for Large Linear Systems. Cambridge: Cam-bridge University Press, 2003
    [177] R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitianlinear systems. Numer. Math., 1991, 60: 315-339
    [178] R. W. Freund and N. M. Nachtigal. An implementation of the QMR method based on coupledtwo-term recurrences. SIAM J. Sci. Comput., 1994, 15(2): 313-337
    [179] R. W. Freund. Conjugate gradient-type methods for linear systems with complex symmetriccoefficient matrices. SIAM J. Sci. Statist. Comput., 1992, 13(1): 425-448
    [180] R. W. Freund and N. M. Nachtigal. A new Krylov-subspace method for symmetric indefinitelinear systems. Proceedings of the 14th IMACS World Congress on Computational and AppliedMathematics, 1996, 1253-1256
    [181] R. Weiss. Error-minimizing Krylov subspace methods. SIAM J. Sci. Comput., 1994, 15: 511-527
    [182] R. Weiss. Parameter-Free Iterative Linear Solvers, Mathematical Research. Berlin: AkademieVerlag, 1996, Vol. 97
    [183] J. J. Dongarra, I. S. Duff, D. C. Sorensen, et al.. Numerical linear algebra for high-performancecomputers, Volume 7 of Software, Environments, and Tools. Philadelphia: SIAM), 1998
    [184] Z. Z. Bai and D. J. Evans. Matrix multisplitting relaxation methods for linear complementarityproblems. Int. J. Comput. Math., 1997, 63: 309-326
    [185] Z. Z. Bai, G. H. Golub and M. K. Ng. Hermitian and skew-Hermitian splitting methods fornon-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl., 2003, 24: 603-626
    [186] Z. Z. Bai, G. H. Golub, L. Z. Lu and J. F. Yin. Block triangular and skew-Hermitian splittingmethods for positive-definite linear systems. SIAM J. Sci. Comput., 2005, 26: 844-863
    [187] M. Clemens and T. Weiland. Comparison of Krylv-type methods for complex linear systemsapplied to high-voltage problems. IEEE Trans. Mag., 1998, 34(5): 3335-3338
    [188] A. Bunse-Gerstner and R. Sto¨ver. On a conjugate gradient-type method for solving complexsymmetric linear systems. Lin. Alg. Appl., 1999, 287: 105-123
    [189] T. Sogabe and S.-L. Zhang. A COCR method for solving complex symmetric linear systems. J.Comput. Appl. Math., 2007, 199: 297-303
    [190] T. Sogabe, M. Sugihara, and S.-L. Zhang. An extension of the conjugate residual method tononsymmetric linear systems. J. Comput. Appl. Math., 2009, 226: 103-113
    [191] Y.-F Jing, T.-Z. Huang, Y. Zhang, et al.. Lanczos-type variants of COCR method for complexnonsymmetric linear systems. J. Comput. Phys., 2009, 228(17): 6376-6394
    [192] G. Sylvand. La Me′thode Multipo?le Rapide en Electromagne′tisme: Performances, Par-alle′lisation, Applications: [Ph.D. Thesis], France: Ecole Nationale desPonts et Chausse′es, 2002.
    [193] P. Sonneveld. CGS: a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci.Statist. Comput., 1989, 10(1): 36-52
    [194] H. A. van der Vorst. BiCGSTAB: a fast and smoothly converging variant of BiCG for the solu-tion of non-symmetric linear systems. SIAM J. Sci. Statist. Comput., 1992, 13: 631-644
    [195] M. H. Gutknecht. Variants of BiCGSTAB for matrices with complex spectrum. SIAM J. Sci.Comput., 1993, 14: 1020-1033
    [196] G. L. G. Sleijpen and D. R. Fokkema. BiCGSTAB(l) for linear equations involving unsymmetricmatrices with complex spectrum. Electronic Trans. Numer. Analysis, 1993, 1: 11-32
    [197] S.-Z Zhang. GPBiCG: generalized product-type methods based on BiCG for solving nonsym-metric linear systems. SIAM J. Sci. Comput., 1997, 18: 537-551
    [198] T. Sogabe, C.-H. Jin, K. Abe, et al.. On an improvement of the CGS method. Trans. JSIAM,2004, 14(1): 1-12, 2004 (in Japanese)
    [199] D. R. Taylor. Analysis of the look ahead Lanczos algorithm: [Ph.D. Thesis], Berkley: Universityof California, 1982
    [200] B. N. Parlett, D. R. Taylor and Z.-S. Liu. A look-ahead Lanczos algorithm for nonsymmetricmatrices. Math. Comput., 1985, 44: 105-124
    [201] R. W. Freund, M. H. Gutknecht and N. M. Nachtigal. An implementation of the look-aheadLanczos algorithm for non-Hermitian matrices. SIAM J. Sci. Comput., 1993, 14: 137-158
    [202] W. Scho?nauer. Scientific computing on vector computers. New York: North-Holland, 1987
    [203] C. Brezinski, M. Redivo-Zaglia and H. Sadok. Avoiding breakdown and near-breakdown inLanczos-type algorithms. Numer. Algo., 1991, 1: 261-284
    [204] C. Brezinski, M. Redivo-Zaglia and H. Sadok. A breakdown-free Lanczos-type algorithm forsolving linear systems. Numer. Math., 1992, 63: 29-38
    [205] R. E. Bank and T. F. Chan. An analysis of the composite step biconjugate gradient method.Numer. Math., 1993, 66: 259-319
    [206] Q. Ye. A breakdown-free variant of the Lanczos algorithm. Math. Comput., 1994, 62: 179-207
    [207] R. W. Freund. A transpose-free quasi-minimal residual algorithm for non-Hermitian linear sys-tems. SIAM J. Sci. Comput., 1993, 14(2): 470-482
    [208] T.F. Chan, E. Gallopoulos, V. Simoncini, et al.. A quasi-minimal residual variant of theBiCGSTAB algorithm for nonsymmetric systems. SIAM J. Sci. Comput., 1994, 15: 338-347
    [209] C. H. Tong. A family of quasi-minimal residual methods for nonsymmetric linear systems.SIAM J. Sci. Comput., 1994, 15: 89-105
    [210] P. Wesseling and P. Sonneveld. Numerical experiments with a multiple grid and a precondi-tioned Lanczos type method, in Approximation Methods for Navier-Stokes Problems, LectureNotes in Math. 771, Springer-Verlag, Berlin, Heidelberg, New York, 1980, 543–562
    [211] P. Sonneveld and M. B. van Gijzen. IDR(s): a family of simple and fast algorithms for solvinglarge nonsymmetric systems of linear equations. SIAM J. Sci. Comput., 2008, 31(2): 1035-1062
    [212] P. N. Brown and A. C. Hindmarsh. Matrix-free methods of stiff systems of ODES. SIAM J.Numer. Anal., 1986, 23: 610-638
    [213] Y. Saad and K. Wu. DQGMRES: a direct quasi-minimal residual algorithm based on incompleteorthogonalization. J. Numer. Lin. Algebra Appl., 1996, 3: 329-343
    [214] R. B. Morgan. A restarted GMRES method augmented with eigenvectors. SIAM J. Matrix Anal.Appl., 1995, 16(4): 1154-1171
    [215] C. C. Paige, M. Rozloz?nik and Z. Strakos?. Modified Gram-Schmidt(MGS), least squares andbackward stability of MGS-GMRES. SIAM J. Matrix Anal. Appl., 2006, 28(1): 264-284
    [216] Y. Saad. A ?exible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput., 1993,14: 461-469
    [217] H. A. van der Vorst and C. Vuik. GMRESR: A family of nested GMRES methods. Num. Lin.Alg. Appl., 1994, 1: 369-386
    [218] J. Erhel, K. Burrage and B. Pohl. Restarted GMRES preconditioned by de?ation. J. Comput.Appl. Math., 1996, 69: 303-318
    [219] R. B. Morgan. Implicitly restarted GMRES and Arnoldi methods for nonsymmetric systems ofequations. SIAM J. Matrix Anal. Appl., 2000, 21(4): 1112-1135
    [220] R. B. Morgan. GMRES with de?ated restarting. SIAM J. Sci. Comput., 2002, 24(1): 20-37
    [221] P. N. Brown. A theoretical comparison of the Arnoldi and GMRES algorithm. SIAM J. Sci.Statist. Comput., 1991, 12: 58-78
    [222] J. Cullum and A. Greenbaum. Relations between Galerkin and norm-minimizing iterative meth-ods for solving linear systems. SIAM J. Matrix Anal. Appl., 1996, 17: 223-247
    [223] A. Greenbaum and Z. Strakosˇ. Matrices that generate the same Krylov residual spaces. RecentAdvances in Iterative Methods, IMA Volumes in Mathematics and Its Applications, 60. NewYork: Springer, 1994, 95-119
    [224] A. Greenbaum, V. Pta′k and Z. Strakosˇ. Any nonincreasing convergence curve is possible forGMRES. SIAM J. Matrix Anal. Appl., 1996, 17: 465-469
    [225] R. Weiss. A theoretical overview of Krylov subspace methods. Special Issue on Iterative Meth-ods for Linear Systems, Applied Numerical Methods. 1995, 33-56
    [226] R. Weiss. Convergence behavior of generalized conjugate gradient methods: [Ph.D. Thesis],Karlsruhe: Univeristy of Karlsruhe, 1990.
    [227] R. Weiss. Properties of generalized conjugate gradient methods. J. Numer. Lin. Algebra Appl.,1994, 1(1): 45-63
    [228] R. Weiss. Error-minimizing Krylov subspace methods. SIAM J. Sci. Comput., 1994, 15: 511-527
    [229] R. Weiss. Minimization properties and short recurrences for Krylov subspace methods. Elec-tronic Trans. Numer. Anal., 1994, 2: 57-75
    [230] L. Zhou and H. F. Walker. Residual smoothing techniques for iterative methods. SIAM J. Sci.Comput., 1994, 15: 297-312
    [231] M. H. Gutknecht and M. Rozlozˇnik. A framework for generalized conjugate gradient methods–with special emphasis on contributions by Ru?diger Weiss. Appl. Numer. Math., 2002, 41: 7-22
    [232] B. Hendrickson and R. Leland. An improved spectral graph partitioning algorithm for mappingparallel computations. Technical Report SAND92-1460, UC-405. Albuquerque, NM: SandiaNational Laboratories, 1992
    [233] C. Brezinski and M. Redivo-Zaglia. Hybrid procedures for solving systems of linear equations.Numer. Math., 1994, 67: 1-19
    [234] H. F. Walker. Implementation of the GMRES method using Householder transformations.SIAM J. Sci. Comp., 1988, 9: 152-163
    [235] J. Drˇkosova′, A. Greenbaum, M. Rozlozˇnik, et al.. Numerical stability of the GMRES method.BIT Numer. Math., 1995, 35: 308-330
    [236] M. H. Gutknecht and Z. Strakosˇ. Accuracy of two three-term and three two-term recurrencesfor Krylov space solvers. SIAM J. Matrix Anal. Appl., 2000, 22: 213-229
    [237] G. L. G. Sleijpen, H. A. van der Vorst and J. Modersitzki. Differences in the effects of roundingerrors in Krylov solvers for symmetric indefinite linear systems. SIAM J. Matrix Anal. Appl.,2000, 22: 726-751
    [238] J. Liesen, M. Rozlozˇnik and Z. Strakosˇ. Least squares residuals and minimal residual methods.SIAM J. Sci. Comput., 2002, 23: 1503-1525
    [239] Golub. Signum Newsletter, 1981, 16(4): 7
    [240] V. Faber and T. Manteuffel. Necessary and sufficient conditions for the existence of a conjugategradient methods. SIAM J. Numer. Anal., 1984, 21: 352-361
    [241] V. V. Voevodin and E. E. Tyrtyshnikov. On generalization of conjugate direction methods, inNumerical Methods of Algebra (Chislennye Metody Algebry), Moscow State University Press,Moscow, 1981, 3-9. (English translation provided by E. E. Tyrtyshnikov)
    [242] V. V. Voevodin. On methods of conjugate directions. U.S.S.R. Comput. Maths. Phys., 1979, 19:228-233
    [243] V. V. Voevodin. The problem of a non-selfadjoint generalization of the conjugate gradientmethod has been closed. USSR Comp. Math. Math. Phys., 1983, 23: 143-144
    [244] J. Liesen and Z. Strakosˇ. On optimal short recurrences for generating orthogonal Krylov sub-space bases. SIAM Rev., 2008, 50(3): 485-503
    [245] V. Faber, J. Liesen and P. Tichy′. The Faber-Manteuffel theorem for linear operators. SIAM J.Numer. Anal., 2008, 46(3): 1323-1337
    [246] J. Liesen. Computable convergence bounds for GMRES. SIAM J. Matrix Anal. Appl., 2000,21(3): 882-903
    [247] J. Liesen and Z. Strakosˇ. Convergence of GMRES for tridiagonal Toeplitz matrices. SIAM Rev.,2004, 26(1): 233-251
    [248] J. Liesen and Z. Strakosˇ. On numerical stability in large scale linear algebraic computations.Zeitschriftfu¨r Angewandte Mathematik und Mechanik, 2005, 85: 307-325
    [249] J. Liesen and P. Tichy′. On the worst-case convergence of MR and CG for symmetric positivedefinite tridiagonal Toeplitz matrices. Electronic Trans. Numer. Anal., 2005, 20: 180-197
    [250] J. Liesen and P. E. Saylor. Orthogonal Hessenberg reduction and orthogonal Krylov subspacebases. SIAM J. Numer. Anal., 2005, 42(5): 2148-2158
    [251] J. Liesen. When is the adjoint of a matrix a low degree rational function in the matrix? SIAMJ. Matrix Anal. Appl., 2007, 29(4): 1171-1180
    [252] J. Liesen and B. N. Parlett. On nonsymmetric saddle point matrices that allow conjugate gradi-ent iterations. Numer. Math., 2008, 108: 605-624
    [253] J. I. Aliaga, D. L. Boley, R. W. Freund et al.. A Lanczos-type algorithm for multiple startingvectors. Technical Report Numerical Analysis Manuscript No 95-11. Murra Hill, NJ: AT&T BellLaboratories, 1996.
    [254] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differentialand integral operators. J. Res. Nat. Bur. Standards, 1950, 45: 255-282
    [255] N. M. Nachtigal, S. C. Reddy and L. N. Trefethen. How fast are nonsymmetric matrix iterations?SIAM J. Matrix Anal. Appl., 1992, 13: 778-795
    [256] Y.-F. Jing and T.-Z. Huang. On a new iterative method for solving linear systems and compari-son results. J. Comput. Appl. Math., 2008, 220(1-2): 74-84
    [257] N. Ujevic′. A new iterative method for solving linear systems. Appl. Math. Comput., 2006, 179:725-730
    [258] G.-H. Hou and L. Wang. A generalized iterative method and comparison results using projectiontechniques for solving linear systems. Appl. Math. Comput., 2009, 215(2): 806-817
    [259] X.-P. Sheng, Y.-F. Su and G.-L. Chen. A modification of minimal mesidual iterative method tosolve linear systems. Mathemathcal Problems in Engineering, 2009, Article ID 794589, 9 pages
    [260] D. K. Salkuyeh. A Generalization of the 2D-DSPM for Solving Linear Sys-tem of Equations. arXiv:0906.1798v1 [math.NA], 9 Jun. 2009. Available online at:http://arxiv.org/abs/0906.1798v1
    [261] F.-L Li, L.-S. Gong, X.-Y. Hu, et al.. Successive projection iterative method for solving matrixequation AX=B. J. Comput. Appl. Math., 2010, 234(8): 2405-2410
    [262] N. Alias, N. Hamzah, N. S. Amin, et al.. The parallelization of the direct and iterative schemesfor solving boundary layer problem on heterogeneous cluster systems. Submitted.
    [263] Y.-F. Jing and T.-Z. Huang. Restarted weighted full orthogonalization method for shifted linearsystems. Computers Math. Appl., 2009, 57(9): 1583-1591
    [264] T. Davis. The University of Florida Sparse Matrix Collection, NA Digest, vol. 97, no. 23. Avail-able online at http://www.cise.u?.edu/research/sparse/matrices, 1997
    [265] Y.-F. Jing and T.-Z. Huang, Y. Duan, S.-J. Lai and J. Huang. A novel integration method forweak singularity arising in two-dimensional scattering problems. IEEE Trans. Antennas Propa-gat., 2010, 58(8): 2725-2731
    [266] J. Huang and Z. Wang. Extrapolation algorithms for solving mixed boundary integral equationsof the Helmholtz equation by mechanical quadrature methods. SIAM J. Sci. Comput., 2009,31(6): 4115-4129
    [267] D. A. Knoll and P. R. McHugh. Newton-Krylov methods applied to a system of convection-diffusion-reaction equatinos. Computer Phys. Communication, 1995, 88: 141-160
    [268] V. A. Mousseau, D. A. Knoll and W. J. Rider. Physics-based preconditioning and the Newton-Krylov method for non-equilibrium radiation diffusion. J. Comput. Phys., 2000, 160: 743-765
    [269] D. A. Knoll and V. A. Mousseau. On Newton-Krylov multigrid methods for the incompressibleNavier-Stokes equatinos. J. Comput. Phys., 2000, 163: 262-267
    [270] V. A. Mousseau and D. A. Knoll. New physics-based preconditioning of implicit methods fornon-equilibrium radiation diffusion. J. Comput. Phys., 2003, 190: 42-51
    [271] J. Reisner, A. Wyszogrodzki, V. Mousseau, et al.. An efficient physics-based preconditioner forthe fully implicit solution of small-scale thermally driven atmospheric ?ows. 2003, 189: 30-44
    [272] B. Aksoylu and H. Klie. A family of physics-based preconditioners for solving elliptic equationson highly heterogeneous media. Appl. Numer. Math., 2009, 59: 1159-1186
    [273] A. Essai. Weighted FOM and GMRES for solving nonsymmetric linear systems. Numer. Algo.,1998, 18: 277-292
    [274] V. Simoncini. Restarted Full Orthogonalization Method for shifted linear systems. BIT Numer.Math., 2003, 43: 459-466
    [275] O. Taussky. Positive definite matrices. Inequalities. New York: Academic Press, 1967, 309-319
    [276] O. Taussky. Positive definite matrices and their role in the study of the characteristic roots ofgeneral matrices. Advan. Math., 1968, 175-186
    [277] C. R. Johnson. Positive definite matrices. Amer. Math. Monthly, 1970, 77: 259-264
    [278] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge: Cambridge University Press, 1985
    [279] K. Tanabe. Projection method for solving a singular system of linear equations and its applica-tions. Numer. Math., 1971, 17: 203-214
    [280] A. Bjo¨rck and T. Elfving. Accelerated projection methods for computing psedu-inverse solu-tions of systems of linear equations. BIT, 1976, 19: 145-163
    [281] C. Kamath and A. Sameh. A projection method for solving nonsymmetric linear systems onmultiprocessors. Parallel Comput., 1988/89, 9: 291-312
    [282] R. Bramley and A. Sameh. Row projection methods for large nonsymmetric linear systems.SIAM J. Sci. Statist. Comput., 1993, 13: 168-193
    [283] V. Simoncini. Variable accuracy of matrix-vector products in projection methods for eigencom-putation. SIAM J. Numer. Anal., 2005, 43(3): 1155-1174
    [284] L. Lopez and V. Simoncini. Analysis of projection methods for rational function approximationto the matrix exponential operator. SIAM J. Numer. Anal., 2006, 44: 613-635
    [285] M. A. Krasnoselskii, G. M. Vainniko, P. P. Zabreiko, et al.. Approximate Solutions of OpreatorEquations. Gro¨ningen: Wolters-Nordhoff, 1972.
    [286] M. I. G. Bloor and M. J. Wilson. Generating parametrization of wing geometries using partialdifferential equations. Comp. Methods. Appl. Mech. Eng., 1997, 148: 125-138
    [287] G. H. Golub and D. Vanderstraeten. On the preconditioning of matrices with skew-symmetricsplittings. Numer. Algo., 2000, 25: 223-239
    [288] A. Feriani, F. Perotti and V. Simoncini. Iterative system solvers for the frequency analysis oflinear mechanical systems. Computer Methods Appl. Mechanics Engineering, 2000, 190(13-14):1719-1739
    [289] V. Simoncini and F. Perotti. On the numerical solution of (λ2A+λB+C)x = b and applicationto structural dynamics. SIAM J. Sci. Comput., 2002, 23: 1876-1898
    [290] R. Takayama, T. Hoshi, T. Sogabe, et al.. Linear algebra calculation of Green’s functino forlarge-scale electronic structure theory. Phys. Rev. B, 2006, 73: 1-9
    [291] A. J. Laub. Numerical linear algebra aspects of control design computations. IEEE Trans. Au-tomat. Contr., 1985, AC-30: 97-108
    [292] B. N. Datta and Y. Saad. Arnoldi methods for large Sylvester-like observer matrix equations,and an associated algorithm for partial spectrum assignment. Linear Algebra Appl., 1991, 154-156: 225-244
    [293] R. W. Freund. Solution of shifted linear systems by quasi-minimal residual iterations. NumericalLinear Algebra. Berlin: de Gruyter, 1993, 101-121
    [294] A. Frommer and P. Maass. Fast CG-based methods for Tikhonov-Phillips regularizatino. SIAMJ. Sci. Comput., 1999, 20: 1831-1850
    [295] J. C. Cavendish, W. W. Culham and R. S. Varga. A comparison of Crank-Nicolson and Cheby-shev rational methods for numerically solving linear parabolic equations. J. Comput. Phys., 1972,10: 354-368
    [296] W. L. Seward, G. Fairweather and R. L. Johnston. A survey of higher-order methods for thenumerical integration of semidescrete parabolic problems. IMA J. Numer. Anal., 1984, 4: 375-425
    [297] R. A. Sweet. A parallel and vector variant of the cyclic reduction algorithm. SIAM J. Sci. Statist.Comput., 1988, 9: 761-765
    [298] E. Gallopoulos and Y. Saad. Efficient parallel soluion of parabolic equations: implicit methodson the Cedar multicluster. Proc. Fourth SIAM Conf. Parallel Processing for Scientific Comput-ing. Philadelphia: SIAM, 1990, 251-256
    [299] R. Narayanan and H. Neuberger. An alternative to domain wall fermions. Phys. Rev. D, 2000,62: 074504
    [300] H. Neuberger. Overlap Dirac operator. Numerical Challenges in Lattice Quantum Chromody-namics. Berlin: Springer, 2000
    [301] G. Arnold, N. Cundy, J. van den Eshof, et al.. Numerical methods for the QCD overlap operator:II. Sign-function and error bounds. 2003
    [302] D. Darnell, R. B. Morgan and W. Wilcox. De?ation of eigenvalues for iterative methods inlattice QCD. Nucl. Phys. B (Proc. Suppl.), 2004, 129: 856-858
    [303] A. Frommer, B. No¨ckel, S. Gu¨sken et al.. Many masses on one stroke: Economic computationof quark propagators. Intern. J. Modern Phys. C, 1995, 6: 627-638
    [304] B. Jegerlehner. Krylov space solvers for shifted linear systems. http://arXiv.org/abs/hep-lat/9612014, 1996
    [305] K. Meerbergen. The solution of parametrized symmetric linear systems. SIAM J. Matrix Anal.Appl., 2003, 24(4): 1038-1059
    [306] J. van den Eshof and G. L. G. Sleijpen. Accurate conjugate gradient methods for families ofshifted systems. Appl. Numer. Math., 2004, 49: 17-37
    [307] Z.-W. Li, Y. Wang and G.-D. Gu. Journal of Shanghai University (English Edition), 2005, 9(2):107-113
    [308] Z.-W. Li and G.-D. Gu. Restarted FOM augmented with Ritz vectors for shifted linear systems.Numerical Mathematics, (A Journal of Chinese Universities (English Series)), 2006, 15(1): 40-49
    [309] A. Frommer and U. Gla¨ssner. Solving shifted linear systems with GMRES and applicatinos tolattice gauge theory. Preprint BUGHW-SC 96/08
    [310] A. Frommer and U. Gla¨ssner. Restarted GMRES for shifted linear systems. SIAM J. Sci. Com-put., 1998, 19(1): 15-26
    [311] C. Le Calvez, and B. Molina. Implicitly restarted and de?ated GMRES. Numer. Algo., 1999,21: 261-285
    [312] G.-D Gu, J.-J Zhang and Z.-W Li. Restarted GMRES augmented with eigenvectors for shiftedlinear systems. Intern. J. Computer Math., 2003, 80(8): 1037-1047
    [313] G.-D Gu. Restarted GMRES augmented with harmonic Ritz vectors for shifted linear systems.Intern. J. Computer Math., 2005, 82(7): 837-849
    [314] D. Darnell, R. B. Morgan, W. Wilcox. De?ated GMRES for systems with multiple shifts andmultiple right-hand sides. Linear Algebra Appl., 2008, 429: 2415-2434
    [315] T. Sogabe, T Hoshi, S.-L. Zhang, et al.. On an application of the QMRSY M method to com-plex symmetric shifted linear systems. PAMM Proc. Appl. Math. Mech., 2007, 7: 2020081-2020082
    [316] T. Sogabe, T. Hoshi, S.-L. Zhang, et al.. On a weighted quasi-residual minimization strategy forsolving comolex symmetric shifted linear systems. Electronic Trans. Numer. Analysis, 2008, 31:126-140
    [317] A. Frommer. BiCGStab(l) for families of shifted linear systems. Computing, 2003, 70(2): 87-109
    [318] V. Simoncini, On the convergence of restarted Krylov subspace methods. SIAM. J. Matrix Anal.Appl., 2000, 22: 430-452
    [319] H. S. Najafi and H. Ghazvini. Weighted restarting methods in the weighted Arnoldi algorithmfor computing the eigenvalues of a nonsymmetric matrix. Appl. Math. Comput., 2006, 175:1276-1287
    [320] Z. H. Cao and X. Y. Yu. A note on weighted FOM and GMRES for solving nonsymmetric linearsystems. Appl. Math. Comput., 2004, 151: 719-727
    [321] S. H. Lam. The role of CSP in reduced chemistry modeling. IMA Symposium. Minnesota:Minnesota University, 1999, 13-19
    [322] L. Li, T.-Z. Huang and X.-P. Liu. Modified Hermitian and skew-Hermitian splitting methods fornon-Hermitian positive-definite linear systems. Numerical Lin. Alg. Appl., 2007, 14(3): 217-235
    [323] W. Shao, B.-Z. Wang and Z.-J. Yu. Space-domain finite-difference and time-domain momentmethod for electromagnetic silulation. IEEE Trans. EMC., 2006, 48(1): 10-18
    [324] M. D. Pocock and S. P. Walker. The complex Bi-conjugate Gradient solver applied to large elec-tromagnetic scattering problems, computational costs, and cost scalings. IEEE Trans. AntennasPropagat., 1997, 45: 140-146
    [325] D. A. H. Jacobs. The exploitation of sparsity by iterative methods. Sparse Matrices and theirUses. Springer, 1981, 191-222
    [326] C. Brezinski. Pade′Type Approximation and General Orthogonal Polynomials. Basel-Boston-Stuttgart: Birkha¨user–Verlag, 1980
    [327] T. K. Sarkar. On the application of the generalized biconjugate gradient method. J. Electromagn.Waves Appl., 1987, 1: 223-242
    [328] G. Markham. Conjugate Gradient type methods for indefinite, asymmetric, and complex sys-tems. IMA J. Numer. Anal., 1990, 10: 155-170
    [329] C. F. Smith, A. F. Peterson and R. Mittra. The biconjugate gradient method for electromagneticscatterings. IEEE Trans. Antennas Propagat., 1990, 38: 938-940
    [330] P. Joly and G. Meurant. Complex conjugate gradient methods. Numer. Algo., 1993, 4: 379-406
    [331] P. Joly. Me′thode de gradient conjugue′, Publications du Laboratoire d’Analyse Nume′rique.Paris: Universite′Pierre et Marie Curie, 1984
    [332] M. Clemens and T. Weiland. Iterative methods for the solution of very large complex symmet-ric linear systems of equations in electrodynamics. Eleventh Copper Mountain Conference onIterative Methods, Part 2. 1996
    [333] J. Cullum, W. Kerner and R. A. Willoughby. A generalized nonsymmetric Lanczos procedure.Computer Phys. Commu., 1989, 53: 19-48
    [334] J. Cullum and R. A. Willoughby. Lanczos Algorithms for Large Symmetric Eigenvalue Com-putations. Classics in Applied Mathematics. Philadelphia: SIAM, 2002, Vol. 41
    [335] M. Clemens and T. Weiland, Comparison of Krylov-type methods for complex linear systemsapplied to high-voltage problems. IEEE Trans. Mag., 1998, 5: 3335-3338
    [336] L. Li, T.-Z. Huang, Y.-F. Jing, et al.. Application of the incomplete Cholesky factorization pre-conditioned Krylov subspace method to the vector finite element method for 3-D electromagneticscattering problems. Computer Phys. Commu., 2010, 181: 271-276
    [337] W. Scho¨nauer. The efficient solution of large linear systems, resulting from the fdm for 3-dPDE’s, on vector computers. Proceedings of the First International Colloquium on Vector andParallel Computing in Scientific Applications. Paris, 1983
    [338] M. H. Gutknecht and M. Rozlozˇnik. Residual smoothing techniques: do they improve the lim-iting accuracy of iterative solvers? BIT, 2001, 41: 86-114
    [339] M. H. Gutknecht and M. Rozlozˇnik. By how much can residual minization accelerate the con-vergence of orthogonal residual methods? Numer. Algo., 2001, 27: 189-213
    [340] H. F. Walker. Residual smoothing and peak/plateau behavior in Krylov subspace methods. Appl.Numer. Math., 1995, 19: 279-286
    [341] J. Cullum. Peaks, plateaus, numerical instabilities in a Galerkin/minimal residual pair of meth-ods for solving Ax = b. Appl. Numer. Math., 1995, 19: 255-278
    [342] H. Sadok. Analysis of the convergence of the minimal and the orthogonal residual methods.Reprint, 1997
    [343] M. Eiermann and O. Ernst. Geometric aspects in the theory of Krylov space methods. ActaNumer., 2001, 10: 251-312
    [344] B. Parlett. Reduction to tridiagonal form and minimal realizations. SIAM J. Matrix Anal. Appl.,1992, 13: 567-593
    [345] M.H. Gutknecht. Lanczos-type solvers for nonsymmetric linear systems of equations. Acta Nu-mer., 1997, 6: 271-397
    [346] D. Day. An efficient implementation of the nonsymmetric Lanczos algoriths. SIAM J. MatrixAnal. Appl., 1997, 18: 566-589
    [347] G. L. G. Sleijpen and H. A. van der Vorst. An overview of approaches for the stable computationof hybrid BiCG method. Appl. Numer. Math., 1995, 19: 235-254
    [348] H. A. van der Vorst. The convergence behavior of preconditioned CG and CGS in the presenceof rounding errors. Lecture Notes in Math., 1990, 1457: 126-136
    [349] M. H. Gutknecht. Residual smoothing for Krylov space solvers: does it help at all? Seminar forApplied Mathematics. ETH Zurich Available online at http://www.sam.math.ethz.ch/?mhg
    [350] R. Mittra and K. Du. Characteristic basis function method for iteration-free solution of largeMethod of Moments problems. Prog. Electromagn. Res., B, 2008, 6: 307-336
    [351] H. R. Hassani and M. Jahanbakht. Method of Moment analysis of finite phased array of aperturecoupled circular microstrip patch antennas. Prog. Electromagn. Res., B, 2008, 4: 197-210
    [352] R. Danesfahani, S. Hatamzadeh-Varmazyar, E. Babolian, et al.. Applying Shannon wavelet basisfunctions to the Method of Moments for evaluating the Radar Cross Section of the conductingand resistive surfaces. Prog. Electromagn. Res. B, 2008, 8: 257-292
    [353] D. Y. Su, D. M. Fu and D. Yu. Genetic algorithms and Method of Moments for the design ofPifas. Prog. Electromagn. Res. Letters, 2008, 1: 9-18
    [354] C. Essid, M. B. B. Salah, K. Kochlef, et al.. Spatial-spectral formulation of Method of Momentfor rigorous analysis of microstrip structures. Prog. Electromagn. Res. Letters, 2009, 6: 17-26
    [355] W. C. Gibson. The Method of Moments in Electromagnetics. Boca Raton, FL: Chapman &Hall/CRC: Taylor & Francis Group, 2008
    [356] W. C. Chew and Y. M. Wang. A recursive T-matrix approach for the solution of electromagneticscattering by many spheres. IEEE Trans. Antennas Propagat., 1993, 41(12): 1633-1639
    [357] G. Alle′on, S. Amram, N. Durante, et al.. Massively parallel processing boosts the solution of in-dustrial electromagnetic problems: High performance out-of-core solution of complex dense sys-tems. Proceedings of the Eighth SIAM Conference on Parallel Computing. Philadelphia: SIAMBook, 1997
    [358] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys., 1987,73: 325-348
    [359] E. Darve. The fast multipole method(i): Error analysis and asymptotic complexity. SIAM J.Numer. Anal., 2000, 38(1): 98-128
    [360] B. Dembart and M.A. Epton. A 3D fast multipole method for electromagnetics with multiplelevels. Technical Report, ISSTECH-97-004. Seattle: The Boeing Company, 1994
    [361] J. M. Song, C.-C. Lu and W.C. Chew. Multilevel fast multipole algorithm for electromagneticscattering by large complex objects. IEEE Trans. Antennas Propagat., 1997, 45(10): 1488-1493
    [362] J. M. Song and W.C. Chew. The Fast Illinois Solver Code: Requirements and scaling properties.IEEE Comput. Science Engineer., 1998, 5(3): 19-23
    [363] J. M. Song, C. C. Lu, W. C. Chew, et al. Fast Illinois solver code (FISC). IEEE AntennasPropagat. Magazine, 1998, 40(3): 27-34
    [364] G. Sylvand. Complex industrial computations in electromagnetism using the fast multipolemethod. Mathematical and Numerical Aspects of Wave Propagation. Springer, 2003, 657-662.Proceedings of Waves 2003
    [365] O¨. Ergu¨l and L. Gu¨rel. Fast and accurate solutions of extremely large integral-equation problemsdiscretized with tens of millions of unknowns. Electron. Lett., 2007, 43(9): 499-500
    [366] O¨. Ergu¨l and L. Gu¨rel. Efficient parallelization of the multilevel fast multipole algorithm forthe solution of large-scale scattering problems. IEEE Trans. Antennas Propagat., 2008, 56(8):2335-2345
    [367] T. Malas, O¨. Ergu¨l and L. Gu¨rel. Sequential and parallel preconditioners for large-scale integral-equation problems. Computational Electromagnetics Workshop, Izmir, Turkey, August 30-31,2007, 35-43
    [368] T. Malas and L. Gu¨rel. Incomplete LU preconditioning with multilevel fast multipole algorithmfor electromagnetic scattering. SIAM J. Sci. Comput., 2007, 29(4): 1476-1494
    [369] F. Bilotti and C. Vegni. MoM entire domain basis functions for convex polygonal patches. J.Electromagn. Waves Appl., 2003, 17(11): 1519-1538
    [370] J. Y. Li, L. W. Li and Y. B. Gan. Method of Moments analysis of waveguide slot antennas usingthe EFIE. J. Electromagn. Waves Appl., 2005, 19(13): 1729-1748
    [371] S. M. Rao, D. R. Wilton and A. W. Glisson. Electromagnetic scattering by surfaces of arbitraryshape. IEEE Trans. Antennas Propagat., 1982, AP-30: 409-418
    [372] A. Bendali. Approximation par elements finis de surface de problemes de diffraction des ondeselectro-magnetiques: [Ph.D. Thesis], Paris: Universite′Paris VI, 1984
    [373] W. C. Chew and K. F. Warnick. On the spectrum of the electric field integral equation and theconvergence of the moment method. Int J. Numer. Methods Engineer., 2001, 51: 475-489
    [374] A. F. Peterson, S. L. Ray and R. Mittra. Computational Methods for Electromagnetics. NewYork: IEEE Press, 1998
    [375] Z. Fan, D.-Z. Ding and R.-S. Chen. The efficient analysis of electromagnetic scattering fromcomposite structures using hybrid Cfie-Iefie. Prog. Electromagn. Res., B, 2008, 10: 131-143
    [376] A. R. Samant, E. Michielssen and P. Saylor. Approximate inverse based preconditioners for 2Ddense matrix problems. Technical Report CCEM-11-96, University of Illinois, 1996
    [377] H. Gan and W. C. Chew. A discrete BiCG-FFT algorithm for solving 3D inhomogeneous scat-terer problems. J. Electromagn. Waves Appl., 1995, 9(10): 13391357
    [378] J. H. Lin and W. C. Chew. BiCG-FFT T-matrix method for solving for the scattering solutionfrom inhomogeneous bodies. IEEE Trans. Microwave Theory Tech., 1996, 44(7): 1150-1155
    [379] J. Lee, C.-C. Lu and J. Zhang. Incomplete LU preconditioning for large scale dense complexlinear systems from electromagnetic wave scattering problems. J. Comput. Phys., 2003, 185:158-175
    [380] J. Lee, C.-C. Lu and J. Zhang. Sparse inverse preconditioning of multilevel fast multipole algo-rithm for hybrid integral equations in electromagnetics. IEEE Trans. Antennas Propagat., 2004,52(9): 2277-2287
    [381] J. Rahola and S. Tissari. Iterative solution of dense linear systems arising from the electrostaticintegral equation in MEG. Phys. Medicine Bio., 2002, 47(6): 961-975
    [382] M. Nilsson. Iterative solution of Maxwell’s equations in frequency domain: [Master’s Thesis],Uppsala: Uppsala University Department of Information Technology, 2002
    [383] R. Durdos. Krylov solvers for large symmetric dense complex linear systems in electro-magnetism: some numerical experiments. Working Notes WN/PA/02/97, CERFACS. France:Toulouse, 2002
    [384] K. Sertel and J. L. Volakis. Incomplete LU preconditioner for FMM implementation. Micro.Opt. Tech. Lett., 2000, 26(7): 265-267
    [385] B. Carpentieri, I. S. Duff and L. Giraud. Sparse pattern selection strategies for robust Frobenius-norm minimization preconditioners in electromagnetism. Numer. Linear Algebra Appl., 2000,7(7-8): 667-685
    [386] J. Lee, C.-C. Lu and J. Zhang. Sparse inverse preconditioning of multilevel fast multipole algo-rithm for hybrid integral equations in electromagnetics. Technical Report 363-02, Department ofComputer Science, University of Kentucky, KY, 2002
    [387] B. Carpentieri, I. S. Duff, L. Giraud, et al.. Sparse symmetric preconditioners for dense linearsystems in electromagnetism. Numer. Linear Algebra with Appl., 2004, 11(8-9): 753-771
    [388] Mark Baertschy and Xiaoye Li, Solution of a three-body problem in quantum mechanics usingsparse linear algebra on parallel computers. Conference on High Performance Networking andComputing: Proceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM),Denver, Colorado, ISBN:1-58113-293-X, doi: http://doi.acm.org/10.1145/582034.582081,ACM, New York, NY, USA, 2001, 47-47
    [389] D. Day and M. A. Heroux. Solving complex-valued linear systems via equivalent real formula-tions. SIAM J. Sci. Comput., 2001, 23: 480-498
    [390] M. Benzi and D. Bertaccini. Block preconditioning of real-valued iterative algorithms for com-plex linear systems. IMA J. Numerical Anal., doi: 10.1093/imanum/drm039
    [391] B. Carpentieri, Y.-F. Jing and T.-Z. Huang. Lanczos Biconjugate A-orthonormalization methodsfor surface integral equations in electromagnetism. Proceedings of the Progress In Electromag-netics Research Symposium. March 22-26, Xi’an China, 2010, 678-682
    [392] L. Gurel. MLFMA (sequential) solutions of 5 large problems with 1?00,000K unknows usingdifferent iterative methods (no preconditioner). BiLCEM. February, 19, 2010 (Personal commu-nication)
    [393] R. F. Harrington. Field Computation by Moment Methods. New York: Macmillan, 1968
    [394] R. Mittra. Computer Techniques for Electromagnetics. New York: Pergamon, 1973
    [395] R. Mittra. Numerical and Asymptotic Techniques in Electromagnetics. New York: SpringerVerlag, 1975
    [396] M. Tanaka, V. Sladek and J. Sladek. Regulatization techniques applied to BEM. Appl. Mech.Rev., 1994, 47: 457-499
    [397] V. Sladek and J. Sladek. Singular Integrals in Boundary Element Methods.Southampton: Com-putational Mechanics Publications, 1998
    [398] M. Bonnet, G. Maier and C. Polizzotto. Symmetric Galerkin boundary element methods. Appl.Mech. Rev., 1998, 51: 669-704
    [399] C. Schwab and W. L. Wendland. Numerical integration of singular and hypersingular inte-grals in boundary element methods. Proceedings of the NATO Advanced Research Workshopon Numerical Integration: Recent Developments, Software and Applications. Bergen, Norway.Dordrecht, Netherlands: Kluwer, June 17-21, 1991, 203-218
    [400] R. Klees. Numerical calculation of weakly singular surface integrals. J. Geodesy, 1996, 70:781-797
    [401] A. H. Stroud. Approximate Calculation of Multiple Integrals. Englewood Cliffs, NJ: Prentice-Hall, 1984, 31-32
    [402] M. G. Duffy. Quadrature over a pyramid or cube of integrands with a singularity at a vertex.SIAM J. Numer. Anal., 1982, 19: 1260-1262
    [403] R. D. Graglia. Static and dynamic potential integrals for linearly varying source distributions intwo- and three-dimentional problems. IEEE Trans. Antennas Propagat., 1987, AP-35: 662-669
    [404] C. B. Lin, T. Lu¨, and T. M. Shih. The Splitting Extrapolation Method. Singapore: World Scien-tific, 1995
    [405] Y.-S. Xu and Y.-H. Zhao. An extrapolation method for a class of boundary integral equations.Math. Comp., 1996, 65: 587-610
    [406] M. J. Bluck, M. D. Pocock and S. P. Walker. An accurate method for the calculation of singularintegrals arising in time-domain integral equation analysis of electromagnetic scattering. IEEETrans. Antennas Propagat., 1997, 45: 1793-1798
    [407] D. J. Taylor. Accurate and efficient numerical integration of weakly singular integrals inGalerkin EFIE solutions. IEEE Trans. Antennas Propagat., 2003, 51: 1630-1637
    [408] M. A. Khayat and D. R. Wilton. Numerical evaluation of singular and near-singular potentialintegrals. IEEE Trans. Antennas Propagat., 2005, 53: 3180-3190
    [409] S. Ja¨rvenpa¨a¨, M. Taskinen and P. Yla¨-Oijala. Singularity subtraction technique for high-orderpolynomial vector basis functions on planar triangles. IEEE Trans. Antennas Propagat., 2006,54: 42-49
    [410] J. L. Tsalamengas and I. O. Vardiambasis. Plane-wave scattering by strip-loaded circular dielec-tric cylinders in the case of oblique incidence and arbitrary polarization. IEEE Trans. AntennasPropagat., 1995, AP-43: 1099-1108
    [411] J. L. Tsalamengas. Direct singular integral equation methods in scattering from strip-laded di-electric cylinders. J. Electromag. Waves Appl., 1996, 10: 1331-1358
    [412] J. L. Tsalamengas. Direct singular integral equation methods in scattering and propagation instrip-or slot-loaded structures. IEEE Trans. Antennas Propagat., 1998, AP-46: 1560-1570
    [413] A. G. Polimeridis and T. V. Yioultsis. On the direct evaluation of weakly singular integrals inGalerkin mixed potential integral equation formulations. IEEE Trans. Antennas Propagat., 2008,56: 3011- 3019
    [414] A. Sidi and M. Israrli. Quadrature methods for periodic singular Fredholm integral equation. J.Sci. Comp., 1988, 3: 201-231
    [415] P. Davis. Methods of Numerical Integration, second ed.. New York: Acacemic Press, 1984
    [416] R. Kress and I. H. Sloan. On the numerical solution of a logarithmic integral equation of thefirst kind for the Helmholtz equation. Numer. Math., 1993, 66: 199-214
    [417] W. B. Gordon. High frequency approximations to the physical optics scattering integral. IEEETrans. Antennas Propagat., 1994, 42: 427-432

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700