玉米ae基因的分子标记及辅助选择研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米(Zea mays L.)是世界上重要的粮食、饲料与工业原料作物。玉米作为工业原料最主要的成份是淀粉,其中所含的直链淀粉在工业上用途很广。但普通玉米直链淀粉所占比重很低,限制了玉米中直链淀粉的应用。因此,开展高直链淀粉玉米育种,对发展高直链淀粉的生产和加工具有重要的意义。由于控制玉米直链淀粉含量的ae基因为单隐性基因,因此运用分子标记辅助选择的方法对后代进行快速选择,可以提高育种效率,加快育种进程。本文根据发表在GeneBank上的玉米淀粉分支酶基因(ae)序列,筛选分子标记,建立ae基因分子标记技术,并应用于高直链淀粉玉米回交后代的辅助选择,结果表明:
     1.根据NCBI上公布的玉米淀粉分支酶基因(ae)序列设计引物,分别以高直链淀粉玉米ae-1和普通玉米鲁原92基因组为模板,扩增了ae基因的大部分序列,经测序并通过序列比对分析表明,高直链淀粉玉米和普通玉米在所测序列部分具有较高的同源性,除在3处有3-4bp连续碱基的缺失外,其余均为SNP和单碱基的插入/缺失。
     2.在上述差异处分别设计引物,经过筛选,选择在基因第9和第10外显子之间一个4bp indel处设计的引物作为标记引物。在含有ae基因的玉米材料中能够扩增出一条496bp的特异性条带,称之为ae496标记。利用该标记对14种高直链淀粉玉米自交系和24种普通玉米自交系材料进行检测,高直链淀粉玉米自交系基因组中均能扩增出ae496条带,而普通玉米自交系中则全部扩增不出该条带。因此该标记可作为ae基因的显性分子标记。
     3.用ae496标记对高直链淀粉玉米自交系和普通玉米自交系三个组合的F_1代、F_2代、BC_1F_1代进行检测。结果表明该显性分子标记符合孟德尔遗传规律。
     4.通过高直链淀粉自交系与普通玉米自交系杂交组合F_2代籽粒直链淀粉含量和标记的分析,发现直链淀粉含量在32.1%以上的玉米籽粒均能扩增出ae496条带,而扩增不出ae496条带的玉米籽粒的直链淀粉含量均在25.8%以下。可以看出ae显性分子标记与籽粒直链淀粉含量之间存在相关性,通过分子标ae496可辅助选择ae基因获得高直链淀粉性状。
     5.通过对BC_1F_1、BC_2F_1代分子标记辅助选择,分析其自交和回交后代的选择效果,结果显示通过标记辅助选择其后代可获得ae基因,其回交一代和回交二代分子标记辅助选择ae基因的效率较非标记选择分别高53.3%和73.3%,表明利用分子标记在回交后代中选择ae基因可显著提高选择效率。
Maize is one of the most important crops in the world.In maize,starch is the most important element as industrial raw material.In starch,amylose has a wide range of uses in industry.Amylose has a low proportion in dry weight of maize weight,which restricts application of amylase in maize.So to develop high amylose maize breeding has a great significance on the development of amylase production and procession.As the ae gene which controls amylose content in maize is a recessive one,the use of molecular marker-assisted selection methods for quick choices to future generations can improve breeding efficiency and speed up the breeding process.According to maize starch branching enzyme(ae) gene sequences published in Genebank,we screen the molecular marker,establish the technique of ae gene molecular marker,and apply the system to the selection of backcross generations in high amylose content maize.The result is as follows:
     1.According to maize starch branching enzyme(ae) gene sequences published in NCBI,we choose a kind of high amylose content maize and a common maize genome as templates and design specific primers to amplificate most sequences of ae gene. Through compare and analysis with the PCR amplification fragment,we find that there is a high homology between the high amylose content maize and the common ones.Except 3 consecutive 3-4bp insertion or deletion,the major differences is SNP and insertion / deletion of single-base.
     2.We design primers in the different place.With screening,we select a pair of primer between 9 and 10 exon with 4bp deletion as marker primer.We can amplificate a specific fragment of 496bp in maize which has ae gene.With the marker,we detect 14 kinds of high amylose content maize inbred lines and 24 kinds of common maize ones, a ae496 band can be amplificated in the high amylose maize inbred lines genomes, while the bands can't be amplificated in common maize inbred lines.So the marker can be used as ae gene dominant molecular marker.
     3.We detect the F_1,F_2 and BC_1F_1 generations in 3 portfolios.The results show that the dominant molecular marker is in line with mendel law.
     4.With analysis of the marker and the amylose content in F2 generation grain,we find that the amylose content of grain which is above 32.1%can be amplificated ae496 band,While the amylose content of maize grain which is below 25.8%can't be amplificated the ae496 band.We cann see the correlation between the ae dominant molecular marker and amylose content in grain.Through the ae496 marker we can select ae gene to obtain high amylose trait.
     5.Through the molecular marker assisted selection in BC_1F_1,BC_2F_1 generations,we analyse the selective effect in self-hybrid and backcorssing generations.The results show that we can obtain ae gene in future generations by marker-assisted selection.The efficiency of selecting ae gene in backcross generation and its second-generation is 53.3%and 73.3%higher than random selection.It indicates that the use of molecular markers in future generations to select ae gene can enhance selective efficiency significantly.
引文
[1]White P.Properties of corn starch.Boca Raton FL.1994,6(3):29-54.
    [2]Casey J,Slattery I,Halil Kavakli,et al.Engineering starch for increased quantity and quality.Trends in Plant Science,2000,5(7):291-298.
    [3]White P.Properties of corn starch.Boca Raton FL,1994,6(3):29-54.
    [4]Virgil Fergason.Specialty Corns,1994,8(2):65-66.
    [5]石运庆,牟秋焕等.DNA分子标记及其在作物遗传育种中的应用.2005,6(2):22-30.
    [6]戚汝斌.淀粉在造纸工业中的应用[J].广西轻工业.2001(3):12-14
    [7]蔡云升,张文治.新版糖果巧克力配方[M].北京:中国轻工业出版社.2002
    [8]Ball S,Morell M.From bacterial glycogen to starch:Understanding the biogenesis of the plant starch granule[J].Annual Review of Plant Biology,2003(54):207-233
    [9]Ball S,et al From glycogen to amylopectin:A model for the biogenesis of the plant starch granule[J].Cell,1996(86):349-352
    [10]Shannon,J.C.& Garwood,D.L.Genetics and physiology of starch development.In:Whistler,R.L.,Bermiller,J.N.,Paschall,E.F.(eds).Starch:Chemistry and Technology.New York:Academic Press,1984:2,26-86
    [11]Dethrage WL,et al.A partial survey of amylase content in starch from domestic and foreign varieties of corn,wheat and sorghum and from some other starch-bearing plants[J].Trans Am Assoc Cereal Chem,1995,13:31-42
    [12]Cathie Martin,Alison M.Smith.Starch Biosynthesis[J].The Plant Cell,1995(7):971-985
    [13]Martin C,Smith AM.Starch biosynthesis[J].The Plant Cell,1995,7:971-985.
    [14]Yona Baguma.Regulation of Starch Synthesis in Cassava.Doctoral thesis Swedish University of Agricultural Sciences Uppsala,2004:10
    [15]郭本恒,凌关庭.乳制品[M].北京:化学工业出版社,2001
    [16]于浩.纺织用淀粉复合浆料的现状和发展[J].广西纺织科技,1994,23(2):42-46
    [17]Floyd W.C.,Drager L.R.,Black B.H.Hydrolyzed starch graft copolymers.EP.405917,1991
    [18]刘华,刘温霞等.阳离子淀粉的制备以及在造纸工业中的应用[J].湖南造纸,2007(2):32-34.
    [19]陈昭琼.精细化工产品配方合成及应用[M].北京:国防工业出版社,1999
    [20]曾丽娟,蓝仁华.木薯淀粉在建筑涂料中的应用[J].涂料工业.2004, 34(8):52-55
    [21]王彦斌.内墙涂料用氧化淀粉胶液的制备工业研究[J].应用化工.2001,30(5):10-12
    [22]G.Griffin,Gerald J.L.Shaped synthetic polymers containing a biodegradable substance.US Patent 4218350(1980)
    [23]Greizerstein H.B.,Syracuse J.A.,Kostyniak P.J.Polymer Degradation and Stability,1993,39:251
    [24]李铁骑,齐昆.淀粉填充塑料研究的进展[J],1994(4):241-246
    [25]谭天伟,王芳等.生物能源的研究现状及展望[J].2003(9):8-12
    [26].Slattery C.J.,Kavakli I.H.,Okita TW.Engineering starch for increased quantity and quality[J].Trends Plant Science,2000,5(7):291-298
    [27]高振宇,黄大年,钱前.植物支链淀粉生物合成研究进展[J].植物生理与分子生物学学报,2004,30(5):489-495
    [28]Morell M K.The biochemistry and molecular biology of starch synthesis in cereals.Aust J Plant Physiol,1995,22:647-660.
    [29]Nelson O,Pan D.Starch synthesis in maize endosperms.Annu Rev plant physiol PMB,1995,46:475-496.
    [30]Larsson C T,Hofvander P,Khoshnoodi J.Three isoforms of starch synthase and two isoforms of starch-branching enzyme are present in potato tuber starch.Plant Sci.1996.117:9-16.
    [31]Takeda Y,Guan H-P,Preiss J.Branching of amylose by the branching isoenzymes of maize endosperm.Carbohydr.Res.1993,240:253-263.
    [32]Nakamura Y,Umemoto T,Takahata Y.Changes in the structure of starch and enzyme activities affected by sugary mutations in developing rice endosperm.Physiol.Plant.1996.97:491-498.
    [33]Muller-Rober B,kossmann J.Approaches to influence starch quantity and starch quality in transgenic plants.Plant Cell Environ,1994,17:601.
    [34]包劲松.基因工程改良作物淀粉品质[J].上海农业学报.1998,14(1):90-96.
    [35]Kyung-Nam Kim,Dane K Fishe,Ming Gao,et al.A cDNA encoding starch branching enzyme I from maize endosperm.Plant Physiol.Gene.1998 Aug 31;216(2):233-43.
    [36]彭佶松,郑志仁等.淀粉的生物合成及其关键酶[J].植物生理学通讯,1997,33(4):297-303
    [37]张峰,蒋德安等:淀粉合酶的酶学及分子生物学研究进展[J].植物学通 报,2001,18(2):177-182.
    [38]舒小丽,舒庆尧.作物淀粉生物合成与转基因修饰研究进展[J].生物技术通报,2004,4:19-26.
    [39]Bhattacharyya M.K.The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme[J].Cell,1990,60:115-122.
    [40]Burton R.A.Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development[J].The Plant J,1995,7(1):3-15
    [41]Pan D.,Nelson O.E.A debranching enzyme deficiency in endosperms of the sugary- 1 mutants of maize[J].Plant Physiol,1984,74:324-328
    [42]Kouichi M.,Tsutomu K.,Hiroaki S.,et al Alteration of the structural properties of starch components by the lack of an isoform of starch branching enzyme in rice seeds[J].The Journal of Biological Chemistry,1993,268(25):19084-19091
    [43]Flipse F.Introduction of sense and antisense cDNA for branching enzyme in the amylase-free potato mutant leads to physico-chemical changes in the starch[J].Planta,1996,198:340-347
    [44]周会,张军杰等.淀粉去分支酶研究进展[J].河南农业科学,2006(9):5-8.
    [45]陈艳萍,袁建华,颜伟,等.高直链淀粉玉米研究进展.南京农专学报.2002,12(3):32-40.
    [46]周洪生.玉米种子大全[M].中国农业出版社.2001,332-349.
    [47]张瑛,徐晓红,朱玉芹,等.高直链淀粉玉米的选育概况与发展前景[J].玉米科学,2005,13(1):52-54.
    [48]陈艳萍,袁建华等.高直链淀粉玉米研究进展[J].南京农专学幕报,2002,18(3):32-41
    [49]明东风,马均,马文波,等.稻米直链淀粉及其含量研究进展.中国农学通报,2003,9(1):68-71.
    [50]张永凤.玉米淀粉分支酶基因RNA干涉表达载体的构建及转化研究:[硕士学位论文].合肥:安徽农业大学,2005.
    [51]Ciurzak EW.Use of near infrared spectroscopy in cereal products.Food Testing and Analysis,1995,5:35-39.
    [52]Orman B A,Schumann Jr R A.Comparison of near-infrared spectroscopy calibration methods for the prediction of protein,oil,and starch in maize grain.Journal of Agricultural Food Chemistry,1991,39:883-888.
    [53]李庆青,王文真,张玉良.近红外漫反射光谱分析法(NIRDSA)在作物品质育种中的应用.作物学报,1992.18(3):235-240.
    [54]吴秀琴,梁东升,吴燕风,等.应用NIRS测定菜豆嫩荚的粗蛋白和纤维含量.作物品种资源,1993,(1):28-29.
    [55]徐云碧,朱立煌.分子数量遗传学.北京:中国农业出版社,1994.P85
    [56]李贵全,尚春树.玉米“中单2号”染色体核型及GiemsaC一带的研究.山西农业大学学报,1994,14(2):130-133
    [57]李向拓,毛建昌,吴权明.分子标记在玉米育种中的应用[J].玉米科学,2004,12(1):26-29
    [58]Zhang X,et al.Molecular markers for Fusarium head blight resistance in Chinese wheat cultivar.J.Appl.Genet,2002,15(8)355-358
    [59]辛业芸.分子标记技术在植物学研究中的应用[J].湖南农业科学,2002,4:9-12
    [60]田齐建,曹秋芬等.DNA分子标记技术与玉米育种[J].玉米科学,2005,13(2):18-21.
    [61]Chao,S.Sharp,P.J.Gale,M.D.RFLP-based genetic maps of wheat homoeologous group 7 chromosomes.Theor.Appl.Genet,1989,78:495-504
    [62]Wilkie SE.,et al.Random amplified polymorphic DNA(RAPD) marker for genetic analys in Allium Ther.Appl.Genet,1993,86:497-504
    [63]刘健毅,潘建伟等.单核苷酸多态性(SNPS)原理及其在植物功能基因组学中的应用前景[J].细胞生物学杂志,2002.24(5):262-265.
    [64]管敏强,陈锡文等.分子标记技术及其应用[J].实验动物科学与管理,2005,22(1):48-51.
    [65]周玉亮.分子标记技术及其在植物遗传育种中的应用[J].生物技术通讯,205,16(3):350-352.
    [66]张良超,孙世孟.RAPD技术在12个玉米骨干自交系快速鉴定中的应用[J].作物学报,1998,2(6):718.
    [67]危文亮,赵应忠.分子标记在作物育种中的应用[J].生物技术通报,2000,(2):12-16.
    [68]贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1-10.
    [69]朱立煌.植物育种中的分子标记辅助选择[J].生物工程进展,1997,17(1):6
    [70]苟作旺,杨芳萍等.作物分子标记辅助选择育种研究进展[J].甘肃农业科技,2007,1:21-24
    [71]张天真.作物育种学总论.北京:中国农业出版社,2003,80-91
    [72]郭旺珍,张天真等.分子标记辅助选择的修饰回交聚合育种方法及其在棉花上的应用[J].作物学报,2005,31(8):963-970.
    [73]Moham M,Nair S,Bhagwat A.Genome mapping,molecular markers and marker-assisted selection in crop plants.Mol Breeding,1997,3:87-103.
    [74]冯建成.分子标记辅助选择技术在水稻育种上的应用[J].中国农学通报,2006,22(3):43-47.
    [75]朱乾浩,李道藩.分子标记辅助选择在植物数量性状改良中的应用[J].麦类作物,1997,17(1):22-24.
    [76]刘志文,傅廷栋等.作物分子标记辅助选择的研究进展影响因素及其发展策略[J].植物学通报,2005,22(B08):82-90.
    [77]倪大虎,易成新等.利用分子标记辅助选择聚合水稻基因Xa21和Pi9(t)[J].分子植物育种,2005,3(3):329-334.
    [78]巴沙拉特,丁效华.水稻抗白叶枯病基因的聚合育种[J].分子植物育种,2006,4(4):493-499.
    [79]李宏,李友莲.分子标记辅助选择在植物育种中的应用与前瞻[J].科技情报开发与经济,2004,14(12):197-199.
    [80]郑康乐,黄宁.标记辅助选择在水稻改良中的应用前景[J].遗传,1997.(2):40-44.
    [81]Lande h.et al Efficiency of marker assisted selection in the improvement of quantitative traits[J].Genetics,1990(124):743-756.
    [82]王关林,方宏筠.植物基因工程(第二版)科学出版社,1998.p744
    [83]郭景伦,王斌.玉米单粒种子DNA提取新方法[J].北京农业科学,1997,15(2):1-2.
    [84]汤青川.谷类作物直链淀粉含量快速测定方法介绍.青海大学学报(自然科学版).2001,19(6):65-66.
    [85]郑宗坤,陈志行.影响泰国香米直链淀粉测定值因素的研究.西部粮油科技.1999,24(3):40-41
    [86]李坤陶,李文增.杂交试验中误差的测验[J].生物学通报,2002,37(20):12-13.
    [87]李海渤.分子标记辅助选择技术及其在作物育种上的应用[J].河北职业技术师范学院学报,202,16(4):68-72.
    [88]张瑛,徐晓红等.高直链淀粉玉米的选育概况与发展前景[J].玉米科学,2005,13(1):52-54.
    [89]雷武生,王汉宁.特异性PCR在检测玉米高直链淀粉基因中的应用[J].甘肃 农业大学学报,2005,12(6):728-732.
    [90]刘春林.分子标记辅助选择与植物品种选育[J].作物研究,1996,10(1):47-49.
    [91]Ribaut J M,Hoisington D.Marker-assisted selection:new tools strategies[J].Trends in Plant Sci,1998,3:236-239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700