水稻染色体片段代换系对氮、磷胁迫反应的遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮、磷是作物生长发育所必需的大量元素。氮、磷的缺乏是限制作物产量的重要因素。在过去几十年里,作物育种工作者一直致力于以高产为目标的育种研究,注重选育高肥条件下的高产品种。化肥的使用与高产品种的结合,有力地推动了农作物增产。但化肥的大量使用与肥料的低利用率之间的矛盾造成了能源的巨大浪费,提高了作物生产成本,同时这些过剩的肥料会造成严重的环境污染。剖析作物营养吸收利用的遗传基础,提高作物营养吸收利用效率,是解决以上各种问题的重要途径。
     本研究以两套水稻染色体片段代换系(CSSLs)为材料,按增广设计种植并在大田栽培条件下作正常、低氮和低磷三种处理,全生育期考察株高、穗长、单株有效穗和单株产量,分析代换系对低氮、低磷胁迫反应的差异,并结合分子标记连锁图谱进行QTL定位分析。主要结果如下:
     1.正常处理下的株高、穗长、单株有效穗和单株产量与它们在两种胁迫处理下的相对系数间均呈极显著负相关,表明存在一种趋势:正常处理下生长量较小的代换系材料对低氮、低磷胁迫的耐性往往较强。但也有一些代换系的绝对生长量和相对生长量都比高亲还大。
     2.利用9311遗传背景代换系在三种处理下检测到14个株高QTLs、8个单株有效穗QTLs和18个单株产量QTLs。株高QTLs中效应最大的Qph-5b解释表型差异为32.5%,加性效应为19.0;8个单株有效穗QTLs全部呈负向效应,解释表型差异在-42.6%~-62.9%之间;单株产量QTLs中效应最大的Qyd-4c解释表型变异为-88.1%,加性效应为-9.6。
     利用珍汕97遗传背景代换系在三种处理下检测到28个株高QTLs、19个单株有效穗QTLs和20个单株产量QTLs。株高QTL中效应最大的Qph-1d解释表型差异为68.9%,加性效应分别为24.2。单株有效穗QTLs中效应最大的Qpn-5解释表型差异为58.9%,加性效应分别为2.3。单株产量QTLs中效应最大的Qyd-11a解释表型差异为137.9%,加性效应为6.9。
     3.两套染色体片段代换系的导入片段均来自日本晴,只是遗传背景不同。但两种遗传背景(9311,珍汕97)下定位的QTLs的数目有很大差异,9311遗传背景代换系在三种处理下共检测到58个QTLs,而珍汕97遗传背景代换系在三种处理下共检测到93个QTLs;不同遗传背景下定位的QTLs的位置大多数是不同的,仅在RM472、RM211、RM7、RM411等区域定位到12个相同位点的QTLs。QTLs数目和位置的差异,说明不同遗传背景对QTLs的表达有很大影响。在不同遗传背景下均检测到的QTLs,一方面说明其存在的真实性,另一方面也反映了其稳定性,这种特性在分子标记辅助选择(MAS)中尤为重要,可能直接应用于育种。
     4.以9311遗传背景代换系在三种处理下同时检测到Qph-1c、Qph-5b、Qyd-4c等3个QTLs;以珍汕97遗传背景代换系在三种处理下同时检测到Qph-5b、Qph-6、Qph-11a等11个QTLs。这些在正常、低氮和低磷处理下同时检测到的QTLs,表明其不易受胁迫条件(低氮、低磷)的影响,可能更为直接的参与了性状的形成。低磷和低氮处理下同时检测到(正常处理未检测到)18个QTLs,其中9311及珍汕97遗传背景代换系各检测到9个。含有这些QTLs的材料对氮、磷胁迫的反应一致,这些QTLs可能处于水稻对氮、磷吸收利用的相同遗传途径上。大多材料对氮、磷胁迫的反应不同,多数QTLs仅在低磷或低氮处理下被检测到,表明水稻对氮、磷吸收利用遗传机制有很大的不同。
     5.相对性状反映材料对低氮或低磷胁迫的敏感程度,是衡量实验材料对胁迫环境耐性强弱的一项指标。两套代换系共检测到44个相对性状QTLs,其中28个与两种处理(低磷、低氮)下检测到的QTLs位置相同,16个与两种处理下分别检测到的QTLs位置不同,表明相对性状QTLs并不能完全由两种胁迫处理下检测到QTLs所解释,材料对胁迫耐性的遗传基础也不能完全用不同处理下检测到QTLs来描述和剖析。如Qryd-3b是珍汕97遗传背景代换系检测到的相对单株产量QTL,与低磷、低氮胁迫处理下分别检测到的QTLs位置不同。含有该QTL的代换系在低磷胁迫处理下的相对产量(系数)比珍汕97高0.3,表现出对低磷胁迫的耐性。
Nitrogen and phosphorus are crucial plant macronutrient for crop growth.The insufficient supply of nitrogen or phosphorus is a key limitation that restrict crop yield.In the past several decades,researchers consistently devoted self to breed many varieties with higher yield potential under more fertilizer application.The integrated application of fertilizer and high-yield variety has increased the crop production by forcefully.But there is a contradiction between large dosage of fertilizer usage and low fertilizer use efficiency of plant,which has brought enormous energy dissipation and cost of crop production, while the excessive fertilizer application also causes serious environment pollution. Understanding the genetic basis of crop nutrition absorption and utilization,is an important approach to resolve above mentioned problems.
     In this study we used two sets of chromosomal segment substitution lines(CSSLs) to analyze the genetic basis of rice responses to nitrogen and phosphorus stresses in the field experiment under three treatments of fertilizer application:normal(N),low nitrogen(NO) and low phosphorus(PO).The CSSLs were planted with augmented design and their plant height(PH),panicle length,panicle number and yield were measured at maturity stage. QTLs were identified related to the responses.The main results are as follows:
     1.Significant negative correlations between relative trait performance and its measurement under normal cultivated condition indicate a general trend that CSSLs in smaller plant size had higher relative performances.It also suggests that the CSSLs with smaller biomass often showed better tolerance to low nitrogen or low phosphorus conditions.However,there were many CSSLs showing higher values both in the relative trait index and the normal performances than that of the recurrent parent.
     2.In the CSSLs with 9311 genetic background,we detected 14 QTLs for plant height, 8 QTLs for panicle number and 18 QTLs for yield per plant.Qph-5b was a QTL for plant height with the highest(32.5%) variation explained and additive effect of 19.0 cm;All of the detected QTLs for panicle number showed negative effects,and explained phenotypic variations from -42.6%to -62.9%;The maximum phenotypic difference explained for yield per plant and the additive effect by Qyd-4c) is -88.1%and -9.6.
     In the CSSLs with Zhenshan97 genetic background,we detected 28,19 and 20 QTLs for plant height,panicle number and yield per plant,respectively.Qph-1d is one plant height QTL with the highest(68.9%) variation explained and its additive effect is 24.2cm, Qpn-5 for panicle number with the highest(58.9%) variation explained,Qyd-11a for yield per plant with the highest(137.9%) variation explained.
     3.The two sets of CSSLs have the common donor of Nipponbare within two different genetic backgrounds,one is 9311,another Zhenshan97.We detected a total of 58 and 93 QTLs in the two sets of population respectively.Most of the QTLs detected in the different two genetic backgrounds had various locations on the genome.Only 12 QTLs had the common locations such as the regions nearby markers RM472、RM211、RM7、RM411.The differences in QTLs number and location suggested that the different two genetic backgrounds might have very tremendous influence to the QTLs expression. Those QTLs repeatedly detected in different background had the characteristic of stability and authenticity,which is very important for MAS in breeding.
     4.For the CSSLs with 9311 genetic background,three QTLs(Qph-1c、Qph-5b and Qyd-4c) were detected repeatedly in the three kinds of treatments(N,NO and PO),for the CSSLs with Zhenshan97 genetic background,11 QTLs(such as Qph-5b、Qph-6、Qph-11a) were detected repeatedly in the different treatments.We suggest that these QTLs present more contribution to the traits growth and development.18 QTLs were detected under both NO and PO conditions(not detected under N condition),suggesting these stable QTLs across NO and PO treatments may have samiliar response to low nitrogen and low phosphorus stresses and more likely be common loci involving in nitrogen and phosphorus metabolism.The other most of the QTLs were only detected in either NO or PO treatment,suggesting that the loci are certainly more likely linked to the respective nitrogen or phosphorus pathway.The different QTLs detected under NO or PO treatments reflected diverse genetic basis of nitrogen and phosphorus responses.
     5.A total of 44 relative traits QTLs were detected in the two sets of CSSLs,of which 28 QTLs were common detected under the N,NO and PO treatments,other 16 QTLs were different from those detected under the N,NO and PO treatments.Thus,the genetic basis of the relative performances cannot simply be deduced as compared separate detection of QTLs under nitrogen and phosphorus treatments.For example,Qryd-3b is a QTL for relative yield which detected in the CSSLs of ZS97 genetic background.The material contained this QTL had a stronger tolerance to low phosphorus stress,however colocation QTLs were not detected under each of three fertilizer conditions.
引文
1.曹黎明,潘晓华.水稻不同耐低磷基因型的评价指标分析.上海农业学报,2000a,16(4):31-34
    2.曹黎明,潘晓华.水稻耐低磷基因型种质的筛选与鉴定.江西农业大学学报,2000b,22(2):162-168
    3.曹黎明,潘晓华.低磷胁迫对不同水稻品种根系形态和养分吸收的影响.作物学报,2002,28(2):260-264
    4.陈范骏,米国华.玉米自交系木质部伤流液中氮素形成差异及其与氮效率的关系.中国农业科学,1999,32(5):43-48
    5.陈范骏,米国华,春亮。玉米氮效率的杂种优势分析.作物学报,2004,30(10):1014-1018
    6.程建峰,戴廷波,曹卫星,姜东.稻种资源苗期氮素营养效率的分类、鉴定与评价.作物学报,2005,31(12):1640-1647
    7.丁洪,李生秀,郭庆元,张学江,徐巧珍.酸性磷酸酶活性与大豆耐低磷能力的相关研究.植物营养与肥料学报,1997,3(2):123-128
    8.段海燕,王运华,徐芳森,刘慧.不同甘蓝型油菜自交系磷营养效率的差异研究.华中农业大学学报,2001,20(3):241-245
    9.方萍,陶勤南,吴平.水稻吸氮能力与氮素利用率的QTLs及其基因效应分析.植物营养与肥料学报,2001,7(3):159-165
    10.关连珠.土壤肥料学.北京:中国农业出版社,2001,161-162
    11.贺天柱.低氮胁迫下菜豆种质资源的氮效率研究.东北农业大学学报,2004,2(4):8-14
    12.黄昌勇.土壤学.北京:中国农业出版社,2001,199-200
    13.黄高宝,张恩和.不同玉米品种氮素营养效率差异的生态生理机制.植物营养与肥料学报,2001,7(3):293-297
    14.黄农荣,钟旭华,郑海波.水稻氮高效基因型及其评价指标的筛选.中国农学通报,2006,22(6):29-34
    15.李宾兴,肖凯,李雁鸣.低磷胁迫条件下小麦光合特性的基因型差异.河北农业大学学报,2002,25(1):5-9
    16.李继云,刘秀娣,李振声.有效利用土壤营养元素的作物育种新技术研究.中国科学B辑,1995,25(1):41-48
    17.李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料问题.南昌:江西科学技术出版社,1997,38-51
    18.李志洪,陈丹,曹国军,姜鹏.磷水平对不同基因型玉米根系形态和磷吸收动力学的影响.吉林农业大学学报,1995,17(4):40-43
    19.刘亚 李自超 米国华 张洪亮 穆平 王象坤 水稻耐低磷种质的筛选与鉴定 作物学报,2005,31(2),238-242
    20.刘华英,萧浪涛,彭克勤.土壤难溶态磷的高效利用研究进展.贵州农业科学,2002,30(6):61-63
    21.刘建中,李振声,李继云.利用植物自身潜力提高土壤中磷的生物有效性.生态农业研究,1994,2(1):16-23
    22.陆欣.土壤肥料学.北京:中国农业大学出版社.2003,210-213
    23.潘晓华,刘水英,李锋,李木英.低磷胁迫对不同水稻品种幼苗生长和磷效率的影响.江西农业大学学报,2002,24(3):297-300
    24.庞欣,李春俭,张福锁.缺磷胁迫对黄瓜体内磷运输及再分配的影响.植物营养与肥料学报,1999,5(2):137-143
    25.庞欣,张福锁,李春俭.部分根系供磷对黄瓜根系和幼苗生长及根系酸性磷酸酶活性的影响.植物生理学报,2000,26(2):153-158
    26.朴钟泽,韩龙植,高熙宗,陆家安,张建明.水稻氮素利用效率的选择效果.作物学报,2004,30(7),651-656
    27.邱化蛟,许秀美,冷寿慈,贺明荣,于瑞忠.不同基因型小麦磷素代谢差异研究.山东农业大学学报(自然科学版),2004,35(2):169-172
    28.孙海国,张福锁.小麦根系生长对缺磷胁迫的反应.植物学报,2000,42(9):913-991
    29.王兰珍,米国华,陈范骏,张福锁.不同品种冬小麦磷效率性状与农学性状关系的研究.植物营养与肥料学报,2004,10(4):355-360
    30.王美丽,严小龙.大豆根形态和根分泌物特性与磷效率.华南农业大学学报,2001,22(3):1-4
    31.王艳,孙杰,王荣萍,王文彦,郑联寿,张福锁.玉米自交系磷效率基因型差异的筛选.山西农业科学,2003,31(1):7-10
    32.王忠.植物生理学.北京:中国农业出版社.2001,83-87
    33.吴平,印莉萍,张立平.植物营养分子生理学.北京:科学出版社,2001,100-102
    34.向春阳,常强,马兴林.玉米不同基因型对氮营养胁迫的反应.黑龙江八一农垦大学学报,2002,2(4):6-20
    35.邢宏燕,李滨,李继云,李振声.小麦品种磷营养特性的类型分析及其年度问稳定性的研究.西北植物学报,1999,19(2):219-228
    36.徐华山,孙永建,周红菊,余四斌.构建水稻优良恢复系背景的重叠片段代换系及其效应分析.作物学报,2007,33(6):979-986
    37.严小龙,张福锁.植物营养遗传学.北京:中国农业出版社,1997,1-30,17-21,44-51,106-118
    38.杨德.试验设计与分析.北京:中国农业出版社,2002,357-360
    39.张夫道.有机和无机氮在土壤-水稻生态系统中平衡的研究Ⅱ,有机无机氮在土壤中的转化.土壤肥料,1995,2:1-4
    40.张云桥,吴荣生,蒋宁.水稻的氮素利用效率与品种类型的关系.植物生理通讯,1989(2):127-143
    41.钟代斌.氮高效水稻种质资源筛选的初步研究.植物遗传资源科学报,2001,2(4):16-20
    42.朱兆良.关于稻田土壤供氮量的预测和平均适宜施氮量的应用.土壤,1988,2:57-61
    43.Ae N,Arihara J,Okada K.Phosphorus uptake by pigeon pea and its role in cropping system of the India subcontinent.Science,1990,248:477-480
    44.Banziger M,Betran F J,Lafitte H R.Efficiency of high nitrogen selection environment for improving maize for low nitrogen taget environment.Crop Sic,1996,37:1103-1109
    45.Becker T W,Foyer C,Caboche M.Light-regulated expression of nitrate reduct-ase and nitrite reductase genes in tomato and in the phytochrome-deficient aurea mutant of tomato.Planta,1992,188:39-47
    46. Bertin P, Gallais A. Physiological and genetic basis of nitrogen use efficiency in maize: II. QTL detection and coincidences. Maydica, 2000,45:67-80
    
    47. Chapin F S. Adaptation of selected trees and grasses to low availability of phosphorus. In: Saric, M. R. and Loughman B. C. eds. Genetic Aspects of Plant Nutrition III. The Hague: Martinus Nijhojf Publishers. 1983, 217-222
    
    48. Crawford N M, Glass A E M. Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science, 1998, 3:389-395
    
    49. Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tamato enables the identification and fine mapping of yield-associated QTL.Genetics, 1995, 141:1147-1162
    
    50. Fang P, Wu P. QTL × N-level interaction for plant height in rice (Oryza sativa L.). Plant and Soil, 2001, 236:237-242
    
    51. Fohse D, Claassen N and Jungk A. Phosphorus efficiency of plants. I. External and internal P requirement and P uptake efficiency of different plant species. Plant Soil, 1988, 110: 101-109
    
    52. Fohse D. Phosphorus efficiency of plants. II. Significant of root radius, root hairs and cationanion balance for phosphorus influx in seven plant species. Plant and Soil, 1991, 132: 261-272
    
    53. Gahoonia T S, Nielsen N E. Variation in acquisition of soil phosphorus among wheat and barley genotypes. Plant Soil, 1996, 178: 223-230
    
    54. Gallais A, Hirel B. An approach to the genetics of nitrogen use efficiency in maize. J Exp Bot, 2004, 55:295-306
    
    55. Gautam R K, Sethi G S and Plaha P. Comparative estimates of genetic variability among rye introgresed bread wheats under normal and P stress environments. Crop Improv, 1996,23(1): 117-120
    
    56. Gazzarrini S, Lelay L, Gojon A. Three functional transporters for constitutive, iurnally regulated, and starvation inducted uptake of ammonium into arabidopsis roots. Plant Cell, 1999, 11:937-948
    
    57. Geloff G C. Intact-plant screening for tolerance of nutrient defucuency stress. Plant Soil, 1987, 99(1): 3-16
    58. Glass A D M, Rcth T J, Rufty T W. Studies of the up-take of nitrate in barley. Plant Physiology. 1990,93:1585-1589
    
    59. Helal H M. Varietal differences in roots phosphatase activity as related to the utilization of organic phosphates. In: Bassam N E L eds. Genetic Aspects of Plant Mineral Nutrition. Netherlands: Kluwer Academic Publishers, 1990, 103-105
    
    60. Hirel B, Bertin P, Quillere I. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol, 2001, 125:1258-1270
    
    61. Hirel B, Bertin P, Quillere I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol, 2001, 125:1258-1270
    
    62. Hirel B, Lea P J. Ammonia assimilation. In: Lea PJ, Morot-Gaudry J-F (eds) Plant Nitrogen. Springer, Berlin Heidelberg New York, 2001,79-99
    
    63. Ishimaru K, Kobayashi N, Ono K, Yano M, Ohsugi R. Are contents of Rubisco, soluble protein and nitrogen in flag leaves of rice controlled by the same genetics? J Exp Bot, 2001, 52:1827-1833
    
    64. Itoh S and Barber S A. Phosphorus uptake by six plant species as related to root hairs. Agron J, 1983, 75:457-460
    
    65. Jones G P D , Jessop R S and Blair G J. Alternative methods for the selection of phosphorus efficiency in wheat. Field Crop Res, 1992, 30: 29-40
    
    66. Joseph J V, Huo D, Iddiqi M Y. Regulation of high affinity nitrate transporter eenes and high affinity nitrate influx by nitrogen pools in roots of barley. Plant Physiology, 2000, 123:307-318
    
    67. Kronzucher H J, Iddiqi M Y, Glass A D M. Kinetics of NH_4~+ Influx in spruce. Plant Physiol, 1996, 110:773-779
    
    68. Lafiite H R, Bsnziger M. Maize population improvement for low soil N:selection grains and the identification of secondary traits. Crop Sci, 1997, 3:485-489
    
    69. Lee M, Phillips R L. The chromosomal basis of soma clonal variation. Ann Rec Plant Physical Plant MolBiol, 1988, 39:413-437
    70. Lian X, Xing Y, Hua Y, Xu C, Li X, Zhang Q. QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet, 2005, 112:85 -96
    
    71. Louder O, Ptn Z. Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis. Plant Physiol, 2003, 131:345-358
    
    72. Loudet O, Chaillou S, Krapp A, Daniel-Vedele F. Quantitative trait loci analysis of water and anion contents in interaction with nitrogen availability in Arabidopsis thaliana. Genetics, 2003, 163:711-722
    
    73. Loudet O, Chaillou S, Merigout P, Talbotec J, Daniel-Vedele F. Quantitative trait loci analysis of nitrogen use efficiency in arabidopsis. Plant Physiol. 2003, 131:345-358
    
    74. Wissuwa M, Wegner J, Ae N, Yano M. Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet, 2002, 105:890-897
    
    75. Major S , Sarnia B K, Gyanedra S, Singh J and Singh G. Character association in cowpea under phosphorus stress and non-stress conditions. Crop Improv, 1993, 20 (2): 211-214
    
    76. Minura T. Phosphate transport across biomembranes and cytosolic phosphate homeostasia in barley leaves. Plant Physiol, 1990, 180:139-146
    
    77. Muchow R C. Effect of nitrogen supply on the comparative environment. Field Crops Res, 1988, 18:31-43
    
    78. Ni J J, Wu P, Senadhira D. Mapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L). TheorAppl Genet, 1998, 97:1361-1369
    
    79. Nielsen N E, Barber S A. Difference among genotype of corn in the kinetics of phosphorus uptake. Agron J, 1978, 70(5): 695-698
    
    80. Obara M, Kajiura M, Fukuta Y, Yano M, Hayashi M, Yamaya T,Sato T. Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.).J Exp Bot, 2001, 52:1209-1217
    
    81. Obara M, Sato T, Sasaki S, Kashiba K, Nagano A, Nakamura I, Ebitani T, Yano M, Yamaya T. Identification and characterization of a QTL on chromosome 2 for cytosolic glutamine synthetase content and panicle number in rice. Theor Appl Genet, 2004, 110:1-11
    
    82. Olivier Loudet, Sylvain Chaillou, Patricia Merigout, Joel Talbotec, Francoise Daniel Vedele. Quantitative Trait Loci Analysis of Nitrogen Use Efficiency in Arabidopsis. Plant Physiology, 2003, 131, 345-358
    
    83. Raun W R, Solie J B, Johnson G V. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agron J, 2002, 94:815-820
    
    84. Redinbaugh M G, Campbell W H. Nitrate regulation of the oxidative pentose phosphate pathway in maize (Zea mays L.) root plastids: Induction of 6-phosphogluconate dehydrogenase activity, protein and transcript levels. Plant Sci, 1998, 134:129-140
    
    85. Saleque M A, Abedin M J, Panaullab G M, Bhuiyan N I. Yield and phosphorus efficiency of some lowland rice varieties at different levels of soil-available phosphorus. Commun in Soil Sci and Plant Analysis, 1998, 29: 2905-2916
    
    86. Silva A E D, Gabelman W H. Screening maize inbred lines for tolerance to low-P stress condition. Plant Soil, 1992, 146:181-187
    
    87. Stevenson F J. Cycles of soil carbon, nitrogen, Phosphorus, sulfur and micronutrients. John Wiley and Sons, 1985, 231-284
    
    88. Tanaka A, Hitsuda K, Tsuchihashi Y. Tolerance to low pH and low available phosphorus of various field and forage crops. Soil Sci Plant Nutr, 1984, 30(1): 39-49
    
    89. Ullrich W R. Transport of nitrate and ammonium through plant membranes. Cl-arendon Press, 1992, 121-137
    
    90. Wissuwa M, Ae N. Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement. Plant Breeding, 2001, 120:43-48.
    
    91. Yamaya T, Obara M, Nakajima H, Sasaki S, Hayakawa T, Sato T. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J Exp Bot, 2002, 53:917-925
    92. Yan X, Lynch J P, Beebe S E. Phosphorus efficiency in common bean genotypes in contrasting soil types. I. Vegetative response. Crop Sci, 1995a, 35: 1086-1093
    
    93. Yan X, Beebe S E, Lynch J P. Phosphorus efficiency in common bean genotypes in contrasting soil types. II. Vegetative response. Crop Science, 1995b, 35: 1094-1099
    
    94. Yan X, Lynch J P, Beebe S E. Utilization of phosphorus substrates by contrasting common bean genotypes. Crop Sci, 1996, 36(4): 936-941
    
    95. Young N D, Tanksley SD. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet, 1989, 77:95-101
    
    96. Zhang Q. Strategies for developing Green Super Rice. PNAS, 2007, 104:16402-16409

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700