集值优化问题的最优性条件
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新兴的向量集值优化理论在微分包含、逼近论、变分学与最优控制等领域均
    有广泛的应用,集值优化问题在各种解意义下的最优性条件是其中的重要组成部
    分,是建立现代优化算法的重要基础. 另一方面,凸性的概念在优化理论中扮演
    着重要的角色,因而各种凸性的推广都倍受人们的关注. 本文旨在得到近似锥-
    次类凸集值函数的性质,并在近似锥-次类凸假设下,分别得到集值优化问题关
    于 Benson真有效元、赋范线性空间超有效元、强有效元、严有效元和局部凸空
    间超有效元的非导数型最优性条件或导数型最优性条件. 具体结果可归纳如下:
    1. 研究了凸锥的若干性质, 利用这些性质给出了近似锥-次类凸集值函数(也称
     近似锥-次类凸集值映射)的几种等价刻画. 利用其中的一种等价刻画给出了
     近似锥-次类凸函数的一个重要性质, 利用这个性质和择一性定理得到了集值
     优化问题取得 Benson真有效元的一个 Lagrange 型必要条件.
    2. 在赋范线性空间中讨论了集值优化问题的超有效性. 在近似锥-次类凸假设下,
     得到了集值优化问题取得超有效元的一个标量化定理. 利用近似锥-次类凸函
     数的一种等价刻画给出了近似锥-次类凸函数的另一个重要性质, 利用这个性
     质和择一性定理得到了集值优化问题取得超有效元的一个Lagrange 型必要条
     件. 利用超有效点集的性质给出了集值优化问题取得超有效元的一个
     Lagrange 型充分条件. 给出了集值优化问题在超有效元意义下的一种
     Lagrange 型无约束刻画.
    3. 在局部凸空间讨论了集值优化问题的强有效性. 在近似锥-次类凸假设下, 利
     用强有效点集的性质及择一性定理, 得到了集值优化问题取得强有效元的
     Kuhn-Tucker 型必要条件. 利用基泛函的性质和双序线性空间的 Namioka 线
     性泛函分解定理得到了集值优化问题取得强有效元的 Kuhn-Tucker 型充分条
     件. 利用近似锥-次类凸函数的一种等价刻画给出了近似锥-次类凸函数的一
     个重要性质, 利用这个性质和双序线性空间的 Namioka 线性泛函分解定理得
     到了集值优化问题取得强有效元的 Lagrange 型必要条件.利用强有效点集的
     性质给出了集值优化问题取得强有效元的 Lagrange 型充分条件. 给出了集值
     优化问题在强有效元意义下的 Kuhn-Tucker 型和 Lagrange 型无约束刻画.
    4. 在局部凸空间讨论了集值优化问题的严有效性. 在近似锥-次类凸假设下, 利
     用凸集分离定理和标量化定理分别得到了集值优化问题取得严有效元的
     Kuhn-Tucker 型必要和充分条件. 利用凸集分离定理和标量化定理得到了集
     值优化问题取得严有效元的 Lagrange 型必要条件.利用严有效点集的性质和
     定义给出了集值优化问题取得严有效元的 Lagrange 型充分条件. 给出了集值
    
    
    优化问题在严有效元意义下的 Kuhn-Tucker 型和 Lagrange 型无约束刻画.
    5. 在局部凸空间讨论了集值优化问题的超有效性. 在近似锥-次类凸假设下, 利
     用择一性定理和利用标量化定理分别得到了集值优化问题取得超有效元的
     Kuhn-Tucker 型必要和充分条件. 利用择一性定理和标量化定理得到了集值
     优化问题取得超有效元的 Lagrange 型必要条件. 利用超有效点集的性质和定
     义给出了集值优化问题取得超有效元的 Lagrange 型充分条件. 给出了集值优
     化问题在超有效元意义下的 Kuhn-Tucker 型和 Lagrange 型无约束刻画.
    6. 借助于修正的 Dubovitskij-Miljutin 切锥引进了一种新的集值函数切导数, M-
     导数.给出了几种广义伪凸集值函数的概念.当目标函数和约束函数均 M-可导
     时,在近似锥-次类凸假设下利用严有效点集的性质和凸集分离定理得到了集
     值优化问题取得严有效元的 Fritz John和 Kuhn-Tucker 型必要条件. 在广义伪
     凸假设下,得到了集值优化问题取得严有效元的 Kuhn-Tucker 型充分条件.
The theory of vector optimization with set-valued maps finds wide applications
    in differential inclusions, approximation theory, variations, optimization control, and
    so on, the optimality conditions for set-valued optimization problems in the sense of
    various solutions are its important components and are the important base of
    developing modern algorithms. On the other hand, the concept of convexity plays
    important roles in the optimization theory, hence each of generalizations of convexity
    receives researcher’s attentions. The thesis is to gain properties of nearly
    cone-subconvexlike set-valued functions, and under the assumption of nearly
    cone-subconvexlikeness, to obtain the optimality conditions with derivatives or
    without derivatives for set-valued optimization problems in the sense of Benson
    proper efficient element, superly efficient element of normed linear space, strongly
    efficient element, strictly efficient element and superly efficient element of locally
    convex space, respectively. For details, these results are givenin the following.
     1. Properties for convex cones are discussed, which are used to obtain several
    equivalent characterizations for nearly cone-subconvexlike functions (maps). By
    applying an equivalent characterization of the nearly cone-subconvexlike function, an
    important property of the nearly cone-subconvexlike function is presented, which and
    alternative theorem are used to obtain a Lagrange necessary condition for set-valued
    optimization problem to attain its Benson proper efficient element.
     2. The super efficiency of normed linear space for set-valued optimization
    problem is investigated. Under the assumption of nearly cone-subconvexlikeness, a
    scaralization theorem of set-valued optimization problem to attain its superly efficient
    element. By applying an equivalent characterization of the nearly cone-subconvexlike
    function, another important property of the nearly cone-subconvexlike function is
    presented, which and alternative theorem are used to obtain a Lagrange necessary
    condition for set-valued optimization problem to attain its superly efficient element.
    With the properties of the set of superly efficient points, a Lagrange sufficient
    condition is obtained for set-valued optimization problem to attain its superly
    efficient element. A kind of unconstrained characterization equivalent to set-valued
    optimization problem is presented in the sense of superly efficient elements.
     3. The strong efficiency of set-valued optimization problem in locally convex
    spaces is investigated. Under the assumption of nearly cone-subconvexlikeness, with
    properties of the set of strongly efficient points and alternative theorem, a
    Kuhn-Tucker necessary condition is obtained for set-valued optimization problem to
    obtain its strongly efficient element. By applying properties of base functional and a
    Namioka decomposition theorem of a functional in a biordered linear space, a
    Kuhn-Tucker sufficient condition is obtained for set-valued optimization problem to
    obtain its strongly efficient element. By applying an equivalent characterization of the
    nearly cone-subconvexlike function, another important property of the nearly
    cone-subconvexlike function is presented, which and a Namioka decomposition
    theorem of a functional in a biordered linear space are used to obtain a Lagrange
    
    
    necessary condition for set-valued optimization problem to attain its strongly
    efficient element. With the properties of the set of strongly efficient points, a
    Lagrange sufficient conditionis obtained for set-valued optimization problem to attain
    its strongly efficient element. Several kinds of Kuhn-Tucker and Lagrange
    unconstrained characterizations equivalent to set-valued optimization problem are
    presented in the sense of strongly efficient elements.
     4. The strict efficiency of set-valued optimization problem in locally convex
    spaces is investigated. Under the assumption of nearly cone-subconvexlikeness, with
    a separation theorem for convex se
引文
1. Aubin J. P., Frankowska H., “Set-valued analysis,” Birkhauser, Basel,
     Switzerland, 1990
    2. Keined K., Worth A., Korovkin type approximation theorem for set-valued
     functions, Proc. Amer. Math. Soc., 1998, 104:819-824
    3. Noor M. A, Noor K. L, Rassias T. M., Set-valued resolvent equations and mixed
     variational inequalities, J. Math. Anal. & Appl., 1998, 220:741-759
    4. Li Z., A Theorem of the Alternative and Its Application to the Optimization of
     Set-Valued Maps, J. Optim. Theory Appl., 1999, 100(2):365-375.
    5. Lin L.J., Optimization of Set-Valued Functions, Journal of Mathematical
     Analysis and Applications, 1994, 186:30-51.
    6. Li Z.F., Benson Proper Efficiency in the Vector Optimization of Set- Valued Maps,
     Journal of Optimization Theory and Applications, 1998, 98:623-649
    7. Li Z. M., The optimization conditions for vector optimization of
     set-valued maps, J. Math. Anal. and Appl., 1999, 237:413-424.
    8. Li Z.F. and Chen G.Y., Lagrangian Multipliers, Saddle Points, and Duality in
     Vector Optimization of Set-Valued Maps, Journal of Mathematical Analysis and
     Applications, 1997, 215:297-316
    9. Corley H. W., Optimality conditions for maximization of set-valued functions.
     Journal of Optimization Theory and Applications, 1988, 58(1):1-10.
    10. Chen G. Y., Jahn J., Optimality conditions for set-valued optimization problems.
     Math. Meth. Oper. Res., 1998, 48:187-200.
    11. Jahn J.Rauh R., Contingent epiderivatives and set-valued optimization, Math.
     Meth. Oper. Res., 1997, 46(2):193-211.
    12. 盛宝怀,刘三阳, Benson真有效意义下向量集值优化的广义 Fritz John 条件,
     应用数学和力学, 2002, 23(12):1289-1295
    13. 盛宝怀,刘三阳, 用广义梯度刻画集值优化 Benson真有效解,应用数学学报,
     2002, 25:22-28
    14. Borwein J. M. and Zhuang D. M., Super efficiency in convex vector optimization,
     Math. Meth. Oper. Res., 1991, 35:175-184.
    15. Borwein J. M, Zhuang D. M., Super efficiency in vector optimization. Trans.
     Amer. Math. Soc., 1993, 338:105-122.
    16. Jahn J., Super efficiency in convex vector optimization. Editor preface, Math.
    
    
    参考文献 125
     Meth. Oper. Res., 1991, 35:175-175.
    17. Zheng X. Y., Proper efficiency in locally convex topological vector spaces, J.
     Optim. Theory Appl., 1997, 94: 469-486.
    18. Zheng X. Y., The Domination Property for Efficiency in Locally Convex Spaces,
     Journal of Mathematical Analysis and Applications, 1997, 213:455-467
    19. 傅万涛, 赋范线性空间集合的严有效点, 系统科学与数学, 1997, 17(4) :
     324-329.
    20. Fu Wantao, Cheng Yonghong, On the Strict efficiency in Locally Convex Space, J.
     Sys. Sci.& Math. Scis., 1998,11(4):292-298.
    21. 傅万涛, 陈晓清, 逼近锥族和严有效点, 数学学报,1997,40(6):933-938.
    22. Cheng Y. H. and Fu W. T., Strong Efficiency in a Locally Convex Space,
     Mathematical Methods of Operations Research, 1999, 50:373-384
    23. Yang X. M., Yang X.Q. and Chen G.Y., Theorem of the Alternative and
     Optimization with Set-Valued Maps, Journal of Optimization Theory and
     Applications, 2000, 107:627-640
    24. Song W., Lagrangian Duality for Minimization of Nonconvex Multifunctions,
     Journal of Optimization Theory and Applications, 1997, 93:167-182
    25. Yang X. M., Li D. and Wang S. Y., Nearly-Subconvexlikeness in Vector
     Optimization with Set-Valued Functions, J. Optim. Theory Appl., 2001,
     110(2):413-427.
    26. Bhatia D. and Mehra A., Lagrangian Duality for Preinvex Set-Valued Functions,
     Journal of Mathematical Analysis and Applications,1997, 214:599-612
    27. Chen G.Y. and Rong W. D., Characterization of the Benson proper efficiency for
     nonconvex optimization, J. Optim. Theory Appl. 1998, 98:365-384.
    28. Benson H. P., An improved definition of proper efficiency for vector
     maximization with respect to cones, Journal of Mathematical Analysis and
     Applications, 1997, 214:599-612.
    29. 李仲飞, 集值映射向量优化的 Benson真有效性, 应用数学学报, 1998, 21(1):
     123-134.
    30. Rong Weidong and Wu Yu’nan, Characterizations of super efficiency in
     cone-convexlike vector optimization with set-valued maps, Math. Meth. Oper.
     Res. 1998, 48: 247-258.
    31. 武育楠,戎卫东,集值映射向量优化问题的严有效性,内蒙古大学学报(自
     然科学版),1999,30(5):546-550.
    
    
    126 西安电子科技大学博士论文:集值优化问题的最优性条件
    32. 武育楠,戎卫东,集值映射向量优化问题的强有效性,内蒙古大学学报(自
     然科学版),1999,30(4):415-421.
    33. 林锉云, 董加礼, 多目标优化的方法与理论, 吉林教育出版社, 长春, 1992.
    34. 胡毓达, 多目标规划有效性理论, 上海科学技术出版社,上海,1994.
    35. 盛宝怀,变尺度导数及其在集值优化理论中的应用, 西安电子科技大学博士
     学位论文, 西安, 2000.
    36. Corley H. W., Optimality conditions for maximizations of set-valued functions, J.
     Optim. Theory Appl., 1988, 58(1):1-10.
    37. Luc D. T., Contingent derivatives of set-valued maps and applications to vector
     optimization, Mathematical Programming, 1991, 50:99-111.
    38. 凌晨, 集值映射多目标规划的K-T最优性条件, 系统科学与数学, 2000, 20(2):
     196-202.
    39. 刘三阳, 非光滑多目标规划的最优性条件, 系统科学与数学,1989, 9(1):53-60.
    40. Li Z. M., The optimality conditions of differentiable vector optimization
     problems, Journal of Mathematical Analysis and Applications, 1996, 201(2):
     35-43.
    41. 杨丰梅, 刘裳, 汪寿阳, 多目标局部有效解的二阶条件, 系统科学与数学,
     1991, 11(4):349-360.
    42. 李泽民, 线性拓扑空间向量集值问题的广义 Kuhn-Tucker 条件, 系统科学与
     数学, 1990, 10(1):78-83.
    43. Avriel M., “Nonlinear Programming: Analysis and Method,”Prentice-Hall,
     Englewood Cliffs, New Jersey, 1976.
    44. Bazraa M.S.and Shetty C.M., “Nonlinear Programming: Theory and Algorithms,”
     John Willey & Sons, New York, 1979.
    45. Xu Yihong and Liu Sanyang, Super Efficiency in the Nearly Cone-subconvexlike
     Vector Optimization with Set-valued Functions,to appear in Acta Math. Scientia.
    46. 徐义红,刘三阳, (h,?)? 多目标规划的最优性和对偶性,应用数学学
     报,2003,26(4):726-736.
    47. 徐义红, 刘三阳, 近似锥-次类凸集值优化的严有效性,系统科学与数学(录
     用).
    48. Xu Yihong, Liu Sanyang, Benson proper efficiency in the nearly
     cone-subconvexlike vector optimization with set-valued functions, Appl. Math.
     J.Chinese Univ. Ser. B, 2003, 18(1): 95-102
    49. Xu Yihong and Liu Sanyang, Necessary Conditions for (h,?)? Mathematical
    
    
    参考文献 127
     Programming, OR Transactions, 2002, 6(4):21-30
    50. 徐义红, 近似锥-次类凸集值优化问题的强有效性,南昌大学学报(理科版) ,
     2003,27(2):121-124.
    51. Mohan S.R. and Neogy S.K., On invex sets and preinvex functions, J.Math. Anal.
     Appl., 1995, 189:901-908.
    52. Yang Xinmin and Li Duan, On properties of preinvex functions, J.Math. Anal.
     Appl., 2001, 256:229-241.
    53. Li X.F., Dong J.L. and Liu Q.H., Lipschitz B-Vex Functions and Nonsmooth
     Programming, Journal of Optimization Theory and Applications, 1997,
     93:557-574
    54. Ben-Tal A., On Generalized Means and Generalized Convex Functions, Journal
     of Optimization Theory and Applications, 1977, 21:1-13
    55. Hanson M. A. and Mond B., Necessary and sufficient conditions in
     constrained optimization, Math. Programming, 1987, 37:51-58.
    56. Zulfiqar Khan A. and Morgan Hanson A., On ratio invexity in
     mathematical programming, Journal of Mathematical Analysis and Applications,
     1997, 205:330-336.
    57. Osuna-Gomez R., Rufian-Lizana A. and Ruiz-Canales P., Invex functions and
     generalized convexity in multiobjective programming, J.Optim. Theory Appl.
     1998, 98:651-661.
    58. Lin J.C. and Wu C.S., On minimax fractional optimality conditions with invexity,
     Journal of Mathematical Analysis and Applications, 1998, 219:21-35.
    59. Morgan Hanson A., Invexity and the Kuhn-Tucker theorem, Journal
     of Mathematical Analysis and Applications, 1999, 236:594-604.
    60. Venkateswara L.Reddy and Mukherjee R.N., Some results on Mathematical
     programming with generalized ratio invexity, Journal of Mathematical Analysis
     and Applications, 1999, 240:299-310.
    61. Breckner W.W. and Kassay G., A Systematization of Convexity Concepts for Sets
     and Functions, Journal of Convex Analysis, 1997, 4:109-127
    62. Giancarlo Bigi, Marco Castellani, K ?epiderivatives for set-valued functions
     and optimization, Math. Meth. Oper. Res., 2002, 55:401-412.
    63. Ling Cheng, ε ? super saddle points and ε ? duality theorems of vector
     optimization problems with set-valued maps, OR Transactions, 2002, 6(1):53-60.
    64. Hu Yuda and Ling Cheng, Connectedness of cone super efficient point sets in
    
    
    128 西安电子科技大学博士论文:集值优化问题的最优性条件
     locally convex topological spaces, J. Optim. Theory Appl., 2000, 107(2): 433-446.
    65. 仇秋生,集值映射最优化问题的严有效解集的连通性及应用,高校应用数学
     学报 A 辑,1999,14(1):85-92.
    66. 仇秋生,傅万涛, 集值映射最优化问题超有效解集的连通性,系统科学与数    
     学, 2002,22(1):107-114.
    67. Weir T. and Mond B., Preinvex functions in multiple objective optimization,
     J.Math. Anal. Appl., 1988, 136:29-38.
    68. Mohan S.R. and Neogy S.K., On invex sets and preinvex functions, J.Math. Anal.
     Appl., 1995, 189:901-908.
    69. Yang Xinmin and Li Duan, On properties of preinvex functions, J.Math. Anal.
     Appl., 2001, 256:229-241.
    70. Yang Xinmin and Li Duan, Semistrictly preinvex functions, J.Math. Anal. Appl. ,
     2001, 258:287-308.
    71. Marco Castellani, Nonsmooth invex functions and sufficient optimality
     conditions, Journal of Mathematical Analysis and Applications, 2001,
     255:319-332.
    72. Venkateswara Reddy L.and Mukherjee R.N., Some results on Mathematical
     programming with generalized ratio invexity, Journal of Mathematical Analysis
     and Applications, 1999, 240:299-310.
    73. Morgan Hanson A., Invexity and the Kuhn-Tucker theorem, Journal
     of Mathematical Analysis and Applications, 1999, 236:594-604.
    74. Lin J.C.and Wu C.S., On minimax fractional optimality conditions with invexity,
     Journal of Mathematical Analysis and Applications, 1998, 219:21-35.
    75. Hanson M.A. and Mond B., Necessary and sufficient conditions in
     constrained optimization, Math. Programming, 1987, 37:51-58.
    76. 张庆祥, 一类 (h,?)? 意义下的半无限规划的最优性充分条件, 系统科学与数
     学,1991,11(4):367-370.
    77. 刘三阳, 凸函数的新发展, 西安电子科技大学学报, 1990,17(1):63-69.
    78. Bector C.R. and Singh C., B-vex Functions, Journal of Optimization Theory and
     Applications, 1991,71(2):237-253.
    79. Bector C.R., Suneja S.K. and Laljtha C.S., Generalized B-vex Functions and
     Generalied B-vex Programming, Journal of Optimization Theroy and
     Applications,1993,76(3):561~576.
    80. Clarke F.H., “Nonsmooth Analysis and Optimization,” John Wiley, New York,
    
    
    参考文献 129
     1983.
    81. 胡毓达, 孟志青, 序扰动多目标规划的锥次微分稳定性, 系统科学与数学,
     2000, 20(4):439-446
    82. Meng Zhiqing, Hu Yuda, The relationship between the cone-weak subdifferential
     and cone weak directive for convex set-valued mapping. Sys. Sci. and Math. Sci.,
     2000, 13(3):327-332.
    83. Yang X. M. and Liu S. Y., Three kinds of generalized convexity. J. Optim. Theory
     Appl., 1995, 86(2):501-513
    84. Yang X. M., Generalized subconvexlike functions and multiple optimization. Sys.
     Sci. and Math. Sci., 1995, 8(3):254-259
    85. Wang S. Y., Li Z. F., Scalarization and Lagrange duality in multiobjective
     optimization, Optimization, 1992, 26(3):315-324
    86. 刘庆怀, 林正华, 求解多目标规划最小弱有效解的同伦内点方法, 应用数学
     学报, 2000, 23(2):188-195
    87. Hu Yuda, Mengzhiqing, Optimality condition for vector optimization based on
     convex set-valued mapping. OR Transactions, 1998, 2(4):1-5
    88. 李声杰, S ? 凸集值映射的次梯度和弱有效解, 高校应用数学学报, 1998,
     13(4):463-472
    89. Gong X. H., connectedness of super efficients solution sets for set-valued maps in
     Banach spaces, Math Meth Oper Research, 1996, 44:135-145
    90. 孟志青, 集值映射的 Hahn-Banach定理, 应用数学和力学, 1998, 19(1):55-61
    91. Chen G. Y. and Wang S. Y., Generalized Hahn-Banach theorems and
     subdifferential of set-valued mapping, Sys. Sci. and Math. Sci., 1985, 5(3):
     223-230
    92. 王苏生, 半序线性空间的凸集分离定理及其应用, 应用数学学报, 1986, 9(3):
     310-318
    93. 袁亚湘, 孙文瑜, 最优化理论与方法, 科学出版社, 1999
    94. 史树中, 完备向量格的凸分离定理及其应用, 数学年刊, 1985,6A(4):431-438
    95. 刘三阳, 非光滑非凸多目标规划的 Wolfe 型对偶, 数学研究与评论, 1991,
     11(1): 97-101
    96. 方亚林, 梅家骝, 基于有效性的集值映射最优化的广义共轭对偶理论, 南昌
     大学学报(理科版), 1996, 20(2):124-135
    97. 汪寿阳, 多目标最优化中的共轭对偶理论, 系统科学与数学, 1984, 4(4):
     303-313
    
    
    130 西安电子科技大学博士论文:集值优化问题的最优性条件
    98. 仇秋生, 关于真有效点的连通性, 高校应用数学学报, 1999, 14A(3):329-332
    99. Gong X. H., Connectedness of efficient solution sets for set-valued maps, J.
     Optim. Theory Appl.,1994, 83(1);83-96
    100.董加礼, 不可微多目标优化, 数学进展, 1994, 23(6):517-528
    101.Frenk J. B. and Kassay G., On classes of generalized convex functions,
     Gordon-Franks type theorems, and Lagrangian duality, J. Optim. Theory Appl.,
     1999, 102(2):315-343
    102.张庆祥, 非光滑 (h,?)? 半无限规划解的充分性和对偶性, 应用数学学报,
     2001, 24(1):129-138
    103.Weir T., Mond B., Pre-invex Functions in Multiple Objective Optimization, J.
     Math. Analysis & Appl., 1988,136:29-38
    104.HansonM. A., Invexity and the Kuhn-Tucker Theorem, J. Math. Analysis & Appl.,
     1999, 256:594-604
    105.Liu Xianzhong, Hu Shigeng, Liu Jinshan, Minimax theorems for subconvexlike
     functions with applications to saddle point problems, Acta Math Scientia, 2002,
     22B(1): 115-122
    106.Chen G. Y. and Jahn J., Optimality conditions for set-valued optimization
     problems, Math. Meth. Oper. Res., 1998, 48:187-200
    107.Bhatia D. and Mehra, Optimality conditions and duality involving arcwise
     connected and generalized arcwise connected functions, J. Optim. Theory Appl.,
     1999, 100(1):181-194
    108.Kazmi, Some remarks on vector optimization problems, J. Optim. Theory Appl.,
     1998,96(1):133-138
    109. Li Z. F. and Wang S. Y., Lagrange multipliers and saddle points in
     multiobjective programming, J. Optim. Theory Appl.,1994,83(1):63-81
    110. Li Z. F. and Wang S. Y., Connectedness of super efficient sets in vector
     optimization of set-valued maps, Math. Meth. Oper. Res., 1998, 48:207-217
    111.Ansari Q. H., Schaible S., Yao J. C., System of vector equilibrium problems and
     its applications, J. Optim. Theory Appl.,2000, 107(3):547-557
    112. Flores-Bazan F. and Oettli W., Simplified optimality conditions for minimizing
     the difference of vector-valued functions, J. Optim. Theory Appl., 2001,
     108(3):571-586
    113.Rong W. D. and Wu Y. N., ε ?Weak minimal solutions of vector optimization
     problems with set-valued maps, J. Optim. Theory Appl., 2000, 106(3):569-579
    
    
    参考文献 131
    114.Kazmi K. R., Existence of ε ?minima for vector optimization problems, J.
     Optim. Theory Appl., 2001,109(3):667-674
    115.Gong X. H., Efficiency and Henig efficiency for vector equilibrium problems, J.
     Optim. Theory Appl., 2001,108(1):139-154
    116.彭建文, 杨新民, 集值映射向量优化问题的 e? 真有效解, 高校应用数学学报
     A 辑, 2001, 16(4):486-492
    117.杨雷, 胡毓达, 拓扑向量空间多目标规划锥有效解的广义最优性充分条件,
     上海交通大学学报, 2002, 36(2):281-285
    118.刘玉兰, 施绍萍, 梅家骝, 参数多目标规划的最优多值函数的的广义凸性,
     南昌大学学报(理科版), 2001,25(4):330-334
    119.Sheng Baohuai and Liu Sanyang, The optimality conditions of nonconvex
     set-valued vector optimization, Acta Math Scientia, 2002, 22B(1):47-55
    120.Ansari Q. H., Konnv I .V. and Yao J. C., Characterizations of solutions for vector
     equilibrium problems, J. Optim. Theory Appl., 2002, 113(3):435-447
    121.程永红, 傅万涛, 序线性空间泛函单调分解定理, 南昌大学学报(理科版),
     1996, 20(3):218-220
    122.Fu Wantao, Cheng Yonghong, On the super efficiency in locally convex spaces,
     Nonlinear Analysis, 2001, 44:821-828

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700