变频器供电的感应电机节能控制若干技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
感应电动机的变频调速是随着风机、泵类负载的调速节能以及生产工艺、伺服控制的需要发展起来的,现有工程中广泛应用的感应电机变频控制方法具有算法简单、动态特性好的优点,但未顾及电机轻载运行时的高效运行。随着全球环保和能源短缺问题的日益突出,人们开始更多的关注节能问题。感应电机作为主要的用电设备,对其节能进行研究有重要的现实意义。在此背景下本文开展了变频器供电的感应电机高效节能控制及其相关技术的研究,解决电机轻载低效率运行问题。
     通过分析感应电机的数学模型和四种基本的调速控制技术即电压-频率协调控制、转差频率控制、矢量控制和直接转矩控制,表明这些控制方法导致电机轻载运行时效率下降的原因在于忽略了铁耗,并采用额定恒磁通控制。在此基础上提出了感应电机考虑铁耗的矢量控制系统,通过控制气隙电流的转矩分量和励磁分量实现转矩和磁链的矢量解偶控制,并由此间接控制定子电流,研究表明系统的动态性能有了明显的提高。
     针对于调速控制和节能控制中所需参数的时变性、非线性的特点,论文对感应电机参数的两类辨识方法既离线辨识和在线辨识进行了研究,提出了考虑铁耗的离线辨识和转子电阻自校正的在线辨识方法。
     本文对转速控制器进行了三项研究:一是对传统的PI转速控制器进行了改进,由运行工况选择调节参数,提高了动静态性能;二是对滑模控制器、神经网络控制器根据其运行特性进行改进设计,滑模控制器采用非线性的光滑连续函数取代滑模面上的符号函数消除了高频抖动,神经网络控制器的权值具有自适应能力;三是提出一种感应电机的扰动观测器和基于转差频率控制的抗干扰控制,这种扰动观测器采用跟踪微分器对各种负载扰动进行观测,再根据转差频率控制原理对扰动转矩进行补偿,可以有效解决感应电机转差频率控制中动态响应差、控制精度低的缺点。
     变频器供电的感应电机节能运行控制是本文研究的重点,通过对电机系统的损耗分析和运行效率分析,确定出电机系统效率优化的方向是电机本体的节能运行,并且主要针对中小型电机的节能运行控制,效率优化通过调节定子供电电压、频率、压频比或励磁磁通实现,并由此得出以下感应电机实现节能控制的若干方法:
     (1)根据感应电机的稳态模型提出了一种标量控制的节能运行方案,这种方案根据转速调节电源频率实现电机的节能运行、通过调节电源电压满足一定转速下负载转矩的要求;
     (2)根据电机的不同运行工况,提出了压频比调节的模糊节能控制,提高了电机的效率并保持了一定的动态响应特性;
     (3)提出了基于损耗模型的矢量控制方案,矢量控制和节能控制中均考虑了铁耗,并对额定转速以上和额定转速以下的矢量节能控制分别进行了探讨,控制方案兼顾系统的优良动态性能、宽调速范围和节能运行。
With the requirement of speed-regulated energy saving for fan and water pump, manufacturing technique and servo control, frequency control of induction motor has developed. The techniques for motor control in engineering have the advantages of simple algorithm and good dynamic performance. However, they are not considered high efficiency for light load. As the increasing prominence of global environmental protection and energy shortage, people have to pay more attention on energy saving. The induction motor is the main power consumption equipment. Thus, the research for its energy saving has great practical significance. In this case, the paper adheres to energy saving for induction motor supplied by converter to solve the low efficiency for the motor with light load.
     The main control techniques for speed regulation are coordinated control for voltage to frequency, slip frequency control, vector control and direct torque control. By analyzing these techniques and the mathematical model of induction motor, we find that the low efficiency for the motor with light load result from neglecting core loss and constant rated flux. On that basis, we present vector control considering core loss. It realizes decoupling control of torque and flux by controlling components of gap current, which indirectly command stator currents to achieve vector control. The research indicates the distinct improvement of the proposed control in dynamic performance.
     For the motor parameters used for speed control and energy-saving control have time variant and nonlinear characteristics, the paper investigates the offline technique and the online technique for parameter identification. It further proposes offline technique and online auto-tuning rotor resistance identification considering core loss.
     The paper has presented three items research for speed controller. The first is the improvement for PI speed controller. Its parameters adapt operating condition. Thus, the dynamic and static performances improve. The second is the improvement for sliding mode controller and neural network controller. A nonlinear smooth and continuous function takes the place of sign function on sliding surface and eliminates the high dither of sliding mode controller. The weight for neural network controller can be adjusted adaptively. The third is to present an novel zero-order disturbance observer and disturbance rejection control based on slip regulation. The disturbance observer uses tracking differentiator to observer all disturbance. Then, the disturbance torque is compensated based on slip control. It can overcome the disadvantages of poor dynamic response and lower control precision in slip regulation.
     The energy-saving control of induction motor fed by converter is the key research in the paper. By analyzing the losses and operating efficiency of the motor system, we find that the orientation of efficiency optimum is the energy saving of the motor self. And it stress on medium and small-sized motors. The optimum efficiency can be realized by adjusting stator voltage, frequency, ratio of voltage to frequency, or flux. From this, we get the following methods of energy saving control.
     (1) By the steady model, we propose a novel energy-saving realization of scale-controlled induction motor. The proposition adjusts the supply frequency by the speed, and adjusts supply voltage to meet the required load torque.
     (2) According to the different operating condition, we present fuzzy energy-saving control of induction motor by adjusting ratio of voltage to frequency. By the way, the motor runs at high efficiency and keeps good dynamic response.
     (3) We present vector-energy-saving control. We consider the core loss both in vector control and in energy-saving control. Also, we discuss the vector-energy-saving control for the motor operated below the rated speed and up the rated speed. The proposition gives consideration to better dynamic performance, large scope speed regulation, and energy saving.
引文
[1]赵相宾,夏长亮,宋国兰.变频调速技术的进展[J].电力电子技术,2005,39(6):145-148
    [2]张树国,李栋,胡竞.变频调速技术的原理及应用[J].节能技术,2009,27(1):83-86
    [3]贺虎成,刘卫国.电机运动控制及其相关技术发展研究[J].电机与控制应用,2006,33(3):3-6
    [4]许振.交流电动机变频调速技术的发展.微特电机,2005,33(4):39-43
    [5]Lennart Harnefors, Marko Hinkkanen. Complete Stability of Reduced-Order and Full-Order Observers for Sensorless IM Drives [J] IEEE Transactions on Industrial Electronics,2008,55(3), pp.1319-1329
    [6]王耀南,陈维.无速度传感器的感应电机神经网络鲁棒自适应控制[J].中国电机工程学报,2008,28(33):92-98
    [7]Hui Luo, Yunfei Lv, Xin Deng, Huajun Zhang. Optimization of Adaptation Gains of Full-order Flux Observer in Sensorless Induction Motor Drives Using Genetic Algorithm [J]. Information Technology Journal,2009,8(4), pp. 577-682
    [8]王高林,陈伟,杨荣峰,于泳,徐殿国.无速度传感器感应电机改进转子磁链观测器[J].电机与控制学报,2009,13(5):638-642
    [9]宋文祥,曹大鹏,陈国呈,陈 陈.基于状态观测器的异步电机定子磁链观测和速度辨识[J].上海大学学报(自然科学版),2008,14(4):349-354
    [10]奚国华,沈红平,喻寿益,桂卫华.基于全阶状态观测器的无速度传感器DTC系统[J].电气传动,2008,38(7):22-25
    [11]Teresa Orlowska-Kowalska, Mateusz Dybkowski, Krzysztof Szabat. Adaptive Sliding-Mode Neuro-Fuzzy Control of the Two-Mass Induction Motor Drive Without Mechanical Sensors [J]. IEEE Transaction on Industrial Electronics, 2010,57(2), pp.553-564
    [12]王庆龙,张兴,刘利华.感应电机直接转矩控制系统变结构MRAS速度辨识[J].系统仿真学报,2009,21(4):1114-1117
    [13]沈艳霞,丁辉,纪志成.感应电机模糊滑模控制器的新型设计方法[J].电机与控制学报,2008,12(3):271-274
    [14]高扬,卢健康,方晓厅.基于模糊控制及复合磁链观测器的感应电机矢量控制系统[J].微电机,2006,39(3):11-14
    [15]Mir S, Islam M S, Sebastian T, et al. Fault-tolerant switched reluctance motor drive using adaptive fuzzy logic controller [J]. IEEE Trans. On Power Electronics,2004,19(2), pp.289-295
    [16]纪志成,沈艳霞,薛花.无刷直流电机自适应模糊控制的研究[J].中国电机工程学报,2005,25(3):104-109
    [17]李大喜,王莉.模糊自适应PID控制在异步电机矢量控制系统中的应用研究[J].大电机技术,2008,(6):56-59
    [18]Besir Dandil. Fuzzy neural network IP controller for robust position control of induction motor drive [J]. Expert Systems with Applications,2009,36(3),Part 1, pp.4528-4534
    [19]陈维,王耀南.感应电机的神经网络自适应L2鲁棒控制[J].电机与控制学报,2007,11(3):211-216
    [20]Wai R J, Su K H. Adaptive enhanced fuzzy sliding-mode control for electrical servo-drive [J]. IEEE Trans. on Industrial Electronics,2006,53(2), pp. 569-580
    [21]冼成瑜,王明渝,刘和平.基于多模糊控制器的感应电动机矢量控制系统[J].电气传动,2005,35(2):12-55
    [22]陈冲,刘星桥,刘国海,赵亮.神经网络控制的两变频调速电机系统[J].电力电子技术,2008,42(11):34-36
    [23]刘燕飞,王倩.基于模糊神经网络的感应电机直接转矩控制[J].电力系统及其自动化学报,2008,20(3):86-89
    [24]王瑞明,蒋静坪.基于适应性遗传算法的滑模控制感应电机伺服驱动系统研究[J].中国电机工程学报,2005,25(17):136-141
    [25]Guang Feng, Yan-Fei Liu, Lipei Huang. A New Robust Algorithm to Improve the Dynamic Performance on the Speed Control of Induction Motor Drive [J]. IEEE Transactions on Power Electronics, Nov.2004, Vol.19, No.6, pp.1614-1627
    [26]王瑞明,蒋静坪.双模糊神经网络的滑模控制感应电动机伺服驱动研究[J].电工电能新技术,2008,27(2):26-29
    [27]王文涛,汤先跃.基于微分几何理论的感应电机解耦控制[J].沈阳工业大学学报,2006,28(6):623-627
    [28]赵金,张华军.基于自适应遗传算法的感应电动机调速系统PID控制器参数优化[J].微电机,2008,41(4):34-36
    [29]欧阳红林,成兰仙.基于神经网络的感应电机矢量控制系统研究[J].电机与控制学报,2007,11(2):111-115
    [30]夏长亮,修杰.基于RBF神经网络非线性预测模型的开关磁阻电机自适应PID控制[J].中国电机工程学报,2007,27(3):57-62
    [31]Qiao Mingzhong, Zhang Xiaofeng, Ren Xiuming. Research of the mathematical model and sudden symmetrical short circuit of the multi-phase permanent-magnet motor [C]. IEEE Proceedings on Power System Technology,2002,2, pp.769-773
    [32]杨先有,易灵芝,段斌,彭寒梅.开关磁阻电动机调速系统BP神经网络建模[J].电机与控制学报,2008,12(4):447-450
    [33]陆可,肖建.双UKF算法及其在感应电机矢量控制中的应用[J].电机与控制学报,2007,11(6):564-567
    [34]徐小增.基于参数辨识及补偿控制的异步电动机智能控制技术研究[D].华中科技大学博士论文,2005年7月
    [35]Mohamed S. Zaky, Mahmoud M. Khater, Shokry S. Shokralla, Hussain A. Yasin. Wide-Speed-Range Estimation With Online Parameter Identification Schemes of Sensorless Induction Motor Drives [J]. IEEE Transactions on Industrial Electronics,2009,56(5), pp.1699-1707
    [36]Dura V. Oros, Veran V. Vasic, Darko P. Marcetic. Natural Field Orientation Sensorless Induction Motor Drive with On-line Stator Resistance Parameter Update [J]. Electric Power Components and Systems,2009,36(12), pp. 1318-1336
    [37]Ebrahim Rahimpour, Vahid Rashtchi, Mahmood Pesaran. Parameter identification of deep-bar induction motors using genetic algorithm [J]. Electrical Engineering,2007,89(7), pp.547-552
    [38]王明渝,冼成瑜,惠娅倩.感应电动机矢量控制参数离线辨识技术[J].电工技术学报,2006,21(8):90-96
    [39]蒋小春,杨 耕,窦曰轩.变频器驱动下感应电机参数的一种辨识方法[J].电力电子技术,2005,39(5):130-132
    [40]徐 凯.一种交互式模型参数自适应感应电动机参数在线辨识方法研究[J].微电机,2008,41(2):15-18
    [41]E. Laroche; C. Durieu; J.-P. Louis. Parameter estimation accuracy analysis for induction motors [J]. European Transactions on Electrical Power,2005, 15(2), pp.123-139
    [42]金 海,黄 进.基于模型参考方法的感应电机磁链的自适应观测及参数辨识[J].电工技术学报,2006,21(1):65-69
    [43]V. P. Sakthivel, R. Bhuvaneswari, S. Subramanian. Multi-objective parameter estimation of induction motor using particle swarm optimization [J]. Engineering Applications of Artificial Intelligence,2010,23(3), pp.302-312
    [44]G. Kenne, F. Floret, H. Nkwawo, and F. Lamnabhi-Lagarrigue. Parameter estimation methodology for nonlinear systems:Application to induction motor [J]. Journal of Systems Science and Systems Engineering,2005,14(2), pp. 240-254
    [45]Godpromesse Kenne, Tarek Ahmed-Ali, F. Lamnabhi-Lagarrigue, Amir Arzande. Nonlinear systems time-varying parameter estimation:Application to induction motors [J]. Electric Power Systems Research,2008,78(11), pp. 1881-1888
    [46]Kusko Alexander, Galler Donald. Control means for minimization of losses in AC and DC motor drives[J]. IEEE Transaction on Industry Applications,1983, 13(4), pp.561-570
    [47]Rowan Timothy M., Lipo Thomas A. A quantitative analysis of induction motor performance improvement by SCR voltage control [J]. IEEE Transaction on Industry Applications,1983,19(3), pp.543-553
    [48]Daniel S Kirschen, Donald W Novotny, Warin Suwanwisoot. Minimizing induction motor losses by excitation control in variable frequency drive [J]. IEEE Transaction on Industry Applications,1984,20 (5), pp.1244-1250
    [49]李 阳,张曾科,常进.基于转差率的感应电机最优效率控制[J].电机与控制学报,2005,9(3):215-217
    [50]Andersen H. R., Pedersen J. K.. Low cost energy optimized control strategy for a variable speed three-phase induction motor[C]. Conf. Rec. PESC 96, 1996,1, pp.920-924
    [51]李凯,陈兴林,宋申民.变压恒频感应电机效率功率因数优化控制[J].电机与控制学报,2009,13(3):361-366
    [52]刘燕飞,王倩.节能型异步电机矢量控制系统的设计与仿真[J].电机与控制应用,2007,34(7):18-20
    [53]G.O. Garcia, J. C. Mendes Luis, R. M. Stephan, and E. H. Watanabe. An Efficient Controller for an Adjustable Speed Induction Motor Drive [J]. IEEE Transaction on Industrial Electronics,1994,41(5), pp.533-539
    [54]Fernandez-Bernal F, Garcia-Cerrada A, Faure R. Model-based loss minimization for DC and AC vector-controlled motors including core saturation[J]. IEEE Transaction on Industry Applications,2000,36(3), pp. 755-763
    [55]丁宝,孙满意.基于矢量空间最小励磁电流的电机节能研究[J].中国电机工程学报,2006,26(1):142-145
    [56]崔纳新,张承慧,李珂,张承进.基于参数在线估计的交流异步电动机效率最优控制[J].电工技术学报,2007,22(9):80-85
    [57]Sul S K, Park M H. A novel technique for optimal efficiency control of a current-source inverter-fed induction motor [J]. IEEE Transaction on Power Electronics,1998,3(2), pp.192-199
    [58]I. Kioskeridis and N. Margaris. Loss minimization in scalar-controlled induction motor drives with search controllers [J]. IEEE Transaction on Power Electronics,1996,11(2), pp.213-220
    [59]杨斌,刘惠康,林森.基于遗传算法的异步电动机功率因数自寻优控制[J].大电机技术,2007, (3):23-26
    [60]常进,张曾科,李阳等.基于模糊逻辑的自寻优感应电机能量优化控制[J].电机与控制学报,2005,9(3):244-249
    [61]Gilberto C. D. Sousa, Bimal K. Bose, John G. Cleland. Fuzzy Logic Based On-Line Efficiency Optimization Control of an Indirect Vector-Controlled Induction Motor Drive [J]. IEEE Transaction on Industrial Electronics, 1995,42(2), pp.192-198
    [62]刘小虎,谢顺依,郑力捷.一种改进的感应电机最大效率控制技术研究[J].中国电机工程学报,2005,25(6):95-98
    [63]张立伟,温旭辉,郑琼林.异步电机用混合式模糊搜索效率优化控制研究[J].中国电机工程学报,2007,27(27):83-87
    [64]Wasynczuk O, Sudhoff S D, Hansen I G, et al. A maximum torque per ampere control strategy for induction motor drives [C]. IEEE Transaction on Industrial Electronics,1998,13(2), pp.163-169
    [65]F. Abrahamsen, F. Blaabjerg, J. K. Pedersen, P. Grabowski, and P. Thoegersen. On the energy optimized control of standard and high-efficiency induction motor in CT and HVAC applications [J]. IEEE Transaction on Industry Applications,1998,34(4), pp.822-831
    [66]Kouki Matsuse, Tatsuya Yoshizumi, Seiji Katsuta, and Shotaro Taniguchi. High-Response Flux Control of Direct-Field-Oriented Induction Motor with High Efficiency Taking Core Loss into Account [J]. IEEE Transaction on Industry Applications,1999,35(1), pp.62-69
    [67]F. Abrahamsen, F. Blaabjerg, J. K. Pedersen, and P. B. Thoegersen. Efficiency-optimized control of medium-size induction motor drives [J] IEEE Transaction on Industry Applications,2001,37(6), pp.1761-1767
    [68]Slobodan N. Vukosavic, Emil Levi. A Method for Transient Torque Response Improvement in Optimum Efficiency Induction Motor Drives [J]. IEEE Transaction on Energy Conversion,2003,18(4), pp.484-493
    [69]Ick Choy, Kwon S H, Choi J Y, et al. On-line efficiency optimization control of a slip angular frequency controlled induction motor drive using neural networks [C]. IEEE IECON 22nd International Conference,1996,2, pp. 1216-1221
    [70]Bose B K, Patel N R, Rajashekara K. A neuro-fuzzy-based on-Line efficiency optimization control of a stator flux-oriented direct vector-controlled induction motor drive [J]. IEEE Transaction on Industrial Electronics,1997,44(22), pp. 70-273
    [71]E. S. Abdin, G. A. Ghoneem, H. M. M. Diab et al. Efficiency optimization of a vector controlled induction motor drive using an artificial neural network [C]. The 29th Annual Conference of the IEEE on Industrial Electronics Society, 2003,3, pp.2543-2548
    [72]张承慧,夏东伟,石庆升.计及变频器和电机损耗的全变速泵站效率优化控制[J].电工技术学报,2006,21(5):52-57
    [73]R. J. Spiegel, M. W. Turner, V. E. McCormick. Fuzzy-logic-based controllers for efficiency optimization of inverter-fed induction motor drives [J]. Fuzzy Sets and Systems,2003,137(3), pp.387-401
    [74]A. A. Hassan. Improving the power efficiency of a rotor flux-oriented induction motor drive [J]. Electric Machines and Power Systems,2002,30(5), pp.431-442
    [75]Nie Ziling, Ma Weiming, Lv Hao. Robust control of induction motor with maximum efficiency for HEVs [C]. IEEE International Symposium on Industrial Electronics,2004,2, pp.1087-1092
    [76]Radwan H. A. Hamid, Amr M. A. Amin, Refaat S. Ahmed, Adel A. A. El-Gammal. New technique for maximum efficiency and minimum operating cost of induction motors based on particle swarm optimization (PSO) [C]. 32nd Annual Conference on IEEE Industrial Electronics (IECON 2006),2006, 4, pp.1779-1784
    [77]Bogdan Pryymak, Juan M. Moreno-Eguilaz, Juan Peracaula. Neural network flux optimization using a model of losses in induction motor drives [J]. Mathematics and Computers in Simulation,2006,71(4-6), pp.290-298
    [78]Perron M., Hoang Le-Huy. Full load range neural network efficiency optimization of an induction motor with vector control using discontinuous PWM[C]. IEEE International Symposium on Industrial Electronics,2006, pp.166.170
    [79]S. Vaez-Zadeh, F. Hendi. A continuous efficiency optimization controller for induction motor drives [J]. Energy Conversion and Management,2005,46(5), pp.701-713
    [80]P. Gnacinski. Energy saving work of frequency controlled induction cage machine [J]. Energy Conversion& Management,2007,48(3), pp.919-926
    [81]Mineo Tsuji, Shuo Chen, Toshihiro Kai. Q-Axis Flux-based sensorless vector control of induction motor taking into account iron loss [J]. IEEJ Transactions on Industry Applications,2006,126(12), pp.1645-1651
    [82]张云,孙力,吴凤江,孙醒涛.考虑铁耗的感应电机模型及对矢量控制的影响[J].电机与控制学报,2007,11(4):359-363
    [83]Aiyuan Wang, Zhihao Ling. Realization of Vector Control for Induction Motor Considering Iron Loss[C]. International Symposium on Intelligent Information Technology Application,2008,1, pp.761-765
    [84]唐浦华,刘飞,黎亚元.感应电机直接转矩控制系统[J].电机与控制学报,2007,11(1):1-5
    [85]郭冀岭,王远波,王君瑞.基于Matlab感应电机直接转矩控制系统限制启动电流的仿真[J].电气传动,2006,36(6):27-30
    [86]黄志武,李 艺.基于改进型积分器的直接转矩控制的仿真研究[J].计算机仿真,2007,25(4):149-152
    [87]S.M. Gadoue, D. Giaouris, J.W. Finch. Artificial Intelligence-based Speed Control Of Dtc Induction Motor Drives-A Comparative Study [J]. Electric Power Systems Research,2009,79(1):210-219
    [88]Mustafa Aktas, H. Ibrahim Okumus. Speed Sensorless Direct Torque Control of Induction Motor Drives [J]. Instrumentation science& technology,2009, 37(6), pp.1073-9149
    [89]K. C. WONG; S. L. HO; K. W. E. CHENG. Direct Torque Control of a Doubly-fed Induction Generator with Space Vector Modulation [J]. Electric Power Components and Systems,2008,36(12), pp.1337-1350
    [90]马 龙,吴新跃,李琦.参数自校正异步电机状态观测器设计[J].电气传动.2006,36(11):7-10
    [91]Zhao Chao, Hong Hua-sheng, Bao Wei-min, Zhang Luo-ping. Robust recursive estimation of auto-regressive updating model parameters for real-time flood forecasting [J]. Journal of Hydrology,2008,349 (3-4): 376-382
    [92]Aiyuan Wang, Zhihao Ling. Auto-tuning Rotor Resistance Identification of Induction Motor Considering Iron Loss [C]. International Symposium on Intelligent Information Technology Application,2009, Vol.2, pp.586-589
    [93]Jinming Yang, Cheung N.C., Jie Wu. The auto-disturbance rejection controller for speed regulation in permanent-magnet linear motors [C]. The 30th Annual Conference of the IEEE Industrial Electronics Society, Busan, South Korea,, 2-6 November 2004, Vol.2, pp.1123-1127
    [94]Su, Y.X., Zheng, C.H., Duan, B.Y. Automatic Disturbances Rejection Controller for Precise Motion Control of Permanent-Magnet Synchronous Motors [J]. IEEE Transactions on Industrial Electronics,2005, Vol.52, No.3, pp.814-823
    [95]Aiyuan Wang, Zhihao Ling. Disturbance Rejection Control of Induction Motor for Slip Regulation [C].2009 International Conference on Industrial and Information Systems, pp.380-383
    [96]Mario Cacciato, Alfio Consoli, Giuseppe Scarcella, Giacomo Scelba. Indirect Maximum Torque per Ampere Control of Induction Motor Drives[J]. EPE Journal,2008,28(4):34-41
    [97]Mohammad Abdul Mannan, Toshiaki Murata, Junjl Tamura, Takeshi Tsuchiya. Energy Model Based Loss-Minimized Speed Control of Induction Motor with a Full-order Observer [J]. IEEJ Transactions on Electrical and Electronic Engineering,2006,1(1):35-44
    [98]Abdelhakim Haddoun, Mohamed El Hachemi Benbouzid, Demba Diallo, Rachid Abdessemed, Jamel Ghouili, Kamel Srairi. A Loss-Minimization DTC Scheme for EV Induction Motors [J]. IEEE Transactions on Vehicular Technology,2007,56(1):81-88
    [99]Carlos Mario Vega Gonzalez, Jaime Rodriguez Arribas, Dionisio Ramirez Prieto. Optimal Regulation of Electric Drives With Constant Load Torque[J]. IEEE Transactions on Industrial Electronics,2006,53(6):1762-1769
    [100]M. Hajian, G.R. Arab Markadeh, J. Soltani, S. Hoseinnia. Energy optimized sliding-mode control of sensorless induction motor drives [J]. Energy Conversion and Management,2009,50(9), pp.2296-2306
    [101]Dong Hwa Kim, Kaoro Hirota. Vector control for loss minimization of induction motor using GA-PSO [J]. Applied Soft Computing,2008,8(4), pp. 1692-1702
    [102]王爱元,凌志浩.标量控制的感应电机高效节能运行的实现[J].电气传动,2009,39(1):19-22
    [103]王爱元,凌志浩.感应电机压频比调节的模糊节能控制[J].电气自动化,2008,30(6):23-24
    [104]Nikolaos Tsouvalas, Ioannis Xydis, Ioannis Tsakirakis, Z. Papazacharopoulos. Asynchronous motor drive loss optimization [J]. Journal of Materials Processing Technology,2007,181(1-3):301-306
    [105]Cao-Minh Ta, Hori Y. Convergence improvement of efficiency-optimized control of induction motor drives [J]. IEEE Transactions on Industry Applications,2001,37(6):1746-1753
    [106]苗敬利,李华德,胡广大,赵仁涛.考虑感应电机动态效率的自抗扰控制及混沌优化[J].电气传动,2009,39(11):19-23
    [107]任晋旗,李耀华,王珂.直线异步电机在线搜索法效率优化控制[J].电工技术学报,2009,24(5):34-39
    [108]李延峰,于海斌.一种用于异步电机效率优化的混合搜索方法[J].电机与控制学报,2009,13(3):337-341
    [109]de Almeida Souza D., de Aragao Filho, W. C. P., Sousa, G. C. D. Adaptive Fuzzy Controller for Efficiency Optimization of Induction Motors [J]. IEEE Transactions on Industrial Electronics,2007,54(4):2157-2164
    [110]Kaboli S., Zolghadri M. R., Vahdati-Khajeh E. A Fast Flux Search Controller for DTC-Based Induction Motor Drives [J]. IEEE Transactions on Industrial Electronics,2007,54(5):2407-2416
    [111]Chandan Chakraborty, Yoichi Hori. Fast efficiency optimization techniques for the indirect vector-controlled induction motor drives [J]. IEEE Transactions on Industry Applications,2003,39(4):1070-1076
    [112]Liu Xiao-hu, Xie Shun-yi, Zheng Li-jie. Study on maximum efficiency control strategy for induction motor [J]. Journal of Harbin Institute of Technology, 2007,14(4):588-592
    [113]S. Lim, K. Nam. Loss-minimising control scheme for induction motors [J]. Proc. Inst. Elect. Eng.,2004,151(4):385-397
    [114]Gan Dong, Olorunfemi Ojo. Efficiency Optimizing Control of Induction Motor Using Natural Variables [J]. IEEE Transactions on Industrial Electronics,2006,53(6):1791-1798
    [115]M. Nasir Uddin, Sang Woo Nam. New Online Loss-Minimization-Based Control of an Induction Motor Drive [J]. IEEE Transactions on Power Electronics,2008,23(8):926-933
    [116]Uddin, M. N., Nam, S. W. Development of a Nonlinear and Model-Based Online Loss Minimization Control of an IM Drive [J]. IEEE Transactions on Energy Conversion,2008,23(4):1015-1024
    [117]Aiyuan Wang, Zhihao Ling. Improved Efficiency Optimization for Vector Controlled Induction Motor [C].2009 Asia-Pacific Power and Energy Engineering Conference, Vol.2:2389-2392

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700