新型交直交电压源变换器的调制技术及相关问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交流/直流/交流(AC/DC/AC)电压源变换器已在民用、工业、军事等领域被广泛使用,引起了国内外专家、学者的广泛关注。随着社会对电能需求以及电力用户对高质量、高可靠性电源系统需求的日益增长,对交直交电压源变换器的输入输出性能等方面提出了更高的要求。由此,交直交电压源变换器直流侧大容量电解电容所带来的负面效应受到了高度重视。大容量电解电容的使用导致变换器占用空间大、成本高,给电网带来了严重谐波污染和相关电能质量问题,且在多数情况下,电容的使用寿命是限制变换器使用寿命的主要因素。因此,采用新颖的拓扑结构与合理有效的调制技术来提高交直交电压源变换器的输入输出性能也就成为国内外学者研究的重要问题。本文正是针对不同负载情况下新型交直交电压源变换器的调制技术以及过电压保护方法等方面进行了一系列研究。
     文中提出了新型交直交电压源变换器的拓扑结构,建立了其数学模型,同时分析了直流侧电压的波动情况以及网侧电流谐波情况。数学模型的建立为谐波分析、直流侧过电压抑制、调制技术研究奠定了理论基础。由分析可知:直流侧电压的波动是由整流桥和逆变桥共同作用引起的;网侧电流的总谐波畸变率随着直流侧电容的容量增大而增大。
     输出高质量的电压是新型交直交电压源变换器的重要功能之一。但是,采用新的拓扑结构后三相不可控整流桥会输出波动的直流电压,而在直流侧电压波动情况下,仍采用传统的SPWM调制技术就会使其输出电压中含有大量的低次谐波,对负载产生不利影响。针对该问题,文中提出一种改进的重构调制波正弦脉宽调制(ARMW-SPWM)技术,该调制技术的使用可以更好地消除阻感负载情况下直流侧电压的波动对新型交直交电压源变换器输出电压中产生低次谐波的影响,同时可以显著地减小直流侧电容的容量,从而简化了变换器主电路。文中通过仿真验证了其理论分析的正确性。
     在标量控制的变频调速系统中,变换器输出准确的电压矢量是非常重要的。电动机负载情况下,仍采用传统的SVPWM技术调制新型交直交电压源变换器,就会使其输出电压矢量与参考电压矢量产生误差,这样对电动机就不能正确控制。因此本文提出了磁链差分空间矢量脉宽调制(FLDSVPWM)技术,该调制技术能够使新型交直交电压源变换器输出正确的电压矢量。另外,由于直流侧电压的波动,使新型交直交电压源变换器的线性调制区域结束的比较早。由此,本文提出了幅值恒定过调制(ACOM)技术,从而使新型交直交电压源变换器可以获得较高输出调制比。
     新型交直交电压源变换器的过电压与谐振的抑制对于提高其可靠性、网侧性能至关重要。在轻载或电动机回馈制动的时候,功率流从电机回馈到直流侧,可导致新型交直交电压源变换器直流侧过电压。由于传统的过电压保护方法是基于理想的直流侧电压进行过电压保护的,但是在新型交直交电压源变换器中,直流侧电压是波动的,所以传统的过电压保护方法不再适用。针对该问题本文提出了功率因数动态跟踪控制(PFDTC)直流侧过电压保护新方法,该方法能够提前判断电动机的回馈制动状态,从而有效地抑制能量回馈避免过电压的产生。另外,由于直流侧电容容量以及网侧滤波器阻抗值的减小,使直流侧电容与网侧电抗的谐振频率增高与开关频率接近甚至超过开关频率,所以容易产生谐振,对网侧产生不利影响。针对此问题本文通过仿真和实验确定了避免谐振的条件,从而抑制谐振的发生。
     新型交直交电压源变换器的设计与实验。本文详细论述了新型交直交电压源变换器的实验系统方案。针对控制任务的特点,采用了高性能DSP主控系统和单片机监控系统的复合架构,达到了高速实时控制与友好人机界面的统一。最后从实验系统的测量结果表明:理论分析正确、实验方案可行,为进一步研究奠定了重要的理论和实践基础。
AC/DC/AC voltage source converter (VSC) widely used in civil, industry or military territory becomes research focus of scholars and experts from home and abroad. With the demand of power energy and the request of consumers to high quality and reliable power increasingly getting higher, AC/DC/AC VSC is starving for improvement in input and output performance. However, its high capacitance DC capacitor brings negative effect which is noticed today. The equipment that uses high capacitance electrolytical capacitor has disadvantages, such as bulk, high price, heavy harmonic pollution and relating power quality problem. In many cases, the lifetime of the capacitor is main factor limiting lifetime of the converter. So, novel topology and modulation technique of AC/DC/AC VSC is a difficult task to scholar engaged in this field. Due to above-mentioned problem, a series research work on modulation technique and overvoltage protecting method for novel AC/DC/AC VSC under different loads is carried out.
     A novel AC/DC/AC VSC main circuit topology is proposed and system mathematic model including DC side and inverter-bridge is estabished and fluctuating situation of DC side voltage and harmonic of line side current are detailedly analyzed. Foundation of mathematic model provides important theoretic basis for harmonic analysis and suppression of DC side overvoltage and research of modulation strategies. Analysis results show that DC side voltage fluctuation can be estimated by summing fluctuations due to the rectifier and inverter-bridge and the higher of DC side capacitor capacitance, the larger of THD for line side current.
     Producing high quality voltage is one of novel AC/DC/AC VSC’s important functions. However, uncontrolled rectifier for new topology outputs ripple DC voltage. As ripple DC voltage, low harmonics of output voltage are largely increased by using traditional moudlation technique so as to produce adverse effect to load. Due to above-mentioned problem, an advanced reconstruction modulation wave SPWM (ARMW-SPWM) technique is proposed. Investigation results show proposed technique can eliminate harmonics caused by ripple DC voltage for output voltage under resistance inductance load and can greatly reduce DC capacitor so that main circuit are simplified. The ARMW-SPWM technique theory analysis is verified by simulation.
     It is very importance of producing correct voltage vector for converter under variable speed drives system of scalar control. Because of the constant DC side voltage assumption during the switching period leads to an error in produced voltage for novel AC/DC/AC VSC so that the electromotor cann’t be accurately controlled. So the new modulating principle, named Flux Linkage Differential Space Vector Pulse Width Modulation (FLDSVPWM), is proposed in the basis of Space Vector Pulse Width Modulation (SVPWM). Investigation results show FLDSVPWM technology used is able to produce the correct voltage vector. On the other hand, Due to DC side voltage fluctuation, the linear modulation region ends earlier compared with a high capacitance DC-link capacitor VSC. So, Amplitude Constant Overmodulation (ACOM) technique is proposed that can make converter's output modulation index achieve higher.
     It is very importance of suppressing overvoltage and resonance for novel AC/DC/AC VSC to improve its reliability and line side performance. When motor is light load or braking, power direction is changed from converter to motor so as to make DC side voltage raise intolerably high. Traditionally, the DC side overvoltage protection has been carried out by ideal nonripple DC side voltage. But DC side voltage for novel AC/DC/AC VSC is by far not constant and fluctuates rapidly so that traditonal overvoltage protecting method cann’t be used. To solve this problem, a new DC side overvoltage protection method, named PFDTC, based on power factor dynamic tracing control has been introduced. The method can ahead judge braking state of electromotor and suppress the energy back to avoid the overvoltage. Otherwise, due to small DC side capacitor and samll line side impedence, the resonance frequency between DC side capacitor and line side inductance becomes significantly high getting close to or even exceed the switching frequency that easily result in resonance. The approximate margin to avoid the resonance is decided by simulation and experiment so that adverse effect from resonance is suppressed.
     Novel AC/DC/AC VSC is designed and experimented. The experimental prototype of novel AC/DC/AC VSC is discussed in detail. Especially, multiple configuration controller buildup with high performance DSP system and C51 platform is developed according to the character of control tasks. Hence high speed real-time control and friendly human interface is combined. Finally, the results obtained from experimental system prove the validity and feasibility of novel AC/DC/AC VSC, which gives important theortical and practical foundation for further research.
引文
1 S. Bertini, T. Ghiara, M. Marchesoni. AC/DC/AC High Voltage Traction Drives with Quasi-zero Reactive Power Demand. IEEE Trans. On power Electronics. 1993,8(4): 632~639
    2 B.R. Lin, H.H. Lu. Multilevel AC/DC/AC Converter for AC Drivers. Proc. IEE Electric Power Applications. 1999,146(4): 397~406
    3戴朝波,林海雪.电压源型逆变器三角波载波电流控制新方法.中国电机工程学报, 2002, 22(2): 99~102
    4 S.V. Mollov, M. Theodoridis, A.J. Forsyth. High Frequency Voltage-fed Inverter with Phase-shift Control for Induction Heating. Proc. IEE Electric Power Applications. 2004,151(1): 12~18
    5刘芙蓉, Klumpner C, Blaabjerg F.矩阵变换器的建模与仿真.中国电机工程学报, 2005, 25(9): 62~67
    6 Barsoum, N.N. Yii, M.L. Implementation of A higher quality DC powerconverter, International Power Electronics and Motion Control Conference. 2006: 14~16
    7任伟.交—直—交变频调速系统仿真研究.郑州大学, 2007: 1~5
    8 H. Miki, H. Yoshikawa, M. Iwahori. New AC Traction Drive System with Transistor VVVF Inverter. Industry Applications Society Annual Meeting. 1991, 1: 291~297
    9 Liguo Dong, Mao Chengxiong, Lu Jiming,et al. Discussion on the DC-link of 6kV NPC Three-level Medium Voltage Drives Based on IGCTs’Series Connection. Proceedings of CSEE. 2007, 27: 82~87
    10韦立祥,孙旭东,刘丛伟,李发海.高性能三电平异步电动机调速控制系统的研究和实现.清华大学学报(自然科学版). 2001, (03): 13~16
    11江友华,龚幼民.高压大功率变频器主电路拓扑和控制策略. 2006, (02): 51~58
    12姚文熙,胡海兵,徐海杰,吕征宇,赵荣祥.三电平六相同步电机变频调速技术研究.中国电机工程学报.2007, (18): 1~6
    13周晓霞,刘星桥.一种新颖的变步长自适应谐波电流检测法.电力电子技术. 2008, 42(11): 13~14
    14程汉湘,尹项根. SVG的直流电容选择分析.电气传动. 2004, (03): 34~39
    15王立欣,张宁,靳刚. VSR直流侧滤波电容的计算及实验分析.哈尔滨工业大学学报. 2006, (01): 63~66
    16林新春,刘方锐,张宇,康勇. UPS中直流电容电压纹波分析与抑制.电力电子技术. 2007, (07): 53~55
    17祝恩国,杨功训,许书阁.为电机提供绿色电源的电能质量控制技术研究.电机与控制应用. 2006, (10): 3~6
    18赵涛.电力电子的绿色变换技术与绿色电源的发展.安徽电子信息职业技术学院学报. 2003, (6): 21~23
    19 P.D. Ziogas, D.Vincenti and G. Joos.A Practical PWM AC Controller Topology. Industry Applications Society Conference. 1992, 1: 880~887
    20 Li Li, D.Czarkowski, Yaguang Liu, P.Pillay.Multilevel Selective Harmonic Elimination PWM Technique in Series-connected Voltage Inverters, IEEE Trans.Industry Applications. 2000,( 36): 160~170
    21 George S, Agarwal V. A DSP Based Optimal Algorithm for Shunt Active Filter under Nonsinusoidal Supply and Unbalanced Load Conditions.IEEE Trans on Power Electronics. 2004, 19(6): 593~601
    22石游,杨洪耕.带谐波补偿功能的动态电压补偿器.电网技术. 2006, (14): 36~40
    23孙铁成,汤平华,高鹏,刘鸿鹏.一种新型全桥零电压转模PWM DC-DC变换器.中国电机工程学报. 2006, (06): 83~88
    24王正仕,陈辉明.具有无功和谐波补偿功能的并网逆变器设计.电力系统自动化. 2007, (13): 67~71
    25王兆安,杨君,刘进军.谐波抑制和无功功率补偿.机械工业出版社, 1998: 44~51
    26王祥衍,史文华,高景德等.交流励磁电机的谐波分析.电机与控制学报. 1997, 1(1): 22~27
    27周谦之,优波.功率变换技术与科学思维决策.中国电源学会第十二届全国电源技术年会论文集.扬州, 1997: 83~89
    28 Toshiji Kato. Sequential Homotopy-based Computation of Multiple Solutions for Selected Harmonic Elimination in PWM inverters, IEEE Trans. Cir. and Sys.—I: Fundamental Theory and Application. 1999, (46): 586~593
    29陈志英,阮新波.零电压开关PWM复合式全桥三电平变换器.中国电机工程学报. 2004, (05): 28~33
    30刘福鑫,阮新波.一种新颖的零电压开关PWM组合式三电平变换器.中国电机工程学报. 2005, (22): 48~53
    31马运东,周林泉,阮新波,严仰光.零电压开关脉宽调制推挽三电平变换器.中国电机工程学报. 2006, (23): 36~41
    32陈瑶,金新民,童亦斌.三相电压型PWM整流器网侧LCL滤波器.电工技术学报. 2007, (9): 124~129
    33 ARC Advisory Group. AC Drive Worldwide Outlook, Market Analysis and Forecast Through 2002. 1998, 12~18
    34 Almeida A., Fonseca P. Characterisation of the Electricity Use in European Union and the Saving Potential in 2010, Energy efficiency improvements in electrical motors and drives. 1997, 10~15
    35 Hanitsch R. Energy Efficient Electric Motors. RIO-02 World Climate & Energy Event, 2002(1): 6~11
    36 Kretschmar K., Nee H-P. Analysis of the Efficiency and Suitability of Different Converter Topologies for PM Integral Motors. Australian Universities Power Engineering Conference, Perth, Australia, 9, 2001
    37 Pollanen, R. Converter-Flux-Based Current Control of Voltage Source PWM Rectifiers Analysis and Implementation. Dissertation. Lappeenranta University of Technology. 2003: 1~10
    38 Bose B. K. Power Electronics and Variable Frequency Drives. IEEE Press, New York. 1997: 52~59
    39 Kazmierkowski M.P., Krishnan R., Blaabjerg F., Irwin J.D. Control in Power Electronics: Selected Problems (Academic Press Series in Engineering). Academic Press. 2002: 544~551
    40 Holtz J.Pulsewidth Modulation–A Survey.IEEE Transactions on Industrial Electronics, 1992, 39(5): 410~420
    41 Van Der Broeck H., Skudelny H., Stanke G. Analysis and Realization of a Pulse Width Modulator Based on Voltage Space Vectors. IEEE-IAS Conference.1986, 244~251, Denver, USA
    42 M.Pande, G.Joos, H.Jin. Output Voltage Integral Control Technique for Compensating Nonideal DC Buses in Voltage Source Inverters. IEEE Trans. On Power Electronics. 1997, 12(2): 302~310
    43 F. Wang. System Harmonics Reduction Using Multipulse AC Fed PWM Voltage Source Inverters. Power Engineering Society 1999 Winter Meeting. 1999, 2: 1265~1268
    44 M. Grotzbach, R. Redmann. Line Current Harmonics of VSI-fed Ajustable Speed Drives. IEEE Trans. On Industry Applications.2000, 36(2): 683~690
    45 R. Bantu, B.H. Chowdhury. Improvement of Power Quality in VSI Drives. Power Engineering Society Winter Meeting. 2002, 2: 947~951
    46 Navid R. Zargari, Geza Joos. A Near Unity Power Factor Input Stage WithMinimum Control Requirements for AC Drive Applications. IEEE Trans. Industry Applications. 1995, 31(5): 1129~1135
    47 A.I. Maswood, A. Kadir Yusop, M. Azizur Rahman. A Novel Suppressed-Link Rectifier-Inverter Topology with Near Unity Power Factor. IEEE Trans. On Power Electronics. 2002, 17(5): 692~700
    48蒋志坚,朱香娟,张伟强.单位功率因数低成本交—直—交变频电路的研究.电气传动自动化. 2003, (02): 7~9
    49 M. Villablanca, J. Abarca, C. Cuevas. Adjustable Speed Synchronous Motors: System Harmonic Reduction. Industry Applications Meeting. 1999, 3: 1988~1993
    50 Bon-Gwan Gu, Kwanghee Nam.A DC-link Capacitor Minimization Method through Direct Capacitor Current Control. IEEE Transactions on Industry Applications. 2006, 42(2): 573~581
    51 El-Husseini M.H., Venet P, Rojat G, Al-Majid A, Fathallah M. Improving Pulse Handling Capability of Metalized Polypropylene Films Capacitors. IEEE Industry Applications Conference, Thirty-Sixth IAS Annual Meeting. Conference Record. 2001, (4): 2481~2486
    52 Michalczyk P., Bramoulle M. Ultimate Properties of the Polypropylene Film for Energy Storage capacitors. IEEE Transactions on Magnetics. 2003, 39(1): 362~365
    53 Takahashi I, ItohY. Electrolytic Capacitor-less PWM Inverter. Proceedings IPEC-Tokyo, 1990: 131~138
    54 Bose B.K, Kastha D.Electrolytic Capacitor Elimination in Power Electronic System by High Frequency Active Filter. Conference Record of the 1991 IEEE Industry Applications Society Annual Meeting, 1991,(1): 869~878
    55 Minari Y., Shinohara K., Ueda R. PWM-rectifier/voltage-source Inverter without DC Link Components for Induction Motor Drive. Electric Power Applications, IEE Proceedings B. 1993, 140(6): 363~368
    56 Wen-Song C., Ying-Yu T.Analysis and Design on the Reduction of DC-link Electrolytic Capacitor for AC/DC/AC Converter Applied to AC motor Drives.
    29th Annual IEEE Power Electronics Specialists Conference, PESC 98 Record, 1998, (1): 275~279
    57 Hinkkanen,M. Luomi,J. Induction Motor Drives Equipped with Diode Rectifier and Small DC-link Capacitance. Industrial Electronics, IEEE Transactions on. 2008, 55(1): 312~320
    58 L. Malesani, L.Rossetto, P.Tenti, P.Tomasin. AC/DC/AC PWM Converter with Reduced Energy Storage in the DC Link. IEEE Trans. On Industry Applications.1995, 31(2): 289~292
    59 Mats Alakula. Vector Controlled AC/DC Converters with A Minimum of Energy Storge. Industry Applications Society Annual Conference. 1994, (2): 1130~1134
    60 Bimal K. Bose, De hiprasad. Kastha. Electrolytic Capacitor Elimination in Power Electric System by High Frequency Active Filter. IEEE/IAS’91. MIUSA,
    28 Sept.4-oct. 1991, 1: 869~878
    61王萍,宋良瑜等.变流电路中电解电容的“硅解“研究.电力电子技术.2003,37(2): 41~43
    62王萍,孙雨耕等.逆变器直流侧谐波分析与有源补偿.中国电机工程学报. 2005, 25(14): 52~56
    63 Kretschmar K., Nee H-P. An AC Converter with a Small DC Link Capacitor for A 15kW Permanent Magnet Synchronous Integral Motor. International Conference on Power Electronics and Variable Speed Drives. 1998: 21~23,9
    64 Jinhwan Jung, Sunkyoung Lim, Kwanghee Nam. A Feedback Linearizing Control Scheme for a PWM Converter-Inverter Having a Very Small DC-Link Capacitor. IEEE Trans. On Industry Applications. 1999, 35(5): 1124~1131
    65 Namho Hur, Jinhwan Jung, Kwanghee Nam. Fast Dynamic DC-link Power Balancing Scheme for A PWM Converter-inverter System. IEEE Trans. On Industrial Electronics. 2001, 48(4): 794~803
    66 Klumpner C., Liserre M., Blaabjerg F. Improved Control of an Active Front End Adjustable Speed Drive with a Small DC-link Capacitor under Real Grid Conditions. IEEE 35th Annual Power Electronics Specialists Conference, PESC 04. 2004, (2): 1156~1162
    67 Gopfrich K., Rebbereh C., Sack L. Fundamental Frequency Front End Converter-a DC-link drive converter without electrolytic capacitor. 24th International PCIM Conference. 2003 Nuremberg, Power Electronics, Intelligent Motion, Power Quality
    68 Piepenbreier B., Sack L. Regenerative Drive Converter with Line-frequency Switched Rectifier and Without DC link Components. IEEE 35th Annual Power Electronics Specialists Conference, 2004. PESC 04. Aachen Germany 2004, (5): 20~25
    69王建元,纪延超,赵般多.一种新的单相逆变电源及其调制技术的研究.中国电机工程学报. 2003, 23(7): 62~66
    70 Wajiha Shireen. An AC-DC-AC Converter with Smaller DC-link Capacitor for Space Power Distribution Systems. University of Houston University of Houson-clear Lake. Isso Annual Report. 2004: 96~99
    71吴胜,周理兵,黄声华,李朗如.双馈电机的交/直/交控制.中国电机工程学报. 2005, (19): 146~151
    72刘魏宏,朱建林,邓文浪,罗伟斌,张建华.基于交-直-交型矩阵变换器的多驱动系统的控制策略.中国电机工程学报. 2006, (06): 111~115
    73 Takahashi I.Haga H. Power Factor Improvement of Single-phase Diode Rectifier by Fast Field-weakening of Inverter Driven IPM Motor. 4th IEEE International Conference on Power Electronics and Drive Systems. 2001, (1): 241~246
    74 Takahashi I. Haga H. Inverter Control Method of IPM Motor to Improve Power Factor of Diode Rectifier. Proceedings of the Power Conversion Conference, 2002. PCC Osaka 2002, (1): 142~147
    75 Haga H., Takahashi I. Ohishi K. Direct Torque IPM Motor Control Method to Obtain Unity Power Factor Using a Single-Phase Diode Rectifier. IEEE International Electric Machines and Drives Conference, 2003. IEMDC'03. 2003 ,(2): 1078~1083
    76 Lamsahel H., Mutschler P. Control of a Permanent Magnet Synchronous Motor Fed by a Single-Phase Rectifier with Minimal DC-Link Capacitance. 26th International PCIM Conference. 2005 Nuremberg, Power Electronics, Intelligent Motion, Power Quality. Conference cd.
    77李勇东.脉宽调制(PWM)技术回顾、现状及展望电气传. 1996, 26(3): 2~12
    78 J.Holtz. Pulse width modulation—A Survey. In.Conf.Rec. PESC’92, 1992: 11~18
    79吴忠,李红,左鹏,刘伟志.自然采样SPWM逆变电源的谐波分析及抑制策略.电网技术. 2001, 25(4): 17~20
    80 Comparison of A Synergetic Battery Pack Drive System to A Pulse Width Modulated AC Induction Motor Drive for An Electric Vehicle. IEEE Trans. on Energy Conversion. 1999, 14(2): 245~250
    81段善旭,刘邦银,康勇,陈坚. UPS并联系统的SPWM再调制控制技术研究.中国电机工程学报.2004, (01): 81~86
    82熊善清. UPS电源中SPWM控制技术的研究.通信电源技术. 2005,(03): 32~34
    83张超,何湘宁.一种用于光伏发电系统的新型高频逆变器电力系统自动化. 2005, (19): 51~53
    84吕广明,胡长胜,万众.基于SPWM的起重机变频调速技术研究.建筑机械化. 2007, (5): 21~24
    85白洪超,武建文.基于单极性SPWM控制的400Hz航空信号电源研究.电力电子. 2007(1): 27~30
    86贺虎成,刘卫国,李榕等.电机驱动用新型谐振直流环节电压源逆变器.中国电机工程学报. 2008, 28(12): 60~65
    87严青,张晓光,万淑芸等.交流传动系统功率变换器发展概况综述.电气传动. 1996, 26(2): 36~41
    88高压大功率三电平逆变器的SPWM数字化技术研究.中国电机工程学报. 2008, 28(27): 35~41
    89 Zhang Qing; Liu Zhihui, Chen Jian. A novel 3-phase SPWM Technique: Instantaneously Floating the Neutral Point. Power Electronics and Drive Systems, 1997. Proceedings 1997 International Conference on. 1997, 2: 781~786
    90 Yaow-Ming Chen, Chih-Hung Hsieh, Yuan-Ming Cheng. Modified SPWM Control Schemes for Three-Phase Inverters. Power Electronics and Drive Systems. 2001. Proceedings., 2001 4th IEEE International Conference on , 22-25 Oct 2001, 2: 651~656
    91 M.A. Boot, P.D. Eiogas. State-of-art Carrier PWM Technique: A Critical Evaluation. IEEE. Trans.on I.A. 1988, 24(2): 271~280
    92 Pejovic, P.Janda, Z.A novel Harmonic-free Three-phase Diode Bridge Rectifier Applying Current Injection. Applied Power Electronics Conference and Exposition, 1999. APEC '99. Fourteenth Annual, 1999, 1: 241~247
    93孟彦京.我国变频调速技术应用现状与市场展望.电子工业器材. 1996, (10): 15~18
    94 Pejovic P, Janda Z. An Improved Current Injection Network for Three-phase High Power Factor Rectifiers that Apply the Third Harmonic Current Injection. IEEE Trans on Industrial Electronics. 2000, 47(2): 497~499 .
    95官二勇,宋平岗,叶满园.基于三次谐波注入法的三相四桥臂逆变电源.电工技术学报. 2005, (12): 43~46
    96李小青,陈国柱.基于3次谐波无源注入法的谐波抑制技术.电力系统自动化. 2007,(14): 61~65
    97朱军卫,龚春英.逆变器单极性电流SPWM控制与滞环控制比较.电力电子技术. 2004(1): 26~29
    98潘湘高,李晓峰,杨斌文.冷库用矢量控制电流滞环SPWM变频调速系统的研究.机电产品开发与创新. 2005(3): 101~103
    99张伟军,李玉玲,张仲超.三相电流型整流器SPWM调制技术研究.电源技术应用. 2006 (8): 44~47
    100陶海军,郑征,高庆华.基于电流预测控制的PWM整流装置研究.河南理工大学学报. 2008, 27(6): 619~622
    101 Mwinyiwiwa. B, Boon-Teck Ooi, Wolanski. Z. UPFC Using Multiconverter Operated by Phase-shifted Triangle Carrier SPWM Strategy. IEEE Transactions on I.A.1998, 34(3): 495~500
    102 M.winyiwiwa, B.Wolanski, Z.Boon-TeckOoi. Microprocessor Implemented SPWM for Multiconverters with Phase-shifted Triangle Carriers. IEEE Transactions on I.A. 1998, 34(3): 487~494
    103姜旭,肖湘宁,尹忠东,马玉龙.基于载波移相SPWM级联式变换器输出谐波分析.电力电子技术. 2005, (05): 60~62
    104 XU Xiang-lian, ZOU Yun-ping, DING Kai. Cascade Multilevel Inverter with Phase-shift SPWM and Its Application in STATCOM. The 30th Annual Conference of IEEE Industrial Electronics Society. Busan. 2004
    105颜世钢,张承慧,崔纳新.一种新型移相全桥高频正弦波逆变器的研究.电力电子技术. 2004, (04): 72~73
    106 A. Tripathi, A. M. Khambadkone, S. K. Panda. Stator Flux Based Space-vector Modulation and Close Loop Control of The Stator Flux Vector in Overmodulation into Six-step Mode. IEEE Trans. on Power Electronics. 2004, 19(3): 775~782
    107一种新的N电平电压源逆变器的空间矢量调制算法.中国电机工程学报. 2008,28(30): 35~41
    108 H.Miranda, V. Cardenas, J. Perez, G. Nunez.A Hybrid Multilevel Inverter for Shunt Active Filter Using Space-vector Control. Power Electronics Specialists Conference. PESC 04. 2004, (5): 3541~3546
    109 Ching-Tsai Pan, Jenn-Jong Shieh. New Space-vector Control Strategies for Three-phase Step-up/Down AC/DC Converter. IEEE Trans. on Industrial Electronics. 2000, 47(1): 25~35
    110王琰,程善美.空间矢量PWM过调制策略的分析和仿真.电气传动. 2005, 35(4): 37~40
    111粟梅,许新东,李丹云等.双级矩阵变换器驱动异步电动机的特性分析.中南大学学报, 2005,36(8): 658~663
    112邓文浪,杨欣荣,朱建林等. 18开关双级矩阵变换器的空间矢量调制策略及其仿真研究.中国电机工程学报. 2005, 25(15): 84~90
    113粟梅,李丹云,孙尧等.双级矩阵变换器的过调制策略.中国电机工程学报, 2008, 28(3): 47~52
    114王树文,纪延超,马文川.新型单相逆变电源及其调制方式的研究.中国电机工程学报. 2006, 26(17): 62~66
    115 Kretschmar. K, Nee. H.P. An AC Converter with a Small DC Link CapacitorFor A 15kW Permanent Magnet Synchronous Integral Motor. International Conference on Power Electronics and Variable Speed Drives, 21~23,9,1998, Conference Publication No. 456, IEE 1998
    116 Sakui M,Fujita H,Shioya M. A Method for Calculating Harmonic Currents of Three-phase Bridge Uncontrolled Rectifier with DC Filter. IEEE Trans. Ind. Eletron. 1989, 36(3): 434~440
    117 Ji Yanchao, Shan Mingwei. A Novel Three-Phase AC/DC Converter without Front-end Filter Based on Adjustable Triangular-Wave PWM Technique. Power Electronics, IEEE Transactions on. 1999,(14)2: 233~245
    118文小玲,尹项根.基于载波的空间矢量脉宽调制方法分析.电力系统及其自动化学报. 2007,19(2): 93~97
    119 Holmes. D.G. The Significance of Zero Space Vector Placement for Carrier-Based PWM Schemes. IEEE Transactions on Industry Applications, 1996, 32(5): 1122~1129
    120荆建立.两相SVPWM原理及经典两相SVPWM算法.电机技术. 2008(4): 8~10
    121 Holtz. J.On Continuous Control of PWM Inverters in the Overmodulation Range Including the Six-Step Mode. IEEE Transactions on Power Electronics, 1993, 8(4): 546~553
    122樊扬,瞿文龙,陆海峰等.基于叠加原理的SVPWM过调制算法.清华大学学报(自然科学版). 2008, 48(4): 461~464
    123 Bolognani. S, Zigliotto. M. Space vector Fourier Analysis of SVM Inverters in the Overmodulation Range. Proceedings of the 1996 International Conference on Power Electronics, Drives and Energy Systems for Industrial Growth, 1996,(1): 319~324
    124 Takahashi. I., Noguchi.T. A New Quick-Response and High-Efficiency Control Strategy of Induction Motor. IEEE Transactions on Industry Applications, 1986,1A(5): 820~827

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700