圆筒型横向磁场永磁直线电机电磁场与电磁力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与旋转电机构成的直线驱动装置相比,直线电机具有结构简单、控制精度高、不受离心力作用等优点,但输出力密度低的不足限制了它在直线伺服系统中的应用。将横向磁场结构应用于直线电机构成横向磁场直线电机,能够提高电机的力能指标,对促进直线伺服系统的发展具有重要意义。本文以一种圆筒型横向磁场永磁直线电机(Permanent Magnet Linear Machine, PMLM)为研究对象,对该电机的电磁场计算、电感计算与相间磁耦合分析、电磁力计算与分析等问题进行了研究。
     针对传统结构的横向磁场电机,分析了其磁路结构和特点,基于永磁体面电流模型对电磁力产生机理进行了分析。分析结果表明,如果将定子绕组电流产生的磁场定义为气隙磁场、永磁体用等效面电流来表示,则仍可采用洛伦兹力定律对横向磁场电机的电磁力进行分析。在此基础上,提出了一种新型结构的圆筒型横向磁场PMLM,该电机的定子可采用叠片铁心结构,从而解决了传统横向磁场电机结构复杂、机械强度差等问题。
     根据电机的结构特点,在对电磁场计算模型进行简化的基础上,采用三维有限元法对圆筒型横向磁场PMLM内的电磁场进行了计算。研究了永磁体磁化方向长度和定子叠片单元轴向长度对电机相空载磁链的影响,指出电机相空载磁链随这两个尺寸的变化规律与传统永磁电机不同,并非是单调递增的,从而为电机结构参数的选择提供了参考。针对电机漏磁大的问题,对圆筒型横向磁场PMLM永磁体之间的漏磁进行了分析,通过在定子叠片单元之间嵌入辅助铁心,有效地抑制了轴向相邻永磁体之间的漏磁,并在此基础上分析了电机相空载磁链随辅助铁心轴向长度的变化规律。研究了边端效应对圆筒型横向磁场PMLM性能的影响,指出边端效应使圆筒型横向磁场PMLM的各相不对称,影响电机的平稳运行。针对电机行程短、运行速度不平稳导致反电势难以准确测量的问题,通过实时检测电机的速度和反电势信号并进行处理,实现了电机变速下的反电势的测量。
     针对圆筒型横向磁场PMLM样机绕组电感计算量大的问题,通过计算单元电机的绕组的总电感、端部漏感和定子叠片单元间的绕组漏感,并将它们进行合成,得到了圆筒型横向磁场PMLM样机的绕组电感,其结果与实验结果基本一致,从而验证了上述计算方法的正确性。在电感计算的基础上,对圆筒型横向磁场PMLM各相之间的磁耦合问题进行了分析,得出了“圆筒型横向磁场PMLM各相基本解耦”的结论,为简化电机的特性分析提供了依据。计算和分析了电枢电流对绕组电感的影响规律。计算结果表明,电枢电流对圆筒型横向磁场PMLM绕组电感的影响较大,它不仅影响电感的大小,而且对电感的波形也有较大的影响,主要表现为当电枢电流较小时,绕组电感随动子位移在一个电周期内呈现二次波动,而当电枢电流较大时,绕组电感在一个电周期内呈现一次波动。
     采用虚位移法对圆筒型横向磁场PMLM的定位力特性和基本电磁力特性进行了分析。针对三维有限元计算量大的缺点,提出了二维等效模型来计算电机的定位力,有效节约了计算时间,其结果与三维有限元计算结果的一致性验证了等效的有效性。在此基础上,对定位力的影响因素及抑制措施进行了研究,通过对电机结构参数进行合理地选取,有效地减小了电机的定位力。计算和分析了电机在不同通电方式下的基本电磁力特性,并研究了电机结构参数对基本电磁力的影响,为提高圆筒型横向磁场PMLM的电磁性能提供了指导。针对直线电机的特殊问题,研究了边端效应对电机电磁力的影响,指出边端效应使圆筒型横向磁场PMLM的电磁力发生较大的波动,影响电磁力的平稳性。样机定位力和基本电磁力的实验结果验证了上述计算和分析的正确性。
Compared with linear drive systems constructed by rotating electrical machines, linear electrical machines have many favorable features, like simple structure, high control precision, no centrifugal forces, et al. However, the drawback of low force densities has limited their applications in high-performance linear servo systems. By applying the transverse flux configuration to linear machines, high force density can be achieved, which is of great significance to the development of linear systems. In this thesis, a novel tubular transverse flux Permanent Magnet Linear Machine (PMLM) is put into focus, and the problems of electromagnetic field computation, inductance computation, and electromagnetic force analysis have been studied.
     Aimed at traditional transverse flux machines, the magnetic circuit and its features are analyzed, and the operating principle is brought forward according to PM’s surface current model. The results show that if the field generated by armature currents is regarded as the air-gap magnetic field and the PM is represented by surface current, the electromagnetic force can also be analyzed with Lorentz Law. Based on them, a novel tubular transverse flux PMLM is proposed. By taking steel laminations, the proposed tubular transverse flux PMLM is easy to manufacture and thus can overcome the shortcomings of traditional transverse flux machines, like complex structure, weak construction, et al.
     According to the features of the machine structure, the computation model is simplified, and the electromagnetic field of the tubular transverse flux PMLM is computed by 3-D Finite Element Method (FEM). The influences of PM magnetization length and axial length of stator segment on no-load main flux linkage are then studied. The results show that the no-load main flux linkage does not increase all along with the increase of the two parameters. Aimed at the problem of large leakage flux, auxiliary cores are inserted between stator segments to eliminate the leakage flux between PM, and the influence of axial length of the auxiliary core on no-load main flux linkage is also computed. And then the edge effect is analyzed, and the result shows that the edge effect makes the three phases asymmetric and would have an impact on the steady operation of the machine. The back-EMF of the tubular transverse flux PMLM at variational speed is tested by detecting the real-time speed signal.
     Aimed at complex computation of the inductance of the prototype, by computing the total inductance of one element machine, end-winding inductance and the leakage inductance between stator segments and then combining them, the inductance of the prototype is obtained. The comparison of the experimental result and FEM result has confirmed the correctness of this method. Based on it, the problem of magnetic coupling between phases is analyzed, and the result shows that the three phases of the tubular transverse flux PMLM are basically decoupled, which provides formula for simplification of performance analysis. And then the influence of armature current to the winding inductance is studied. The results show that the armature current not only influences the numerical value of the inductance, but also the waveform, mainly embodying that the inductance varies two periods within an electrical cycle when the current is small and it varies one period when the current is large.
     With virtual work method, the cogging force and mutual force are theoretically analyzed. An equivalent 2-D model is proposed to compute the cogging force, and the comparison of the obtained results, via 2-D and 3-D FEM analysis, has proved the validity of the equivalence. Based on it, the influence factors of the cogging force are analyzed and the cogging force is reduced effectively. The mutual force characteristics are computed and analyzed at different operating modes, and the influences of parameters on the mutual forces are also studied. And then the influence of edge effect on the electromagnetic forces is analyzed. The results show that the edge effect causes the pulsation of the thrust force and thus make an impact on the calmness of the thrust force. The experimental results of cogging force and mutual force have proved the correctness of the computation and analysis above.
引文
1叶云岳.直线电机原理与应用.机械工业出版社, 2000: 51-377
    2 S. A.纳斯尔, I.波尔达.直线电机.科学出版社, 1982: 55-275
    3龙遐令.直线感应电动机的理论和电磁设计方法.科学出版社, 2006: 25-155
    4 W. M. Arshad, T. Backstrom, C. Sadarangani. Analytical Design and Analysis Procedure for a Transverse Flux Machine. Proceedings of International Conference Electric Machines and Drives. Cambridge. USA, 2001: 115-121
    5 E. R. Laithwaite. Induction Machines for Special Purposes. George Newens Limited, 1966: 11-327
    6 I. Boldea, Syed A. Nasar. Linear Electric Actuators and Generators. Cambridge University Press, 2005: 91-232
    7 Jacek F. Gieras, Zbigniew J. Piech. Linear Synchronous Motors– Transportation and Automation Systems. CRC Press LLC, 2000: 85-270
    8 http://www.sodick.com.cn/tech/linear.html
    9 P. K. Budig. The Application of Linear Motors. Proceedings of the 3rd International Conference on Power Electronics and Motion Control Conference. Beijing, China, 2000, 3: 1336-1341
    10李绪成.直线电机在数控机床中的应用及发展趋势.世界制造技术与装备市场. 2005, 6: 71-74
    11 D. Patterson, A. Monti, C. W. Brice, et al. Design and Simulation of a Permanent- Magnet Electromagnetic Aircraft Launcher. IEEE Transactions on Industry Applications. 2005, 41(2): 566-575
    12 Ye Yunyue. Application of Linear Electric Motors in the Postal Mechanical Systems. Proceedings of the 5th International Conference on Electrical Machines and Systems. Shenyang, China, 2001: 964-967
    13叶云岳,陈永校,卢琴芬.直线电机驱动的新型冲压机.电工技术杂志. 2000, 15(2): 35-37
    14叶云岳.现代先进驱动技术及其应用.机电工程. 2004, 21(1): 1-4
    15郭瑶瑶,刘成颖,王先逵.机床进给系统用永磁直线电机法向吸力的研究.中国机械工程. 2003, 18(10): 1174-1177
    16阎治安,高小赟,易萍虎,等.压缩机驱动用直线永磁电动机的研究.西安交通大学学报. 2005, 39(2): 191-195
    17何志龙,李连生,束鹏程.冰箱用直线压缩机研究.西安交通大学学报. 2003, 37(1): 1119-1123
    18 X. P. Li, K. Tian, C. H. Li, et al. Linear Electromagnetic Oil Pumping Unit Based on the Principle of Coil Gun. IEEE Transactions on Magnetics. 2009, 45(1): 347-350
    19刘少克,罗昆.中低速磁悬浮列车用直线电机法向力的测试研究.机车电传动. 2003, 1: 32-34
    20 Z. S. Deng, I. Boldea, S. A. Nasar. Fields in Permanent Magnet Linear Synchronous Machines. IEEE Transactions on Magnetics. 1986, 22(2): 107-112
    21 Z. S. Deng, I. Boldea, S. A. Nasar. Forces and Parameters of Permanent Magnet Linear Synchronous Machines. IEEE Transactions on Magnetics. 1987, 23(1): 305-309
    22 G. Y. Xiong, S. A.Nasar. Analysis of Fields and Forces in a Permanent Magnet Linear Synchronous Machine Based on the Concept of Magnetic Charge. IEEE Transactions on Magnetics. 1989, 25(3): 2713-2719
    23 G. H. Kang, J. P. Hong, G. T. Kim. A Novel Design of an Air-core Type Permanent Magnet Linear Brushless Motor by Space Harmonics Field Analysis. IEEE Transactions on Magnetics. 2001, 37(5): 3732-3736
    24 G. H. Kang, J. P. Hong, G. T. Kim. Design and Analysis of Slotless Type Permanent Magnet Linear Brushless Motor by Using Equivalent Magnetizing Current. IEEE Transactions on Industry Applications. 2001, 37(5): 1241-1247
    25 D. L. Trumper, W. J. Kim, M. E. Williams. Design and Analysis Framework for Linear Permanent Magnet Machines. IEEE Transactions on Industry Applications. 1996, 32(2): 371-379
    26 N. Bianchi, S. Bolognani, D. D. Corte, et al. Tubular Linear Permanent Magnet Motors: An Overall Comparison. IEEE Transactions on Industry Applications. 2003, 39(2): 466-475
    27 I. Boldea, S. A. Nasar. Permanent-magnet Linear Alternators Part ?: Fundamental Equations. IEEE Transactions on Aerospace and Electronic Systems. 1987, 23(1): 73-78
    28 I. Boldea, S. A. Nasar. Permanent-magnet Linear Alternators PartП: Design Guidelines. IEEE Transactions on Aerospace and Electronic Systems. 1987, 23(1): 79-82
    29 P. J. Hor, Z. Q. Zhu, D. Howe, et al. Calculation of Cogging Force in a Novel Slotted Linear Tubular Brushless Permanent Magnet Motor. IEEE Transactions on Magnetics. 1997, 33(5): 4098-4100
    30 P. J. Hor, Z. Q. Zhu, D. Howe, et al. Minimization of Cogging Force in a Linear Permanent Magnet Motor. IEEE Transactions on Magnetics. 1998, 34(5): 3544-3547
    31 J. B. Wang, G. W. Jewell, D. Howe. A General Framework for the Analysis and Design of Tubular Linear Permanent Magnet Machines. IEEE Transactions on Magnetics. 1999, 35(3): 1986-2000
    32 J. B. Wang, D. Howe, G. W. Jewell. Fringing in Tubular Permanent Magnet Machines: Part ?. Magnetic Field Distribution, Flux Linkage and Thrust Force. IEEE Transactions on Magnetics. 2003, 39(6): 3507-3516
    33 J. B. Wang, D. Howe, G. W. Jewell. Fringing in Tubular Permanent Magnet Machines: PartП. Cogging Force and Its Minimization. IEEE Transactions on Magnetics. 2003, 39(6): 3517-3522
    34 J. B. Wang, D. Howe, G. W. Jewell. Analysis and Design Optimization of an Improved Axially Magnetized Tubular Permanent Magnet Machine. IEEE Transactions on Energy Conversion. 2004, 19(2): 289-298
    35 J. B. Wang, D. Howe. Design Optimization of Radially Magnetized, Iron-cored, Tubular Permanent Magnet Machines and Drives Systems. IEEE Transactions on Magnetics. 2004, 40(5): 3262-3277
    36潘开林,傅建中,陈子辰.永磁直线同步电机的磁阻力分析及其最小化研究.中国电机工程学报. 2004, 24(4): 112-115
    37潘开林,傅建中,陈子辰.永磁直线同步电机的磁阻力分析及其优化.浙江大学学报(工学版). 2005, 39(10): 1627-1632
    38徐月同,傅建中,陈子辰.永磁直线同步电机推力波动优化及实验研究.中国电机工程学报. 2005, 25(12): 122-126
    39焦留成,袁世鹰.永磁直线同步电动机等效电路参数计算.中国电机工程学报. 2002, 22(3): 12-16
    40焦留成,袁世鹰.垂直运行永磁直线同步电动机运行特性分析.中国电机工程学报. 2002, 22(4): 37-40
    41汪旭东,王兆安,袁世鹰.基于场路结合的永磁直线同步电机的解析计算.微电机. 2001, 34(1): 15-17
    42汪旭东,袁世鹰,王兆安.直线运动各向异性媒质中的三维电磁场方程及一般定解问题.电工技术学报. 2006, 21(6): 59-64
    43 B. Q. Kou, H. X. Wu, L. Y. Li. The Thrust Characteristics Investigation of Double-sided Plate Permanent Magnet Linear Synchronous Motor for EML. IEEE Transactions on Magnetics. 2009, 45(1): 501-505
    44 B. Q. Kou, X. Z. Huang, H. X. Wu, et al. Thrust and Thermal Characteristicsof Electromagnetic Launcher Based on Permanent Magnet Linear Synchronous Motors. IEEE Transactions on Magnetics. 2009, 45(1): 358-362
    45 L.Y. Li, J. J. Hong, H. X. Wu, et al. Section Crossing Drive with Fuzzy-PI Controller for the Long Stroke Electromagnetic Launcher. IEEE Transactions on Magnetics. 2009, 45(1): 363-367
    46 H. X. Wu, J. J. Hong, L.Y. Li, et al. Research for the Control System of a Pulsed Power Permanent Linear Synchronous Motor. IEEE Transactions on Magnetics. 2009, 45(1): 309-312
    47郭红,贾正春,詹琼华.永磁同步直线电机电磁推力的分析.电机与控制学报. 2004, 8(3): 1-4
    48王淑红,熊光煜.新型筒型永磁动圈式直线电动机气隙磁场解析分析.电工技术学报. 2007, 22(5): 44-45
    49赵镜红,张晓锋,张俊洪,等.径向充磁圆筒永磁直线同步电机磁场分析.上海交通大学学报. 2010, 44(7): 989-993
    50赵镜红,张晓锋,张俊洪,等.圆筒永磁直线同步电机推力计算.海军工程大学学报. 2010, 22(3): 60-63
    51 B. Q. Kou, L. Y. Li, C. M. Zhang. Analysis and Optimization of Thrust Characteristics of Tubular Linear Electromagnetic Launcher for Space-use. IEEE Transactions on Magnetics. 2009, 45(1): 250-255
    52 Laithwaite E R, Eastham J F, Bolton H R, et al. Linear Motors with Transverse Flux. Proceedings of IEE. 1971, 118: 1761-1767
    53 Arshad W M. A Low-leakage Linear Transverse-flux Machine for a Free-piston Generator. PhD thesis, Royal Institute of Technology, Stockholm, 2003: 65-68
    54 H. Weh, H. May. Achievable Force Densities for Permanent Magnet Excited Machines in New Configurations. Proceedings of the International Conference on Electrical Machines. Munchen, Germany, 1986: 1107-1111
    55 K. Y. Lu, E. Ritchie, P. O. Rasmussen, et al. Modeling and Power Factor Analysis of a Single Phase Surface Mounted Permanent Magnet Transverse Flux Machine. Proceedings of the 5th Power Electronics and Drive Systems. Singapore, 2003: 17-20
    56 K. Y. Lu, E. Ritchie, P. O. Rasmussen, et al. Modelling a Single Phase Surface Mounted Permanent Magnet Transverse Flux Machine Based on Fourier Series Method. Proceedings of the International Conference on Electric Machines and Drives. Wisconsin, USA, 2003: 340-345
    57 R. Blissenbach, I. A.Viorel, G. Henneberger. On the Single-sided Transverse Flux Machine Design. Electrical Machines and Power Systems. 2003, 31(2):109-127
    58 Henk Polinder, Barrie C. Mecrow, Alan G. Jack, et al. Conventional and TFPM Linear Generators for Direct-drive Wave Energy Conversion. IEEE Transactions on Energy Conversion. 2005, 20(2): 260-267
    59 Peethamparam Anpalahan, Juliette Soulard, Hans-Peter Nee. Design Steps towards a High Power Factor Transverse Flux Machine. European Conference on Power Electronics and Applications. Graz, Austria, 2001: 1-6
    60 G. Henneberger, M. Bork. Development of a New Transverse Flux Motor. IEE Colloquium on New Topologies for Permanent Magnet Machines (Digest no:1997/090). UK, 1997: 1/1-1/6
    61陈金涛,辜承林.新型横向磁通永磁电机研究.中国电机工程学报. 2005, 25(15): 155-160
    62 A. J Mitcham. Transverse Flux Motors for Electric Propulsion of Ships. IEE Colloquium on New Topologies for Permanent Magnet Machines (Digest no:1997/090). UK, 1997: 3/1-3/6
    63 YouGuang Guo, Jian Guo Zhu, Peter A. Watterson, et al. Development of a PM Transverse Flux Motor with Soft Magnetic Composite Core. IEEE transactions on Energy Conversion. 2006, 21(2): 426-434
    64 B. E. Hasubek. Analysis and Design of Passive Rotor Transverse Flux Machines with Permanent Magnets on the Stator. PhD thesis, the University of Calgary, Canada, 2000: 42-142
    65刘哲民.横向磁通永磁同步电机研究.沈阳工业大学博士论文. 2006: 36-61
    66 D. H. Kang. Increasing of Thrust Force in Transverse Flux Machine by Permanent-Magnet Screen. IEEE Transactions on Magnetics. 2005, 41(5): 1952-1955
    67 Y. H. Jeoug, D. H. Kang, J.M. Kim. A Design of a Transverse Flux Motor with Permanent Magnet Shield. Proceedings of IEEE on Industrial Electronics. Pusan, Korea, 2001: 995-999
    68 D. C. Popa, V. Iancu, S. Lorand. Linear Transverse Flux Reluctance Machine with Permanent Magnets. Proceedings of the International Conference on Transversal Flux Machines. Changwon, Korea, 2006: 85-90
    69李永斌,高瑾,江建中.横向磁场开关磁阻电机永磁屏蔽技术研究.中国电机工程学报. 2003, 23(11): 164-168
    70魏崇桓.以圆形化介面为基础之横向磁场式开关磁阻型线性电动机运动控制.台湾国立中山大学硕士论文. 2002: 7-59
    71葛宝明,赵楠,A. T. Almeida,等.横向磁场直线开关磁阻电机及其控制系统.中国电机工程学报. 2007, 27(24): 22-29
    72薛斌峰.电动车用横向磁通式永磁直线发电机的研究.哈尔滨工业大学硕士论文. 2007: 16-51
    73 Alija Cosic, C. Sadarangani. Cogging Torque Calculations for a Novel Concept of a Transverse Flux Linear Free-Piston Generator. Proceedings of International Conference on Linear Drives and Industry Applications. Kobe-Awaji, Japan, 2005, CD-ROM
    74施进浩.新型横向磁场永磁电机设计与研究.上海大学博士论文. 2006: 25-48
    75郑文鹏,江建中,李永斌,等.基于三维磁网络法E型铁心横向磁场电机的设计与研究.中国电机工程学报. 2004, 24(8): 138-141
    76施进浩,李永斌,江建中.聚磁式横向磁场永磁电机自定位转矩研究.电工技术学报. 2005, 20(3): 36-39
    77 W. M. Arshad, P. Thelin. Modelling of Complex Flux Paths in a New High-performance Transverse-flux Electrical Machine. Physica Status Solidi. C. 2004, 12: 3227-3234
    78 Y. G. Guo, J. G. Zhu, P. A. Watterson, et al. Comparative Study of 3D Flux Electrical Machines with Soft Magnetic Composite Cores. Proceedings of the 37th Industry Applications Conference. Pittsburgh, USA, 2002: 1147-1154
    79 Cheng-Tsung Liu, Kun-Shian Su, Jyh-Wei Chen. Operational Stability Enhancement Analysis of a Transverse Flux Linear Switched-reluctance Motor. IEEE Transactions on Magnetics. 2000, 36(5): 3699-3702
    80 A. Ibala, A. Masmoudi. Investigation of the Leakage Fluxes of SMC Made Magnetic Circuit Claw Pole TFPMs. Proceedings of International Conference on Ecologic Vehicles and Renewable Energies. Monaco, France, 2009, CD-ROM
    81 W. M. Arshad, P. Thelin, C. Sadarangani, et al. Analytical Analysis and Dimensioning of a Low-Leakage Linear Transverse-Flux Machine. Proceedings of International Conference on Power Electronics, Machines and Drives. Edinburgh, UK, 2004: 414-419
    82 J. Chang, D. Kang, J. Lee, et al. Development of Transverse Flux Linear Motor with Permanent-Magnet Excitation for Direct Drive Applications. IEEE Transactions on Magnetics. 2005, 41(5): 1936-1939
    83 J. Y. Lee, J. P. Hong, J. H. Jang, et al. Calculation of Inductances in Permanent Magnet Type Transverse Flux Linear Motor. International Journal of Applied Electromagnetics and Mechanics. 2004: 117-124
    84陶果,邱阿瑞,李大雷.新型横向磁场永磁同步电动机电感参数计算与功率因数分析.微电机. 2007, 40(9): 14-17
    85 T. J. E. Miller, J. R. H. Jr. Design of Brushless Permanent-Magnet Motors. Oxford: Clarendon Press. 1994:131-157
    86 Z. Q. Zhu, D. Howe, J. K. Mitchell. Magnetic Field Analysis and Inductances of Brushless Dc Machines with Surface-Mounted Magnets and Non-Overlapping Stator Windings. IEEE Transactions on Magnetics. 1995, 31(3):2115-2118
    87 P. Zheng, P. Thelin, A. Chen, et al. Influence of Saturation and Saliency on the Inductance of a Four-Quadrant Transducer Prototype Machine. IEEE Transactions on Magnetics. 2006, 42(4):1319-1322
    88 T. Gopalarathnam, R. McCann. Saturation and Armature Reaction Effects in Surface-mount PMAC Motors. IEEE International Conference on Electric Machines and Drives. Cambridge, USA, 2001: 618-621
    89朱宏伟.表贴式永磁同步电动机鲁棒控制策略的研究.哈尔滨工业大学博士论文. 2008: 47-79
    90 Jochen Schüttler, Bernd Orlik. Analytical Model Describing the Operation Behaviour of Transverse Flux Machines in Flat Magnet Configuration. Proceedings of European Conference on Power Electronics and Applications. Aalborg, Denmark, 2007: 1-10
    91 M. R. Harris, G. H. Pajooman, S. M. Sharkh Abu. Performance and Design Optimization of Electric Motors with Heteropolar Surface Magnets and Homopolar Windings. Proceedings of IEE on Electric Power Applications. 1996, 143(6): 429–436
    92 B. E. Hasubek, E. P. Nowicki. Design Limitations of Reduced Magnet Material Passive Rotor Transverse Flux Motors Investigated Using 3D Finite Element Analysis. Proceedings of IEEE Conference on Electrical and Computer Engineering. Nova Scotia, Canadian, 2000, 1: 365-369
    93 J. Y. Lee, J. H. Chang, D. H. Kang, et al. Tooth Shape Optimization for Cogging Torque Reduction of Transverse Flux Rotary Motor Using Design of Experiment and Response Surface Methodology. IEEE Transactions on Magnetics. 2007, 44(4): 1817–1820
    94 G. H. Jang, N. K. Park, C. I. Lee, et al. Reduction of the Unbalanced Magnetic Force of a Transverse Flux Machine by Using Symmetric Multipair Cores. Journal of applied physics. 2008, 103: 07F104
    95 Erich Schmidt. 3-D Finite Element Analysis of the Cogging Torque of a Transverse Flux Machine. IEEE Transactions on Magnetics. 2005, 41(5): 1836-1839
    96包广清,江建中,施进浩.多相聚磁式横磁通永磁电机的自定位力矩研究.中国电机工程学报. 2006, 26(15): 139-143
    97 D. Howe, Z. Q. Zhu. The Influence of Finite Element Discretisation on the Prediction of Cogging Toque in Permanent Magnet Excited Motors. IEEE Transactions on Magnetics. 1992, 28(2): 1080-1083
    98 B. E. Hasubek, E. P. Nowicki. Two Dimensional Finite Element Analysis of Passive Rotor Transverse Flux Motors with Slanted Rotor Design. Proceedings of IEEE Conference on Electrical and Computer Engineering. Edmonton, Canada, 1999, 2: 1199-1204
    99 P. Anpalaham. Design of Transverse Flux Machines Using Analytical Calculations and Finite Element Analysis. Licentiate thesis, Royal Institute of Technology. Stockholm, 1999: 1-6
    100郑文鹏,施进浩,屠关镇,等.新型横向磁场电机的标量磁位三维磁场分析与参数计算.电机与控制应用. 2006, 33(6): 23-27
    101 M. R. Harris, G. H. Pajooman, S. M. Sharkh Abu. Comparison of Alternative Topologies for VRPM (Transverse-Flux) Electrical Machines. IEE Colloquium on New Topologies for Permanent Magnet Machines. UK, 1996, 2: 1–7
    102卓忠疆.机电能量转换.水利电力出版社, 1987: 55-59
    103汤蕴璆.电机内的电磁场(第2版).科学出版社, 1998: 345-348
    104唐任远.现代永磁电机-理论与设计.机械工业出版社. 2002: 74-78
    105刘哲民,陈谢杰,陈丽香,等.基于3D-FEM的新型横向磁通永磁电机的研究.电工技术学报. 2006, 21(5): 19-23
    106 M. R. Harris, G. H. Pajooman, S. M. Abu Sharkh. The problem of Power Factor in VRPM (Transverse-Flux) Machines. Proceedings of the 8th International Conference on Electrical Machines and Drives. Cambridge, UK, 1997: 386-390
    107 G. W. Carter, W. I. Leach, J. Sudworth. The Inductance Coefficients of a Salient-Pole Alternator in Relation to the Two-Axis Theory. Journal of IEE. 1961: 263-270
    108汤蕴璆. Park变换和同步电机的解耦.哈尔滨电工学院学报. 1989, 12(3): 205-212
    109 R. H. Park. Definition of an Ideal Synchronous Machine and Formula for the Armature Flux Linkages. General Electric Review. 1928, 31: 332-334
    110崔玥.无刷直流电动机力矩特性及其控制的研究.哈尔滨工业大学博士论文. 1994: 51-88
    111 R. P. Deodhar, D. A. Staton, T. M. Jahns, et al. Prediction of Cogging Torque Using the Flux-MMF Diagram Technique. IEEE Transactions on Magnetics. 1996, 32(3): 569–576
    112杨玉波,王秀和,陈谢杰,等.基于不等槽口宽配合的永磁电动机齿槽转矩削弱方法.电工技术学报. 2005, 20(3): 40-44
    113 T. M. Jahns, W. L. Soong. Pulsating Torque Minimization Techniques for Permanent Magnet AC Motor Drives– a Review. IEEE Transactions on Industry electronics. 1996, 43(2): 321-330
    114胡建辉,邹继斌,陈霞.无刷直流电机的理想与非理想定位力矩及其综合抑制方法.中国电机工程学报. 2005, 25(22): 153-157
    115 Y. B. Yang, X. H. Wang, R. Zhang, et al. The Optimization of Pole Arc Coefficient of Reducing Cogging Torque in Surface-Mounted Permanent Magnet Motors. IEEE Transactions on Magnetics. 2006, 42(4): 1135–1138
    116 Jiang Xintong, Xing Jingwei, Li Yong, et al. Theoretical and Simulation Analysis of Influences of Stator Tooth Width on Cogging Torque of BLDC Motors. IEEE Transactions on Magnetics. 2009, 45(10): 4601–4604

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700