磁流变抛光技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变抛光(MRF)是近十年新兴的一种先进光学制造技术,它特别适
    合中、小口径(φ50mm以下)光学元件的快速抛光。目前,国外只有美国
    Rochester大学的一些研究人员在做这方面的工作,国内未见这方面的报
    道。本论文对磁流变抛光的研究工作在国内是首次进行的,属于国内开创
    性工作。
     磁流变抛光的原理是这样的:在磁场中,发生流变的磁流变抛光液流
    经工件与运动盘形成的小间隙时,会对工件表面与之接触的区域产生很大
    的剪切力,从而使工件表面材料被去除。磁流变抛光与传统抛光相比最显
    著的优点是:在抛光过程中,不存在“磨头”磨损的问题。这样,抛光去
    除函数始终是恒定不变的。这对控制抛光以至实现数控磁流变抛光是十分
    有利的。磁流变抛光能够顺利进行的两个前提条件是:1提供适合于磁流
    变抛光的梯度磁场;2配制出具有良好流变性的磁流变抛光液。
     本文立足于磁流变抛光技术的基础研究,首先在对磁流变抛光技术进
    行综述的基础上,对进行磁流变抛光所必需的两个前提条件进行了研究。
    在磁场的研制方面,设计了与分析式铁谱仪的磁路相类似的磁路结构。以
    该磁场中磁性微粒的受力分析为基础,从理论上分析了磁流变抛光液可以
    形成抛光所需的缎带凸起,并以实验进行了验证。在磁流变抛光液的研制
    方面,通过对磁流变抛光液的成分、特性以及流变机理的研究,研制出流
    变性好、初始粘度低、流动性好的磁流变抛光液。这种磁流变抛光液用于
    磁流变抛光效果很好。
     其次研究了磁流变抛光的机理。磁流变抛光机理是这样的,当发生流
    变的磁流变抛光液流经工件与运动盘之间形成的小间隙时,会在流出区域
    (抛光区)形成一个附着于运动盘表面上的核心。该核心上表面与工件表面
    又形成一个更小的间隙,在这个更小间隙内流动的剪切流会对工件表面产
    生很大的压力(或剪切力),从而使这个区域内工件表面上的材料被高效率
    地去除。在研究磁流变抛光机理的基础上,根据光学加工中为人们所普遍
    接受的Preston方程,建立了磁流变抛光的数学模型。从该模型得出的结
    论与磁流变抛光的实验结果符合得较好。
    
    
     中国科学院长春光学精密机械与物理研究所博土学位论文
     最后在实验的基础上,研究了抛光时间、运动盘的速度、工件与运动
    盘形成的间隙大小、磁场强度、工件硬度、磁性微粒的浓度、非磁性抛光
    粉的浓度等参数对磁流变抛光去除函数的影响。同时研究了抛光后的工件
    表面粗糙度和下表面破坏层的情况。阐述了今后如何根据磁流变抛光规律
    来控制被加工工件的面形。
Magnetorheological finishing (MIRE) is an advanced optical manufacturing
     technology, which has evolved over the past decade. It fits for rapid polishing of medium
     or small size optical elements. In magnetorheological finishing, magnetically stiffened
     magnetorheological (MR) abrasive fluid flows through a preset converging gap that is
     formed by a workpiece surface and a moving rigid wall, to create precise material
     removal and polishing. A fundamental advantage of MRF over traditional polishing is
     that the polishing tool does not wear, since the recirculated fluid is continuously
     monitored and maintained. Therefore, during polishing, the material removal function is
     not changed, that is useful for us to control the polishing process.
    
     There are two preconditions before MIRE: One is presenting a suitable gradient
     magnetic field, the other is preparing magnetorheological polishing fluids (MRP fluids)
     with good rheology.
    
     In this thesis we first study on these two preconditions. On the one hand, we design
     a magnetic circuit, which is similar to that of Ferrograph. According to the analysis of
     the forces acting on magnetic particles in this magnetic field, we find that MRP fluids
     can form a ribbon that is regarded as 損olishing tool? It is true that MRP fluids really
     form a ribbon in our MIRE experiment. On the other hand, on the basis of studying on
     compositions, properties and rheology of MR.P fluids, we prepare several kinds of MRP
     fluids with good properties. By using them in our MIRE experiment, we get a good
     polishing result.
    
     Secondly, the mechanism of MIRE is studied. When MIRP fluidsis delivered to the
     vicinity of the gap formed by convex part and moving wall, it is pressed by the magnetic
     field gradient against the wall, so it stiffens, and becomes a plastic Bingham medium
     before it enters the gap. When plastic Bin~ham medium enters the gap, a core attaching
     to the moving wall is formed in 損olishing spot? So, a very small gap is formed
     between the upper surface of the core and the part surface. Thereafter, a shear flow
     occurs in this very small gap, resulting in the development of high pressure or high stress
     on surface of the part and thus, material removal a portion of the part surface. According
     to Preston equation, mathematics model of MIRE is established in this thesis. The
    
    
     III
    
    
    
    
    
    
    
    
    
     reliability of the mathematics model is verified by MRF experiment.
    
     At the end of the thesis, based on MIRE experiment, the curves and the laws of the
     effect on MRF by several parameters are given. These parameters include polishing time,
     velocity of moving wall, magnetic field intensity, size of the gap between the part and
     moving wall, hardness of the part and concentration of MIRP fluids. After polished,
    
    
     t
     microroughness and subsurface damage of the part are studied. Also, we explain how to
     correct figure of the workpiece.
引文
1. Y. Mori, H. Tsuwa, K. Sugiyama, "Elastic emission machining (1st Report)-Concept of EEM and its feasibility", J. Japan Soc.Prec.Eng.,1977,43,542(In Japanese).
    2. Y. Mori, K. Yamauchi and K. Endo, "Elastic emission machining", Precision Engineering, 9,123-128, (1987) .
    3. Y. Mori, K. Yamauchi and K. Endo, "Mechanism of atomic removal in elastic emission machining", Precision Engineering, 10, 24-28. (1988) .
    4. Yaw-Terng Su, Shuh-Yi Wang. Ping-Yi Chao, Yeong-Dong Hwang, and Jar_Sian Hsiau, "Investigation of elastic emission machining process: lubrication effects", Precision Engineering, 17,164-172, (1995) .
    5. Y. Higashi, T. Meike, J. Suzuki, Y. Mori, K. Yamauchi, K. Endo and H. Namba, "New machining method for making precise and very smooth mirror surfaces made from Cu and Al alloys for synchrotron radiation optics", Rev. Sci. Instrum., 1989, Vol. 60, No.2, 120-123.
    6. K. Ohtani, S. Tamura, N. Kamijo and H. Okuyama, "Fabrication of SiC Aspherical Mirror by Elastic Emission Machining", Int. J. Japan Soc. Prec. Eng., Vol.30, No. 3(Sept. 1996) .
    7. J. Gormley, M. Manfra and A. Calawa, "Hydroplane polishing of semiconductor crystals", Rev. Sci. Instrum. 52(8) , 1256-1259, (1991) .
    8. Y.Tain and K.Kawata, "Development of High-Efficiency Fine Finishing Process Using Magnetic Fluid", Annals of the CIRP, Vol. 33, 217-220(1984) .
    9. Y. Saito,H. Niikura, T. Oshio and T. Hanaoka, "Float Polishing Using Magnetic Fluid with Abrasive Grains", Proc. 6th Intl. Conf. Prod. Eng. Osaka, 335-340(1987) .
    10. N. Umehara, "Magnetic Fluid Grinding-a New Technique for Finishing Advanced Ceramics", Annals of the CIRP, Vol.43, 185-188(1994) .
    11. T. Kurobe and O. Imanaka, "Magnetic Field-Assisted Fine Finishing, Precision Engineering",Vol. 6, No.3,119-124(1984) .
    12. Suzuki, S. Kodera, S. Hara, H. Matsunaga and T. Kurobe, "Magnetic field-assisted polishing: application to a curved surface", Prec.Eng., Vol.4, 197-202(1989) .
    13. H. Suzuki, S. Kodera, H. Matsunaga and T. Kurobe, "Study on Magnetic Field-Assisted Polishing (2nd Report): Effect of Magnetic Field Distribution on Removal Distribution", J. Jap. Soc. Pre. Eng., Vol. 59, 83-88(1993) .
    
    
    14. T, Shinmura, K. Takazawa, E. Hatano and T.Aizawa. "Study on Magnetic-Abrasive Process-Finishing Characteristics", Bull. Japan Soc. of Prec. Eng., Vol.18, No. 4 (Dec. 1984) .
    15. T. Shinmura, K. Takazawa, E. Hatano and T.Aizawa, "Study on Magnetic-Abrasive Process-Process Principle and Finishing Possibility", Bull. Japan Soc. of Prec. Eng., Vol. 19, No. 1 (March 1985) .
    16. T. Shinmura, K. Takazawa and E. Hatano, "Study on Magnetic-Abrasive Process-Application to Edge Finishing", Bull. Japan Soc. of Prec. Eng., Vol.19. No.3 (Sept. 1985) .
    17. T. Shinmura, K. Takazawa and E. Hatano, "Study on Magnetic-Abrasive Process-Effects of Various Types of Magnetic Abrasives on Finishing Characteristics". Bull. Japan Soc. of Prec. Eng., Vol.21, No.2 (June 1987) .
    18. T. Shinmura, K. Takazawa and E. Hatano, "Study on Magnetic-Abrasive Process-Effects of Machining Fluid on Finishing Characteristics", Bull.Japan Soc. of Prec. Eng., Vol.20, No. 1(Mar. 1986) .
    19. T.Shinmura, K. Takazawa and E. Hatano, "Study on Magnetic-Abrasive Process-Application to Plane Finishing", Bull. Japan Soc. of Prec. Eng., Vol.19, No.4 (Dec. 1985) .
    20. T. Shinmura and T. Aizawa, "Study on Magnetic-Abrasive Process-Development of Plane Finishing Apparatus using a Stationary Type Electromagnet", Bull. Japan Soc. of Prec.Eng.,Vol.23,No.3(Sept. 1989) .
    21. T. Shinmura and T. Aizawa, "Study on Internal Finishing of a Non-ferromagnetic Tubing by Magnetic Abrasive Machining Process", Bull. Japan Soc. of Prec. Eng., Vol.23, No. 1 (Mar. 1989) .
    22. T. Shinmura, H. Yamaguchi and Y. Shinbo, "A New Internal Finishing Process of a Non-ferromagnetic Tubing by Applying a Rotating Magnetic Field", Int. J. Japan Soc. Prec. Eng., Vol.26, No. 4(Dec. 1992) .
    23. T. Shinmura, H. Yamaguchi and T. Aizawa, "A New Internal Finishing Process of a Non-ferromagnetic Tubing by the Application of a Magnetic Field-The Development of a Unit Type Finishing Apparatus using Permanent Magnets", Int. J. Japan Soc. Prec. Eng., Vol.27, No. 2(June 1993) .
    24. T. Shinmura and H. Yamaguchi, "Study on a New Internal Finishing Process of a Nonferromagnetic Tube by the Application of a Linearly Travelling Magnetic Field-On the Process Principle and the Behaviors of Magnetic Finishing Tool", Int. J. Japan
    
    Soc. Prec. Eng., Vol. 28, No. 1 (Mar. 1994).
    25.H. Yamaguchi, T. Shinmura and T. Kaneko, "Development of a Internal Finishing Process Applying Magnetic Abrasive Finishing by Use of Pole Rotation System", Int. J. Japan Soc. Prec. Eng., Vol.30, No. 4 (Dec. 1996).
    26.M. Anzai, H. Otaki, T. Sudo and T. Nakagawa, "Manufacturing of Iron Bonded Diamond Magnetic Abrasives by Sintering and Its Finishing Characteristics", Int. J. Japan Soc. Prec. Eng., Vol.27, No. 4 (Dec. 1993).
    27.T. Shinmura, F. H. Wang and T. Aizawa, "Study on a New Finishing Process of Fine Ceramics by Magnetic Abrasive Machining—On the Improving Effects of Finishing Efficiency Obtained by Mixing Diamond Magnetic Abrasives with Ferromagnetic Particles", Int. J. Japan Soc. Prec. Eng., Vol. 28, No. 2(June 1994).
    28.T. Shinmura and F. H. Wang, "A New Process for Precision Finishing of Silicon Nitride Fine Ceramics by the Application of Magnetic Abrasive Machining Using Chromiumoxide Abrasives Mixed with Iron Particles", Int. J. Japan Soc. Prec. Eng., Vol.28, No.3(Sept. 1994).
    29.K. Suzuki, K. Takeuchi, T. Uematsu and T. Makizaki, "A New Dressing Method for Superabrasive Wheels Utilizing Magnetic Abrasive Polishing", Int. J. Japan Soc. Prec.Eng., Vol.33, No. 1(Mar. 1999).
    30.李益民,杨曙光,孙允臣.阀芯棱边毛刺的控制与磁力研磨去除法.磨料磨具与磨削,1991,2(62),2-6.
    31.金东燮,陈玉全,张同林.电解磁力研磨技术的开发及其机理的研究.磨料磨具与磨削,1993,2(74),26-29.
    32.赵玉刚,江世成,周锦进.自由曲面数字化磁性磨粒光整加工机床.制造技术与机床,1999,10,1-3.
    33.Wm. I Kordonski, "Adaptive Structures Based on Magnetorheological Fluids", Proc.3~(rd)Int. Conf, Adaptive Struct., ed. Wada, Natori and Breitbach, 13-17, San Diego,CA,(1992).
    34.I.V. Prokhorov, W. I. Kordonsky, L. K. Gleb, G. R. Gorodkin and M. L. Levin, "New High-Precision Magnetorheological Instrument-Based Method of Polishing Optics" OSA OF&T Workshop Digest 24, 134-136, (1992).
    35.W. I. Kordonsky, I. V. Prokhorov, B. E. Kashevsky, S.D.Jacobs,B. E. Puchebner, Y. Hsu,D. Pietrowski, D. Strafford and E. Fess, "Basic Properties of Magnetorheological Fluidsfor Optical Finishing", and "Glass Polishing Experiments Using Magnetorheological Fluids", OSA OF&T Workshop Digest 13, 104-109(1994).
    
    
    36. D. Golini, H. Pollicove, G. Platt, S, Jacobs, and W. Kordonski, "Computer control makes asphere production run of the mill", Laser Focus World, pp. 83-86(Sept. 1995) .
    37. S. D. Jacobs, D. Golini, Y. Hsu. B. E. Puchebner, D. Strafford, Wm. I. Kordonski, I. V. Prokhorov, E. Fess, D.Pietrowski and V. W. Kordonski, "Magnetorheological finishing: a deterministic process for optics manufacturing". SPIE Vol.2576, 372-382.
    38. Wm. I. Kordonski, S. D. Jacobs, "Magnetorheological Finishing", International Journal of Modern Physics B, 10(1996) 2837-2848.
    39. J. Lambropoulos, F. Yang, and S. D. Jacobs, "Toward a Mechanical Mechanism for Material Removal in Magnetorheological Finishing", Optical Fabrication and Testing Workshop, 7,OSA Technical Digest Series, 150-153 (1996) .
    40. Wm. I. Kordonski, S. D. Jacobs, D. Golini, E. Fess, D. Strafford, J. Ruckman. and M. Bechtold, "Vertical Wheel Magnetorheological Finishing Machine for Flats, Convex, and Concave Surface", Optical Fabrication and Testing Workshop, 7,OSA Technical Digest Series, 146-149(1996) .
    41. D, Golini, S. D. Jacobs, W. I. Kordonski, and P. Dumas, "Precision Optics Fabrication using Magnetorheological Finishing", Proc. SPIE Vol. CR67, p. 251-274, Advanced Materials for Optics and Precision Structures (1997) .
    42. S. D. Jacobs, Fuqian Yang, E. M. Fess, J. B. Feingold, B. E. Gillman, W. I. Kordonski, H. Edwards, and D. Golini, "Magnetorheological Finishing of IR Materials", SPIE Vol.3134, 258-269.
    43. Shorey, Aril B.; Gregg, Leslie L.; Romanofsky, Henry J.; Arrasmith, Steven R.; Kozhinova, Irina A.; Hubregsen, Joshua; Jacobs,Stephen D.;"Material removal during magnetorheological finishing (MRF)", Proc. SPIE Vol. 3782,101-111(1999) .
    44. Arrasmith, Steven R.; Kozhinova, Irina A.; Gregg, Leslie L.; Shorey, Aril B.; Romanofsky, Henry J.; Jacobs, Stephen D.; Golini, Donald; Kordonski, William I.; Hogan, Stephen J.; Dumas, Paul; "Details of the polishing spot in magnetorheological finishing (MRF)",Proc. SPIE Vol. 3782, 92-100(1999) .
    45. Golini, Donald; Kordonski, William I.; Dumas, Paul;Hogan, Stephen J.; "Magnetorheological finishing (MRF) in commercial precision optics manufacturing", Proc. SPIE Vol.3782. 80-91(1999) .
    46. K. Sakaya, T. Kurobe, S. Suzuki and K.Hirosaki, "GLP (Grinding-Like Polishing) Using Magnetic Fluid-Surface Polishing Characteristics of Silicon Wafer",Int.J.Japan Soc.Prec. Eng., Vol.30, No. 2(June 1996) .
    47. Rabinow, J. "The Magnetic Fluid Clutch", AIEE Trans., 67, 1308-1315, 1948.
    
    
    48. Rabinow, J. "Magnetic Fluid Clutch", National Bureau of Standards Technical News Bulletin, 32(4) , 54-60, 1948.
    49. Rabinow, J. "Magnetic Fluid Torque and Force Transmitting Device", U. S. Patent 2,575,360(1951) .
    50. Shulman, Z. P., W. I. Kordonsky, E. A. Zaltsgendler, I. V. Prokhorov, B. M. Khusid, and S. A. Demchuk, "Structure, Physical Properties and Dynamics of Magnetorheological Suspensions," Int. J. Multiphase Flow, Vol. 12, No. 6, 935-955, 1986.
    51. Kordonsky,W. L., Z. P. Shulman, S. R. Gorodkin, S. A. Demchuk, I. V. Prokhorov, E. A. Zaltsgendler, and B. M. Khusid, "Physical Properties of Magnetizable Structure-Reversible Media," Journal of Magnetism and Magnetic Materials, Vol.85. 114-120, 1990.
    52. Kordonsky,W. I., "Elements and Devices Based on Magnetorheological Effect," Proceedings, Recent Advances in Adaptive and Sensory Materials and Their Application, Technomic Publishing Co., lancaster, PA. 755-764, 1992.
    53. Shtarkman, E.M. U.S.Patent 4,992,360 (1991) .
    54. Shtarkman,E.M. U.S.Patent 5,167,850(1992)
    55. Shtarkman,E.M.U.S.Patent 5354488 (1994) .
    56. Carlson, J. D. and M. J. Chrzan, U.S.Patent 5277281(1994) .
    57. Carlson,J.D. and K. D.Weiss., U.S.Patent 5382373(1995) .
    58. Carlson, J. D. U.S.Patent 5492312(1996) .
    59. W. I. Kordonsky, S. R. Gorodkin, A. V. Kolomentsev, V. A. Kuzmin, A.V. Lukianovitch, N. A. Protasevich, I. V. Prokhorov, and Z. P. Shulman, U.S.Patent 5353839(1994) .
    60. W. I. Kordonsky, S. R. Gorodkin, A. V. Kolomentsev, V. A. Kuzmin, A.V. Lukianovitch, N. A. Protasevich, I. V. Prokhorov, and Z. P. Shulman, U.S.Patent 5452745(1995) .
    61. W. I. Kordonsky, S. Demchuk, I. Prokhorov, and Z. Shulman, U.S.Patent 5525249(1996) .
    62. W. I. Kordonsky and S. A. Demchuk, "Additional Magnetic Dispersed Phase Improves the MR-Fluid Properties", Journal of Intelligent Material Systems and Structures, Vol.7, 522-525, 1996.
    63. Osama Ashour, Dawn Kinder, and Victor Giurgiutiu, "Manufacturing and characterization of magnetorheological fluids," SPIE, Vol. 3040, 174-184, 1997.
    64. P.P.Phule, A.D.Jatkar, "Synthesis and processing magnetic Iron-Cobalt alloy particles for high strength magnetorheological fluids", Proceedings of the 6th International Conference on Electro-Rheological Fluids, Magneto-Rheological Suspensions and their
    
    Applications, p502-510, 1997.
    65. Z.Y.Chen, X.Tang, G.C.Zhang, Y.Jin, W.Ni, and Y.R.Zhu, "A Novel Approach of Preparing Ultrafine Magnetic Metallic Particles and the magnetorheology Measurement for Suspensions Containing These Particles," Proceedings of the 6th International Conference on Electro-Rheological Fluids, Magneto-Rheological Suspensions and their Applications, p486-493.
    66. R. E. Rosesweig, "On magnetorheology and electrorheology as states of unsymmetric stress", J. Rheol. 39(1) , 179, 1995.
    67. G. Bossis, E. Lemaire, O. Volkova, "Yield stress in magnetorheological and electrorheological fluids: A comparison between microscopic and macroscopic structural models", J. Rheol. 41(3) , 687, 1997.
    68. J.M. Ginder, L.C. Davis, "Shear stress in magnetorheological fluids: Role of magnetic saturation", Appl. Phys. Lett. 65(26) , 3410-3412, 1994.
    69. J.M. Ginder, L.C. Davis, L.D. Elie, "Rheology of magnetorheological fluids: modes and measurements", Int. J. Mod. Phys. B (Singapore) vol. 10, no.23-24, 3293-303, 1996.
    70. X. Tang, Y. Chen, H. Conrad, "Structure and Interaction Force in a Model Magnetorheological System", Journal of Intelligent Material Systems and Structures, Vol.7, 517-521, 1996.
    71. P. P. Phule, J. M. Ginder, "Synthesis and processing of novel magnetorheological fluids having improved stability and redispersibility", Proceedings of the 6th International Conference on Electro-Rheological Fluids, Magneto-Rheological Suspensions and their Applications, p445-453, 1997.
    72. M.R. Jolly, J.W. Bender, J.D. Carlson, "Properties and Applications of Commercial Magnetorheological Fluids", SPIE Vol. 3327, 262-275, 1998.
    73. W. I. Kordonsky, S. R. Gorodkin, Z. A. Novikova, "The influence of ferroparticle concentration and size on MR fluid properties", Proceedings of the 6th International Conference on Electro-Rheological Fluids, Magneto-Rheological Suspensions and their Applications, p535-542, 1997.
    74. Felt, D.W.; Hagenbuchle, M.; Liu, J.; Richard, J. "Rheology of a magnetorheological fluid", Proceedings of the 5th International Conference on Electro-Rheological Fluids, Magneto-Rheological Suspensions and Associated Technology, p738-746, 1996.
    75. E. Lemaire, A. Meunier, G. Bossis, "Influence of the particle size on the rheology of magnetorheological fluids", J. Rheol. 39(5) , 1011, 1995.
    76. F.Q. Jing, Z.W. Wang, J.Y. Wu, L.W. Zhou, Z.Y. Ying, "Magnetorheological Materials
    
    and their application in shock absorbers", Proceedings of the 6th International Conference on Electro-Rheological Fluids. Magneto-Rheological Suspensions and their Applications, p494-501, 1997.
    77. 潘胜,吴建耀,胡林,沈峰,孙猛,周鲁卫.磁流变液的屈服应力与温度效应.《功能材料》,1997,28(2) ,264.
    78. J. Promislow, A. Gast, "Magnetorheological Fluid Structure in a Pulsed Magnetic Field", Langmiur, Vol.12, 4095-4102, 1996.
    79. M.R. Jolly, J.W. Bender and R.T. Mathers, "Indirect Measurements of Microstructure Development in Magnetorheological Fluids", Proceedings of the 6th International Conference on Electro-Rheological Fluids, Magneto-Rheological Suspensions and their Applications, p470-477, 1997.
    80. Y. Zhu, M. McNeary, N. Breslin, and J. Liu, "Effect of Structures on Rheology in a Model Magnetorheological Fluid", Proceedings of the 6th International Conference on Electro-Rheological Fluids, Magneto-Rheological Suspensions and their Applications, p478-485, 1997.
    81. M. Gross, S. Kiskamp, H. Eisele, Y. Zhu, and J. Liu, "On the Interaction of Dipolar Chains", Proceedings of the 6th International Conference on Electro-Rheological Fluids, Magneto-Rheological Suspensions and their Applications, p519-527, 1997.
    82. M. Mohebi, N. Jamasbi, G.A. Flores, and J. Liu, "Numerical Study of the Role of Magnetic Field Ramping Rate on the Structure Formation in Magnetorheological Fluids", Proceedings of the 6th International Conference on Electro-Rheological Fluids, Magneto-Rheological Suspensions and their Applications, p543-550, 1997.
    83. X. Tang, X. Zhang, and R. Tao, "Structure-enhanced yield stress of magnetorheological fluids", Journal of Applied Physics, Vol.87, No.5, 2634-2638, 2000.
    84. Carlson, J. D. and K.D. Weiss, "A Growing Attraction to Magnetic Fluids", Machine Design, Aug.8, 61-66, 1994.
    85. B. Ralf, J. Hartmut, "Performance of long-stroke and low-stroke MR fluid dampers", SPIE, Vol.3327, 303-313, 1998.
    86. J. D. Carlson, and B. F. Spencer Jr, "Magneto-rheological Fluid Dampers for Semi-Active Seismic Control", Proc. 3rd Int. Conf. On Motion andVib.Control,Chiba, Japan, Vol.3, 35-40, 1996.
    87. D. Jeon, C. Park and K. Park, "Vibration suppression by controlling an MR damper", Proceedings of the 6th International Conference on Electro-Rheological Fluids, Magneto-Rheological Suspensions and their Applications, p853-860, 1997.
    
    
    88.Kelso, Shawn P.; Gordaninejad, Faramarz, "Magnetorheological fluid shock absorbers for off-highway high-payload vehicles", SPIE, Vol. 3672, 44-54, 1999.
    89.Muriuki. Muturi G: Clark, William W, "Design issues in magnetorheological fluid actuators", SPIE, Vol. 3672, 55-64, 1999.
    90.Lee, Jinkyoo: Clark, William W, "Semi-active control of fiexural vibrations with an MR fluid actuator", SPIE, Vol. 3672, 167-174, 1999.
    91.Anon, "Brake cuts exercise-equipment cost", Design News, Dec.4, 1995.
    92.Pinkos, A. E. Shtarkman, and Th. Fitzgerald, "An Actively Damped Passenger Car Suspension System With Low Voltage Electro-Rheological Magnetic Fluid",Proceedings, SPIE's 1994 North American Conference on Smart Structures and Materials, Vol.2190. pp28-35, Orlando, Fl.
    93.Marathe, Sameer; Gandhi, Farhan: Wang, Kon Well, "Helicopter blade response and areomechanical stability with a magnetorheological fluid-based lag damper", SPIE, Vol.3329, 390-401, 1998.
    94.Kamath, Gopalakrishna M; Wereley, Norman M.; Jolly, Mark R, "Characterization of semiactive magnetorheological helicopter lag mode dampers", SPIE, Vol. 3329, 356-377, 1998.
    95.Alex Lukianovich, Osama Ashour, Wilbert Thurston, Craig Rogers, Zaffir Chaudhry,"Electrically-controlled adjustable-resistance exercise equipment employing magnetorheological fluid",SPIE, Vol. 2721, 283-291, 1996.
    96.鄢红春,李定国,周骏,康颖,“电流变效应及其应用前景”,现代物理知识,12卷3期(总69期),p18-22,2000.
    97.X. P. Zhao, C. K. Luo, Z. D. Zhang, "Optical characteristics of electrorheological and electromagnetorheological fluids", Opt. Eng. 37(5), 1589-1592, 1998.
    98.Y. Nahmad-Molinari, C. A. Arancibia-Bulnes, J. C. Ruiz-Suarez, "Sound in a Magnetorheological Slurry", Physical Review Letters, Vol. 82, No. 4, 727-730, 1999.
    99.杨仕清,张万里,龚捷,谭锐,王豪才.磁流变液的流变学性质研究.《功能材料》,1998,29(5),550.
    100.杨仕清,龚捷,张万里,王瑞芳,王豪才.磁流变智能液场致微结构变化的 Monte Carlo 模拟.原子与分子物理学报,1998,15(3),411.
    101.辛镝.铁谱技术理论研究及在煤矿机械设备工况监测中的应用.吉林工业大学研究生毕业论文.
    102.钟文定.铁磁学(中册).科学出版社,1987.
    103.周世昌.磁性测量.电子工业出版社,1987,16.
    
    
    104.黄礼镇,黄春熙.电工原理与计算方法.科学出版社,1987.
    105.张玉民,戚伯云.电磁学.中国科学技术大学出版社,1997,255.
    106.张文灿,邓亲俊.电磁场的难题和例题分析.高等教育出版社,1987,298~300.
    107.赵凯华,陈熙谋.电磁学,下册.高等教育出版社,1985.
    108.E.P.Wohlfarth,铁磁材料—磁有序物质特性手册,卷Ⅱ,电子工业出版社,p348,1993.
    109.吴炽强,“旋转式磁流变仪”,复旦大学学士学位论文,1997.
    110.张峰,余景池,张学军.王权陡,“磁流变抛光技术”,光学精密工程,1999(5),1-8.
    111.池长青,王之珊,赵丕智 编著:铁磁流体力学,北京航空航天大学出版社,1993.
    112.[英]O.平克斯,B.斯德因李希特,流体动力润滑理论,机械工业出版社,1980.
    113.William Kordonski,Don Golini,Paul Dumas,Stephen Hogan,Stephen Jacobs,"Magnetorheological suspension-based finishing technology", SPIE, Vol. 3326, 527-5357, 1998.
    114.杨沛然 著:流体润滑数值分析,国防工业出版社,1998.29~33.
    115.John A. Iichy, "Hydrodynamic lubrication theory for the Bingham plastic flow model", J. Rheol 35(4), 477-496, 1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700