组合梁斜拉桥的可靠度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对于混凝土斜拉桥和钢斜拉桥而言,组合梁斜拉桥具有跨越能力大,自重轻,造价合理,施工进度快,能充分发挥各自材料性能等优点,在近十几年来得到了迅猛的发展。目前对组合梁斜拉桥的研究大部分集中在确定性结构分析方面,但确定性结构分析无法考虑结构参数随机性和作用荷载随机性对结构安全性的影响。将基于概率统计理论的可靠度理论应用于组合梁斜拉桥的结构分析,则可以科学准确地掌握组合梁斜拉桥的安全可靠性。本文以九江重建斜拉桥为工程背景,对多种状态下的组合梁斜拉桥进行了可靠度分析,主要内容包括以下几个方面:
     (1)基于Newmark几何模型,将混凝土板和钢梁以及剪力连接件按一整体单元考虑,采用T.L列式增量法,推导了考虑纵向滑移效应的非线性组合梁单元模型;
     (2)在推导的非线性组合梁单元模型基础上,根据组合梁的结构特点,利用直接微分法,对组合梁的结构响应梯度进行了计算分析,而后利用改进HL-RF迭代法,由FORM法计算得到可靠度指标,同时编制了基于C++语言以及Matlab程序的组合梁随机有限元程序,并进行了数值算例分析;
     (3)利用所编的组合梁随机有限元程序,将随机有限元法直接应用于组合梁斜拉桥施工过程中,对组合梁斜拉桥施工过程的标高控制进行了可靠度分析,并对影响标高控制的参数进行了敏感度分析,得出了一些有益的结论;
     (4)由于斜拉索中有较大的索力,在主塔及部分主梁中会产生较大轴压力,此时主塔和主梁应按压弯构件来考虑其极限荷载。按相关方程形式建立了组合梁和塔的极限状态方程,并采用? -约界法作为体系主要模式的识别方法,计算分析了组合梁斜拉桥在承载极限状态下的第一水平和第二水平的体系可靠度;
     (5)将支持向量分类机(SVC)和Kriging模型引入到了结构可靠度计算分析中。采用拉丁超立方抽样作为实验设计方法,将SVC/Kriging模型作为响应面函数,同时利用遗传算法进行参数优化,并结合Monte Carlo抽样模拟法,提出了基于SVC/Kriging的改进响应面法,其主要思想为:定义―重要性‖判定函数,在迭代过程中,按判定函数值从抽样样本中选取新的训练样本加入到初始训练样本中,不断更新训练样本,使SVC/Kriging模拟的极限状态方程曲线在MC抽样点分布的区域内能更进一步地快速接近真实极限状态方程曲线。经过数值算例分析,验证了本文方法的准确性、高效性;
     (6)桥梁结构对地震响应的非线性和复杂性等问题给可靠度分析带来了较大的困难,相比其他可靠度分析方法,响应面是解决此类问题的有效方法。采用所提的基于SVC/kriging的改进响应面法对随机地震激励下组合梁斜拉桥的首次超越动力可靠度问题进行了计算分析,同时还计算分析了结构参数随机性对可靠度的影响。
Compared to the concrete cable-stayed bridge and steel cable-stayed bridge, the composite beam cable-stayed bridge has the following advantages: long-span capacity, light weight, reasonable cost, short construction period, full use of respective material etc., which has a rapid development in last decade. At present, researches about composite beam cable-stayed bridge are concentrated on the field of deterministic structure analysis, which can’t know how the random structural parameters and random loads impact on the safety of structure. If the reliability theory which based on probability theory is applied to a structural analysis of composite beam cable-stayed bridge, the safety and reliability of composite beam cable-stayed bridge could be controlled scientifically and accurately. The Jiujiang rebuilding cable-stayed bridge is taken as the engineering background, and the reliability of composite beam cable-stayed bridge under various situations is investigated and analyzed, the main contents include the following aspects:
     (1) Based on Newmark geometric model, considering the concrete slab、steel beam and shear connectors as a whole element, and making use of the T.L. formulation, a nonlinear composite beam element model was developed which had taken the interface slip effect into consideration;
     (2) Based on the nonlinear composite beam element model and the characteristic of composite beam, the structural response gradients of composite beam were obtained by use of the DDM method, meanwhile the reliability index was achieved by use of the FORM method and the improved HL-RF iteration. According to the proposed method, a stochastic finite element program of composite beam written in C++ as well as Matlab was developed. Several numerical examples were computed to validate the accuracy of the proposed approach;
     (3) Taking advantage of the proposed stochastic finite element program of composite beam, a stochastic finite element analysis was directly applied to the analysis of composite beam cable-stayed bridge during construction stage,the reliability for elevation control of composite beam during construction stage was analyzed, meanwhile the sensitivity of structure parameter which might have an effect on the elevation control was also analyzed, and some useful conclusions were obtained;
     (4) As cables contain huge tensions, which would generate great axial pressure in the bridge tower and part of beams, thus the tower and part of beams should be considered as beam-columns to calculate the ultimate load. The limit state functions of composite beam and tower were developed by using the force-moment interaction equation, and the system reliability both at level 1 and level 2 of the composite beam cable-stayed bridge under the ultimate limit-state was analyzed by using theβ-unzipping method which was used to search the main failure modes;
     (5) The support vector classification machine (SVC) and Kriging model were introduced into the study of structure reliability. Based on the experiment design of initial input training sample which was selected by use of the Latin Hypercube Sampling (LHS) method, considering the SVC/Kriging model as the response surface function in which the parameters were optimized by using genetic algorithm, an improved SVC/Kriging–based response surface method was proposed which combined with the Monte Carlo sampling method. The main idea of the proposed method is: choosing some new training points from the test sample according to the value of a defined―important‖critical function during the iterative process, and adding these new training points into the initial training sample to update the whole training sample, finally the approximate limit state function of SVC/Kriging would be more close to the real limit state function within the regions where the Monte Carlo population is located by updating the training sample continuously. Several numerical examples were computed to validate the accuracy and high efficiency of the proposed approach;
     (6) The seismic response of bridge structure was characterized by nonlinear and complexity, which caused more difficulties in the reliability analysis. Compared to other reliability methods, the response surface method was regarded as an effective way to solve such problems. Therefore, the proposed improved SVC/Kriging–based response surface method was utilized to analyze the first excursion dynamic reliability issue. Meanwhile, the influence from the randomness of structure parameters was also analyzed.
引文
[1] Dall'Asta A, Zona A. Non-linear analysis of composite beams by a displacement approach[Z]. Elsevier Ltd, 2002: 80, 2217-2228.
    [2] Battini J, Nguyen Q, Hjiaj M. Non-linear finite element analysis of composite beams with interlayer slips[J]. Computers and Structures, 2009, 87(13-14): 904-912.
    [3]聂建国,崔玉萍,石中柱,等.部分剪力连接钢──混凝土组合梁受弯极限承载力的计算[J].工程力学, 2000, 17(3): 37-42.
    [4] Dall'Asta A, Zona A. Slip locking in finite elements for composite beams with deformable shear connection[J]. Finite Elements in Analysis and Design, 2004, 40(13-14): 1907-1930.
    [5] Dall'Asta A, Zona A. Three-field mixed formulation for the non-linear analysis of composite beams with deformable shear connection[J]. Finite Elements in Analysis and Design, 2004, 40(4): 425-448.
    [6] Girhammar U A, Pan D H. Exact static analysis of partially composite beams and beam-columns[J]. International Journal of Mechanical Sciences, 2007, 49(2): 239-255.
    [7] Girhammar U A, Pan D H, Gustafsson A. Exact dynamic analysis of composite beams with partial interaction[J]. International Journal of Mechanical Sciences, 2009, 51(8): 565-582.
    [8] Dezi L, Leoni G, Tarantino A M. Algebraic methods for creep analysis of continuous composite beams[J]. Journal of structural engineering New York, N.Y. 1996, 122(4): 423-430.
    [9] Dezi L, Ianni C, Tarantino A M. Simplified creep analysis of composite beams with flexible connectors[J]. Journal of structural engineering New York, N.Y. 1993, 119(5): 1484-1497.
    [10] Ranzi G, Dall'Asta A, Ragni L, et al. A geometric nonlinear model for composite beams with partial interaction[J]. Engineering Structures, 2010, 32(5): 1384-1396.
    [11] Ranzi G, Bradford M A. Direct stiffness analysis of a composite beam-column element with partial interaction[J]. Computers and Structures, 2007, 85(15-16): 1206-1214.
    [12] Fragiacomo M, Amadio C, Macorini L. Finite-element model for collapse and long-term analysis of steel-concrete composite beams[J]. Journal of Structural Engineering, 2004, 130(3): 489-497.
    [13] Gara F, Leoni G, Dezi L. A beam finite element including shear lag effect for the time-dependent analysis of steel-concrete composite decks[J]. Engineering Structures,2009, 31(8): 1888-1902.
    [14] Ranzi G, Bradford M A. Analytical solutions for the time-dependent behaviour of composite beams with partial interaction[J]. International Journal of Solids and Structures, 2006, 43(13): 3770-3793.
    [15] Kim B, Wright H D, Cairns R. The behaviour of through-deck welded shear connectors: An experimental and numerical study[J]. Journal of Constructional Steel Research, 2001, 57(12): 1359-1380.
    [16]聂建国,谭英,王洪全.钢-高强混凝土组合梁栓钉剪力连接件的设计计算[J].清华大学学报(自然科学版), 1999, 39(12): 94-97.
    [17] Salari M R, Spacone E, Shing P B, et al. Nonlinear analysis of composite beams with deformable shear connectors[J]. Journal of structural engineering New York, N.Y. 1998, 124(10): 1148-1158.
    [18] Zona A, Ragni L, Dall'Asta A. Finite element formulation for geometric and material nonlinear analysis of beams prestressed with external slipping tendons[J]. Finite Elements in Analysis and Design, 2008, 44(15): 910-919.
    [19] Ayoub A, Filippou F C. Mixed formulation of nonlinear steel-concrete composite beam element[J]. Journal of structural engineering New York, N.Y. 2000, 126(3): 371-381.
    [20] Hasofer A M, Lind N C. Exact and invariant second-moment code format[J]. 1974, 100(EM1): 111-121.
    [21] Rackwitz R, Fiessler B. Structural reliability under combined random load sequences[J]. Computers and Structures, 1978, 9(5): 489-494.
    [22] Breitung K. Asymptotic approximations for multinormal integrals[J]. Journal of Engineering Mechanics, 1984, 110(3): 357-366.
    [23] Der Kiureghian A, Lin H, Hwang S. Second-order reliability approximations[J]. Journal of Engineering Mechanics, 1987, 113(8): 1208-1225.
    [24] Melchers R E. Importance sampling in structural systems[J]. Structural Safety, 1989, 6(1): 3-10.
    [25] Bjerager P. Probability integration by directional simulation[J]. Journal of Engineering Mechanics, 1988, 114(8): 1285-1302.
    [26]冯元生,董聪.枚举结构主要失效模式的一种方法[J].航空学报, 1991, 12(9): 537-541.
    [27] Feng Y S. Enumerating significant failure models of a structural system by using criterion methods[J]. Computers and Structures, 1988, 30(5): 1153-1157.
    [28] Moses F. System reliability developments in structural engineering[J]. Structural Safety, 1982, 1: 3-13.
    [29]董聪,杨庆雄.结构系统静强度可靠性分析理论与算法[J].强度与环境, 1993(2): 1-8.
    [30]姚卫星,顾怡.用自动矩阵力法枚举结构的主要失效模式[J].计算结构力学及其应用, 1996, 13(1): 62-66.
    [31]刘天云,赵国藩.一种识别结构主要失效模式的有效算法[J].大连理工大学学报, 1998, 38(1): 101-104.
    [32] Murotsu Y, Okada H, Yonezawa M, et al. Automatic generation of stochastically dominant modes of structural failure in frame structure[J]. Bulletin of the University of Osaka Prefecture, Series A Engineering and Natural Sciences, 1981, 30(2): 85-101.
    [33] Murotsu Y, Okada H, Niwa K, et al. Reliability analysis of truss structures by using matrix method[J]. Journal of mechanical design, 1980, 102(4): 749-756.
    [34] Thoft Christensen P, Sorensen J D. Reliability of structural systems with correlated elements[J]. 1982, V 6(N 3): 171-178.
    [35] Thoft-Christensen P Baker M J. Structural reliability theory and its applications[M]. Berlin,Heidelberg,NewYork,: Spring-Verlag, 1982.
    [36]蔡迎建,孙焕纯.结构失效模式的快速识别方法[J].大连理工大学学报, 1999, 39(4): 27-31.
    [37] Conell C A. Bounds on the reliability of structural system[J]. Journal of the Structural Engineering, 1967, 93(1): 171-179.
    [38] Ditlevsen O. Narrow reliability bounds for structural systems[J]. Journal of structural mechanics, 1979, 7(4): 453-472.
    [39] Ang A H S, Abdelnour J, Chaker A A. Analysis of activity networks under uncertainty[J]. 1975, 101(4): 373-387.
    [40] Hohenbichler M, Rackwitz R. First-order concepts in system reliability[J]. Structural Safety, 1983, 1(3): 177-188.
    [41] Gollwitzer S, Rackwitz R. Equivalent components in first-order system reliability[J]. Reliability engineering, 1983, 5(2): 99-115.
    [42]张明.结构可靠度分析—方法与程序[M].北京:科学出版社, 2009.
    [43] Cambou B. Applications of first-order uncertainty analysis in the finite elements method in linear elasticity[J]. 1975.
    [44] Handa K, Anderson K. Application of finite element methods in the statistical analysis ofstructures[C]. Trondheim, Norw: Elsevier Sci Publ Co (Dev in Civ Eng, 4), 1981.
    [45] Hisada T, Nakagiri S. Stochastic finite element method developed for structural safety and reliability[C]. Trondheim, Norw: Elsevier Sci Publ Co (Dev in Civ Eng, 4), 1981.
    [46] Shinozuka M, Deodatis G. Response variability of stochastic finite element systems[J]. Journal of Engineering Mechanics, 1988, 114(3): 499-519.
    [47] Yamazaki F, Shinozuka M, Dasgupta G. Neumann expansion for stochastic finite element analysis[J]. Journal of Engineering Mechanics, 1988, 114(8): 1335-1354.
    [48]秦权,林道锦,梅刚.结构可靠度随机有限元-理论及工程应用[M].北京:清华大学出版社, 2006.
    [49] Der Kiureghian A, Ke J. Finite-element based reliability analysis of frame structures[C]. Kobe, Jpn: Int Assoc for Structural Safety & Reliability, 1985.
    [50] Choi K K, Santos J L T, Frederick M C. Implementation of design sensitivity analysis with existing finite element codes[J]. Journal of mechanisms, transmissions, and automation in design, 1987, 109(3): 385-391.
    [51] Tsay J J, Arora J S. Nonlinear structural design sensivitity analysis for path dependent problems. Part 1. General theory[J]. Computer Methods in Applied Mechanics and Engineering, 1990, 81(2): 183-208.
    [52] Zhang Y, Der Kiureghian A. First-excursion probability of uncertain structures[J]. Probabilistic Engineering Mechanics, 1994, 9(1-2): 135-143.
    [53] Liu P, Der Kiureghian A. Finite element reliability of geometrically nonlinear uncertain structures[J]. Journal of Engineering Mechanics, 1991, 117(8): 1806-1825.
    [54] Conte J P, Vijalapura P K, Meghella M. Consistent finite-element response sensitivity analysis[J]. Journal of Engineering Mechanics, 2003, 129(12): 1380-1393.
    [55] Imai K, Frangopol D M. System reliability of suspension bridges[J]. Structural Safety, 2002, 24(2-4): 219-259.
    [56] Barbato M, Conte J P. Finite element response sensitivity analysis: A comparison between force-based and displacement-based frame element models[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(12-16): 1479-1512.
    [57] Zona A, Barbato M, Conte J P. Finite element response sensitivity analysis of continuous steel-concrete composite girders[J]. Steel and Composite Structures, 2006, 6(3): 183-202.
    [58] Der Kiureghian A. Geometry of random vibrations and solutions by FORM and SORM[J]. Probabilistic Engineering Mechanics, 2000, 15(1): 81-90.
    [59] Koo H, Der Kiureghian A, Fujimura K. Design-point excitation for non-linear random vibrations[J]. Probabilistic Engineering Mechanics, 2005, 20(2): 136-147.
    [60] Bucher C G, Bourgund U. A fast and efficient response surface approach for structural reliability problems[J]. Structural Safety, 1990, 7(1): 57-66.
    [61] Rajashekhar M R, Ellingwood B R. New look at the response surface approach for reliability analysis[J]. Structural Safety, 1993, 12(3): 205-220.
    [62] Enevoldsen I, Faber M H, Sorensen J D. Adaptive response surface techniques in reliability estimation[C]. Innsbruck, Austria: A.A. Balkema, 1994.
    [63] Kim S, Na S. Response surface method using vector projected sampling points[J]. Structural Safety, 1997, 19(1): 3-19.
    [64] Das P K, Zheng Y. Cumulative formation of response surface and its use in reliability analysis[J]. Probabilistic Engineering Mechanics, 2000, 15(4): 309-315.
    [65] Gayton N, Bourinet J M, Lemaire M. CQ2RS: A new statistical approach to the response surface method for reliability analysis[J]. Structural Safety, 2003, 25(1): 99-121.
    [66] Kaymaz I, Mcmahon C A. A response surface method based on weighted regression for structural reliability analysis[J]. Probabilistic Engineering Mechanics, 2005, 20(1): 11-17.
    [67] Gavin H P, Yau S C. High-order limit state functions in the response surface method for structural reliability analysis[J]. Structural Safety, 2008, 30(2): 162-179.
    [68] Papadrakakis M, Papadopoulos V, Lagaros N D. Structural reliability analysis of elastic-plastic structures using neural networks and Monte Carlo simulation[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 136(1-2): 145-163.
    [69] Gomes H M, Awruch A M. Comparison of response surface and neural network with other methods for structural reliability analysis[J]. Structural Safety, 2004, 26(1): 49-67.
    [70]张建仁,刘扬.遗传算法和人工神经网络在斜拉桥可靠度分析中的应用[J].土木工程学报, 2001, 34(1): 7-13.
    [71]桂劲松,康海贵.计算结构可靠度的RBF神经网络响应面法[J].海洋工程, 2004, 22(3): 81-85.
    [72] Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer, 1995.
    [73] Rocco C M, Moreno J A. Fast Monte Carlo reliability evaluation using support vector machine[J]. Reliability Engineering and System Safety, 2002, 76(3): 237-243.
    [74] Hurtado J E, Alvarez D A. Classification approach for reliability analysis with stochastic finite-element modeling[J]. Journal of Structural Engineering, 2003, 129(8): 1141-1149.
    [75]李洪双,吕震宙.结构可靠性分析的支持向量机响应面法[J].计算力学学报, 2009, 26(2): 199-203.
    [76]唐纯喜,金伟良,陈进.基于支持向量机的重要抽样方法[J].长江科学院院报, 2007, 24(6): 62-65.
    [77]李伟.大跨度斜拉桥静动力可靠度分析[D].广州:华南理工大学, 2010.
    [78] H W. Multivariate geo-statistics[M]. Heidelberg: Springer-Verlag, 1995.
    [79]杜德文,马淑珍,陈永良.地质统计学方法综述[J].世界地质, 1995, 14(4): 79-84.
    [80] Sacks J, Schiller S B, Welch W J. Designs for computer experiments[J]. Technometrics, 1989, 31(1): 41-47.
    [81] Osio I G, Amon C H. Engineering design methodology with multistage Bayesian surrogates and optimal sampling[J]. Research in Engineering Design, 1996, 8(4): 189-206.
    [82] Sakata S, Ashida F, Zako M. Structural optimizatiion using Kriging approximation[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(7-8): 923-939.
    [83] Romero V J, Swiler L P, Giunta A A. Construction of response surfaces based on progressive-lattice-sampling experimental designs with application to uncertainty propagation[J]. Structural Safety, 2004, 26(2): 201-219.
    [84] Kaymaz I. Application of kriging method to structural reliability problems[J]. Structural Safety, 2005, 27(2): 133-151.
    [85]张崎.基于Kriging方法的结构可靠性分析及优化设计[D].大连:大连理工大学, 2005.
    [86]程进,肖汝诚.斜拉桥结构静力可靠度分析[J].同济大学学报(自然科学版), 2004, 32(12): 1593-1598.
    [87]陈铁冰,王书庆,石志源.计入结构几何非线性影响时斜拉桥可靠度分析[J].同济大学学报(自然科学版), 2000, 28(4): 407-412.
    [88] Florian A, Navratil J. Reliability analysis of the cable stayed bridge in construction and service stages[C]. Innsbruck, Austria: A.A. Balkema, 1994.
    [89]李生勇.自锚式悬索桥结构可靠性研究[D].大连:大连理工大学, 2007.
    [90] Bruneau M. Evaluation of system-reliability methods for cable-stayed bridge design[J]. Journal of structural engineering New York, N.Y. 1992, 118(4): 1106-1120.
    [91] Imai K, Frangopol D M. System reliability of suspension bridges[J]. Structural Safety, 2002, 24(2-4): 219-259.
    [92]沈惠申,高峰.斜拉桥索塔的可靠性分析[J].中国公路学报, 1994, 17(4): 40-43.
    [93]沈惠申,王宇新.斜拉桥主梁静动力可靠性分析[J].中国公路学报, 1996, 9(1): 59-65.
    [94]张建仁,许福友.连续梁桥悬臂施工整体稳定性可靠度分析[J].长沙交通学院学报, 2002, 18(1): 26-29.
    [95]刘扬,张建仁.混凝土斜拉桥施工阶段的体系可靠度[J].中国公路学报, 2006, 19(5): 53-58.
    [96]刘春华,秦权.架设阶段悬索桥静力问题的随机有限元分析[J].计算力学学报, 1998, 15(2): 109-112.
    [97]苏成,范学明.斜拉桥施工控制参数灵敏度与可靠度分析[J].土木工程学报, 2005, 38(10): 85-91.
    [98]徐郁峰,苏成,陈兆栓.斜拉桥主梁节段施工过程标高与索力控制可靠度分析[J].华中科技大学学报(城市科学版), 2010, 27(2): 34-39.
    [99]李桂青.结构动力可靠性理论及其应用[M].北京:地震出版社, 1993.
    [100]黄耀怡.关于高桥墩抗风设计的动力可靠性分析[J].桥梁建设, 1993(2): 49-57.
    [101]刘高,林家浩,王秀伟.基于首超破坏机制的大跨斜拉桥抖振动力可靠性分析[J].应用力学学报, 2004, 21(3): 53-57.
    [102] Franchin P. Reliability of uncertain inelastic structures under earthquake excitation[J]. Journal of Engineering Mechanics, 2004, 130(2): 180-191.
    [103]陈兵.桥梁抗震分析的随机理论及应用研究[D].成都:西南交通大学, 2008.
    [104]余建星,何斌,杨钢.大型斜拉桥风致振动可靠性分析方法[J].地震工程与工程振动, 2003, 23(1): 50-53.
    [105]刘怀林,赵岩.多点地震激励下大跨度桥梁动力可靠度研究[J].华中科技大学学报(城市科学版), 2008, 25(3): 113-116.
    [106]张汝清,詹先义.非线性有限元分析[M].重庆:重庆大学出版社, 1990.
    [107] Kent D C, Park R. Flexural members with confined concrete. [J]. Journal of the Structural Division, ASCE, 1971, 97(7): 1969-1990.
    [108]周凌远.斜拉桥非线性理论及极限承载力研究[D].成都:西南交通大学, 2007.
    [109]周凌宇.钢—混凝土组合箱梁受力性能及空间非线性分析[D].长沙:中南大学, 2005.
    [110] Girhammar U A, Pan D. Dynamic analysis of composite members with interlayerslip[J]. International Journal of Solids and Structures, 1993, 30(6): 797-823.
    [111] Girhammar U A, Gopu V K A. Composite beam-columns with interlayer slip - exact analysis[J]. Journal of structural engineering New York, N.Y. 1993, 119(4): 1265-1282.
    [112] Cas B, Saje M, Planinc I. Non-linear finite element analysis of composite planar frames with an interlayer slip[Z]. Elsevier Ltd, 2004: 82, 1901-1912.
    [113] Krawczyk P, Rebora B. Large deflections of laminated beams with interlayer slips: Part 2: Finite element development[J]. Engineering Computations (Swansea, Wales), 2007, 24(1): 33-51.
    [114] Ranzi G, Dall'Asta A, Ragni L, et al. A geometric nonlinear model for composite beams with partial interaction[J]. Engineering Structures, 2010, 32(5): 1384-1396.
    [115] Dall'Asta A, Zona A. Comparison and validation of displacement and mixed elements for the non-linear analysis of continuous composite beams[Z]. Elsevier Ltd, 2004: 82, 2117-2130.
    [116] Shima H, Chou L, Okamura H. Micro and macro models for bond in reinforced concrete[J]. Journal of the Faculty of Engineering, University of Tokyo, Series B, 1987, 39(2): 133-194.
    [117] Ollgaard J G, Slutter R G, Fisher J W. Shear strength of stud connectors in lightweight and normalweight concrete[J]. 1971, 8(2): 55-64.
    [118] Salari M R, Spacone E. Finite element formulations of one-dimensional elements with bond-slip[J]. Engineering Structures , 2001, 23(7): 815-826.
    [119] M K, H A, D H T, et al. Parameter Sensitivity in NonlinearMechanics: Theory and Finite Element Computation[M]. New York: Wiley, 1997.
    [120] M B. Finite element response sensitivity probabilistic response and reliability analyses of structural systems with applications to earthquake engineering[D]. San Diego: 2007.
    [121]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社, 1997.
    [122]贡金鑫,赵国藩.串联结构体系可靠度的二元泰勒级数展开[J].计算力学学报, 1997, 14(1): 80-86.
    [123]刘扬.混凝土斜拉桥施工期的时变可靠性研究[D].长沙:湖南大学, 2006.
    [124]陈惠发.梁-柱分析与设计[M].北京:人民交通出版社, 1997.
    [125] Nie J, Cai C S, Wang T. Stiffness and capacity of steel-concrete composite beams with profiled sheeting[J]. Engineering Structures, 2005, 27(7): 1074-1085.
    [126]林丹,李敏强,寇纪淞.遗传算法的基本理论与应用[M].北京:科学出版社, 2002.
    [127] Joachims T. A statistical learning model of text classification for support vector machines[C]. New Orleans, LA, United states: Association for Computing Machinery, 2001.
    [128] Joachims T. The Maximum-margin Approach to Learning Text Classification:Method,Theory and Algorithms[D]. University of Dortmund, 2000.
    [129] Wahba G, Lin Y, Zhang H. Margin-like quantities and generalized approximate cross validation for support vector machines[C]. Madison, WI, USA: IEEE, 1999.
    [130] Burges C J C. A tutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2):121-167.
    [131] Duan K, Keerthi S S, Poo A N. Evaluation of simple performance measures for tuning SVM hyperparameters[J]. Neurocomputing, 2003, 51: 41-59.
    [132]常群.支持向量机的核方法及其模型选择[D].哈尔滨:哈尔滨工业大学, 2008.
    [133]曹立明,王小平.遗传算法:理论、应用与软件实现[M].西安:西安交通大学出版社, 2002.
    [134]陈铁冰,邢媛媛,谭也平.基于MATLAB的支持向量机结构可靠度分析方法[J].华中科技大学学报(城市科学版), 2009, 26(1): 60-63.
    [135]冯添乐,江永丰.基于支持向量回归机的可靠度预测模型[J].计算机与数字工程, 2011, 39(2): 29-32.
    [136]余晓琳,颜全胜,李伟,等.基于支持向量机的大跨度斜拉桥可靠度分析[J].公路, 2010(10): 82-86.
    [137]杨栋,姜黎.支持向量回归机在滑坡安全可靠度评价中的应用研究[J].地下水, 2010, 32(1): 141-142.
    [138]刘莉,徐浩军.支持向量机的可靠度时序预测分析与应用[J].火力与指挥控制, 2007, 32(11): 118-120.
    [139]刘志强.基于支持向量机的可靠度计算方法研究[D].大连:大连理工大学, 2008.
    [140]马宁.岩土分类和边坡可靠度分析的支持向量机方法[D].长沙:湖南大学, 2009.
    [141] Qiu D, Li S, Zhang L, et al. Application of GA-SVM in classification of surrounding rock based on model reliability examination[J]. Mining Science and Technology (China), 2010, 20(3): 428-433.
    [142] Liu Y, Zheng Y F. One-against-all multi-class SVM classification using reliability measures[C]. Montreal, QC, Canada: Institute of Electrical and Electronics Engineers Inc., 2005.
    [143] Mckay M D, Beckman R J, Conover W J. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21(2): 239-245.
    [144]张哲,李生勇,石磊,等.结构可靠度分析中的改进响应面法及其应用[J].工程力学, 2007, 24(8): 111-115.
    [145] Schueremans L, Van Gemert D. Benefit of splines and neural networks in simulation based structural reliability analysis[J]. Structural Safety, 2005, 27(3): 246-261.
    [146] Echard B, Gayton N, Lemaire M. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation[J]. Structural Safety, 2011, 33(2): 145-154.
    [147]贡金鑫,仲伟秋,赵国藩.结构可靠指标的通用计算方法[J].计算力学学报, 2003, 20(1): 12-18.
    [148]佟晓利,赵国藩.一种与结构可靠度分析几何法相结合的响应面方法[J].土木工程学报, 1997, 30(4): 51-57.
    [149] Lophaven S, Nielsen H, Sondergaard J. DACE-A MATLAB Kriging Toolbox[EB/OL]. http://www2.imm.dtu.dk/~hbn/dace/,2011.
    [150]谢延敏,于沪平,陈军,等.基于Kriging模型的可靠度计算[J].上海交通大学学报, 2007, 41 (2): 177-180.
    [151] Shinozuka M, Yang J N. peak structural response to non- stationary random excitations[J]. Journal of Sound and Vibration, 1971, 16(4): 505-517.
    [152]王超,徐晖,高耀南,等.非平稳激励下结构动力可靠度计算[J].西安交通大学学报, 1993, 27(4): 51-56.
    [153]苏成,徐瑞.非平稳随机激励下结构体系动力可靠度时域解法[J].力学学报, 2010, 42(3): 512-520.
    [154] Gupta S, Manohar C S. Improved response surface method for time-variant reliability analysis of nonlinear random structures under non-stationary excitations[J]. Nonlinear Dynamics, 2004, 36(2-4): 267-280.
    [155]乔红威,吕震宙,关爱锐,等.平稳随机激励下随机结构动力可靠度分析的多项式逼近法[J].工程力学, 2009, 26(2): 60-64.
    [156]陈颖,宁佐贵.基于神经网络响应面法的随机结构动力可靠度分析[J].振动与冲击, 2007, 26(1): 65-68.
    [157]苏成,徐瑞.非平稳地震作用下随机结构动力可靠度计算[J].振动工程学报, 2011,24(2): 118-124.
    [158] Ghanem R G, Spanos P D. Spectral stochastic finite-element formulation for reliability analysis[J]. Journal of Engineering Mechanics, 1991, 117(10): 2351-2372.
    [159] Zhang J, Ellingwood B. SFEM for reliability of structures with material nonlinearities[J]. Journal of structural engineering New York, N.Y. 1996, 122(6): 701-704.
    [160] Grigoriu M. Simulation of nonstationary Gaussian processes by random trigonometric polynomials[J]. Journal of Engineering Mechanics, 1993, 119(2): 328-343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700