北京山区主要树种光合蒸腾与耗水特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究北京山区密云水库流域常见树种的光合特性和蒸腾耗水特性,揭示不同树种的耗水特征,在此基础上结合抗旱造林技术,得出适宜北京山区的低耗水树种和最佳造林密度。
     针对密云水库流域现有的植被分布特点,选择22种乔灌木和2个典型林分(油松林和侧柏栎类混交林)作为研究对象,通过盆栽法和典型林分耗水试验,应用数学统计方法,分析了光合蒸腾耗水特征,得出如下结论:
     不同树种由于其本身的生物学特性,形成不同的生态适应性。在水分充足条件下,供试22个试验树种光合速率、蒸腾速率与水分利用率日变化曲线呈相似的变化趋势。乔木树种中,阔叶树种的光合、蒸腾速率高于针叶树种,平均水分利用率针叶树种大于阔叶树种。灌木树种中,阳性的蒸腾速率高于阴性树种;平均水分利用率是阴性灌木大于阳性灌木树种。
     乔灌木树种的蒸腾速率、光合速率和气孔导度日变化曲线呈相似的单峰或双峰曲线,阔叶乔木树种日最大蒸腾速率从大到小的顺序依次:臭椿>麻栎>槲树>刺槐>栓皮栎。日平均水分利用率从大到小的顺序依次:栓皮栎>麻栎>槲树>刺槐>臭椿。槲树水分利用率最高,臭椿的水分利用率最低。灌木树种日最大蒸腾速率从大到小的顺序依次:鼠李>黄栌>酸枣>孩儿拳头>荆条>火炬>花木蓝>雀儿舌头。分析了与环境因子的相关分析表明,侧柏和油松与气孔导度和光照强度为显著相关,建立多元线性回归分析模型:Y=a+bX1+cX2+dX3+eX4+fX5,相关系数很高。从树种间的耗水量比较发现,刺槐的蒸腾耗水量最大,其次是油松,侧柏、槲树、麻栎和栓皮栎的耗水量差距不大,耗水量排序为刺槐>麻栎>槲树>油松>栓皮栎>侧柏。
     本文正是在试验研究的基础上,通过对北京山区人工林优势树种光合蒸腾作用,耗水变化规律的研究,为密云水库集水区水源保护林的高效空间配置和稳定林分结构设计提供理论基础,也为相邻相近或同类地区的林业工程建设提供技术支撑。为在水分承载量的基础上,维持林地的土壤水分平衡,可以达到恢复森林植被、扩大森林资源、改善生态环境的目的。本文研究得出,年降水量660mm的北京密云水源保护林中油松、刺槐的造林密度宜在65~90株/亩。30年内基本上能够保证林木成活和成林的用水需要。
This article mainly researches Photosynthetic and Transpiration of Dominant Tree Species in Miyun reservoir watershed in Mountain Area of Northern China .Reveal characteristics and rules of water consumption of different species. On the basic of the analytical results, combine drought-resistant afforestation technology; find the low consumption tree species and optimum planting density.
     Contraposing the existing vegetation of Miyun reservoir watershed, choosing 22 kinds of shrubs and two pieces of typical forest stand as research object, obtain following conclusion by pot experiment and experiment of typical forest stand, field and experimental research, applying statistical method to analyze photosynthetic and transpiration. The main conclusion is as follows:
     Because of biological characteristics of different tree species, form different Ecological Adaptability. At water enough condition, 22 tree species of the young plant used in the experiment whose tendency of transpiration rate, photosynthetic rate and the diurnal changes of water use efficiency are similar. The transpiration rate of arbor trees is higher than Coniferous Trees’, but in the average efficiency of using water, Coniferous Trees is greatly higher than arbor trees’. The transpiration rate of positive shrub species is greatly higher than negative shrubs species’, but in the average efficiency of using water, negative shrubs species is greatly higher than Coniferous Trees’.
     The water consumption of tree increased with increasing stand density,thus,the soil moisture decreased correspondingly.The bare soil had strong evaporation and its watercontent was lower than woodland.Therefore,the reasonable spatial structure and stand density inforestation would be beneficial to increase and maintain soil moisture.
引文
[1] 皑妍.天然幼龄兴安落叶松光合特征研究[D]内蒙古农业大学 , 2004 .
    [2] 卜崇峰.陕北黄土丘陵沟壑区狼牙刺生长生理特征及其环境效应[D]西北农林科技大学, 2003 .
    [3] 曹军胜,刘广全.刺槐光合特性的研究[J].西北农业学报,2005,14(3):118~122
    [4] 戴绍军.环境因子对喜树幼苗生长和喜树碱含量的影响[D]东北林业大学 , 2002 .
    [5] 党宏忠.祁连山水源涵养林水文特征研究[D]东北林业大学 , 2004 .
    [6] 狄晓艳.杨树无性系光合作用、蒸腾作用和抗旱性的研究[D]山西大学 , 2004 .
    [7] 杜占池,杨宗贵.冰草叶片光合速率与生态因子的关系.草地学报,2000,8(3):155~163
    [8] 范晶.东北东部主要成林树种光合生理生态研究[D]东北林业大学 , 2002 .
    [9] 符军, 王军, 高建社, 王涤涛.几个猕猴桃品种净光合速率和蒸腾速率与环境因素的关系[J]. 西北植物学报 , 1998,(01)
    [10] 姜海凤.三种落叶松光合生理生态学特性比较研究[D]东北林业大学 , 2003 .
    [11] 柯世省,金则新,林恒琴,等.天台山东南石栎光合生理生态特性.生态学杂志,2004,23(3):1~5
    [12] 李春萍.河套灌区新疆杨农田防护林耗水特性及耗水量的研究[D]内蒙古农业大学 , 2003.
    [13] 李红丽.浑善达克沙地沙漠化过程及其植被恢复的基础研究——以正蓝旗为例[D]内蒙古农业大学, 2003 .
    [14] 刘业好. “富士”苹果树高光效树形及与苹果品质关系的研究[D]安徽农业大学 , 2004 .
    [15] 罗爱花,柴守玺,郭贤仕.不同类型春小麦不同品种光合生理差异研究.甘肃农业大学学报,2004,39(3):75~79
    [16] 罗俊,林彦铨,吕建林 陈如凯,张木清.水分胁迫对甘蔗叶片光合性能的影响.中国农业科学,2000,33(4):100-102
    [17] 马 钦 彦 , 蔺 琛 , 韩 海 荣 , 等 . 山 西 太 岳 山 核 桃 楸 光 合 特 性 的 研 究 . 北 京 林 业 大 学 学报,2003,25(1):14~18
    [18] 马志波,马钦彦,韩海荣,等.北京地区 6 种落叶阔叶树光合特性的研究.北京林业大学学报,2004,26(3):13~18
    [19] 倪文进.黄土高原南部人工植被 SPAC 系统水分循环模式和利用效率研究[D]中国水利水电科学研究院 , 2004 .
    [20] 沈振西.宁夏南部柠条、沙棘和华北落叶松的液流与蒸腾耗水特性[D]中国林业科学研究院 , 2005 .
    [21] 苏东凯, 周永斌, 唐庆华, 曹立科, 周大鹏, 张洪伟, 金福宇. 不同杨树品种光合生理生态特性的研究[J]. 西北林学院学报 , 2006,(02)
    [22] 孙永玉.紫胶虫优良寄主植物钝叶黄檀生态遗传学研究[D]中国林业科学研究院 , 2005 .
    [23] 孙中峰.晋西黄土区坡面林地土壤水分承载力研究[D]北京林业大学 , 2004 .
    [24] 谭 会 娟 , 周 海 燕 . 珍 惜 濒 危 植 物 半 日 花 光 合 作 用 日 动 态 变 化 的 初 步 研 究 . 中 国 沙漠,2005,25(2):262~267
    [25] 王颖.北京地区常见城市绿化树种蒸腾耗水特性的研究[D]北京林业大学 , 2004 .
    [26] 王忠君.福州国家森林公园生态效益与自然环境旅游适宜性评价研究[D]北京林业大学,2004 .
    [27] 谢会成 , 姜志林 , 李际红 . 栓皮栎林光合特性的研究 . 南京林业大学学报 ( 自然科学版),2004,28(5):83~85
    [28] 熊伟.六盘山北侧主要造林树种耗水特性研究[D]中国林业科学研究院 , 2003 .
    [29] 徐炳成.半干旱黄土丘陵区牧草生产力与生态适应性研究[D]西北农林科技大学, 2003 .
    [30] 徐敏云.水分对三种冷季型草坪草生长的影响及蒸散需水研究[D]甘肃农业大学, 2003 .
    [31] 许红梅,高琼,黄永梅,等.黄土高原森林草原区 6 种植物光合特性研究.植物生态学报,2004,28(2):157~163
    [32] 闫文德.樟树生理生态特性及其林分生物产量的研究[D]中南林学院, 2003 .
    [33] 杨金艳.CO_2 浓度升高情况下光合产物的积累与分配[D]东北林业大学, 2001 .
    [34] 杨占彪,蒋志荣,柴薇薇,李禄军,等.兰州市南北两山三种绿化树种光合特性研究.甘肃农业大学,2006,41(5):85~90
    [35] 于界芬.树木蒸腾耗水特点及解剖结构的研究[D]南京林业大学, 2003 .
    [36] 张国盛.毛乌素沙地臭柏生态生理特性及其群落稳定性[D]北京林业大学, 2004 .
    [37] 张维江.盐池沙地水分动态及区域荒漠化特征研究[D]北京林业大学, 2004 .
    [38] 朱跃武.浙江天童常绿阔叶林 5 种藤本植物生理生态研究[D]华东师范大学, 2005 .
    [39] Arp W J. Effects of source-sink relations on photosynthetic acclimation to elevated CO2.Plant Cell Environ,1991,14:869~875
    [40] Baker N J.A possible role for photo system in environmental perturbations of photosynthesis[J].Physiologia Plantarum,1991,81:563~570
    [41] Brestic M G,Cornic J,Fryer M,et al.Dose photorespiration protect the photosynthetic apparatus in French bean leaves from photo inhibition during droughts tress.Planta,1995,196:450~457
    [42] Brooks, R. H., Coery. A.T., Hydraulic Properties of Porous Media, Hydrology Paper3, Colorado State University, Fort Collins, 1964
    [43] Brud, L, A. C., Dantas-Antonino, M.Vauclin, J.L.Thony, 1'.Ruelle, A simple soil-plant-atmosphere transfer model (SISPAT) development and field verification, J.Hydol., 1995,166:213-250
    [44] Burdine, N. T., Relative permeability from size distribution dat, Trans Am Inst Min Metall Pet Eng, 1953, 198:71-78
    [45] Buttle J M, Creed I F and Pomeroy J W. Advances in Canadian forest hydrology : 1995~1998[J]. Hydrol Process, 2000,14(9):1551~1578.
    [46] Camillo P. J., Gurney R. J., Schmugge T. J. A soil and atmospheric boundary layer model for evapotranspiration and soil moisture studies.Water Resour. Res., 1983, 19(2): 371-380
    [47] Campbell, G. S., A simple method for determining unsaturated conductivity from moisture retention data, Soil Sci., 1974, 117(6):311-314
    [48] Campbell, G. S., M. D. Campbell, Irrigation scheduling using soil moisture measurements: theory and practice, In Advances in Irrigation, Academic Press, New York, 1982,25-86
    [49] Cermak J, Kucera J. Transpriation of mature stand of spruce(Picea abies(L.) Karst.) as estimated by tree-trunk heat balance method.Forest Hydrology and Watershed Mtnagement,1987,167:311-317
    [50] Cowan, I. R, Transport of water in the soil-plant-atmosphere system, J. Appl. Ecol.,1965.2:221-239
    [51] Deardoff.J. W., Effcient prediction of ground surface temperature and moisture, with inclusion of a layer vegetation, J. Geophs. Res., 1978, 83:1889-1903
    [52] Dickinson, R. E., Modeling evapotranspiration for three-dimensional global climate models,climate processes and climate sensitivity, Geophysical monograph, 1984, 29(5):58-72
    [53] Dragutin, T. Mihailovic., A resistance representation of schemes for evaporation from bare and partly plant-covered surfaces for use in atmospheric models, Journal of applied meteorology, 1993,32:1038-1054
    [54] Famigliette, J. S., E. F. Wood, Multiscale modeling of spatially variable water and energy balance processes, Water Resour. Res., 1994, 30(11):3061-3078
    [55] Farquhar G D,Sharkey T D.Stomata conductance and photosynthesis.Ann Rev Plant Physiology,1982, 33:317~345
    [56] Gardner, W R., Dynamic aspects of water availability to plants, Soil Sci., 1960, 89:63-73
    [57] Guerrini, Ivan A., Swartzendruber, D., Three-parameter soil-water transient equations in horizontal water-transport analysis, Soil Science Society of America Journal, 1998, 62(5):580-585
    [58] Hahne, E., Chen, Numerical study of flow and heat transfer characteristics in hot water stores,Solar Energy, 1998, 64(9):9-19
    [59] Hanks, R. J. and Bowers, S. A., Non-steady state moisture, temperature, and soil-air pressure approximation with an electric simulator, Soil Sci. Soc. Am. Proc., 1960, 24:247-252
    [60] Hatton T J,Vertessy R A. Transpiration of plantation Pinvs radiata estimated by the heat pulse method and the Bowen Ratio. Hydrological Processes,1990,4:289-298.
    [61] Haydon, S.R., R.G. Benyon and R. Lewis.Variation in sapwood area and throughfal! with forest agein mountain ash (Eucalyptus regnans F. Muell.). J. Hydrol. 1996; 187:351--366.
    [62] Levittt J. Response of plants to environmental stress [J]. New York: Academic press, 1972.
    [63] Lhomme, J. P and Monteny, B., Theoretical relationship between stomatal resistance and surface temperatures in sparse vegetation, A 幼 cultural and Forest Meteorology, 2000,104:119-131
    [64] Liu Shuhua, Yue Xu, et. al., Using a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to simulated the interaction between land surface processes and atmospheric boundary layer in semi-arid regions, Advances in Atmospheric Sciences, 2004, 21:245-259
    [65] Martin J Canny, Transporting water in plants, American Scientist, 1998, 86(3):152-160Ladefoged K. Transpiration of forest trees in closed stand. Physiologic Plantarum, 1963,16:378-414.
    [66] Matthew J. Linton, Park S. Nobel, Loss of water transport capacity due to xylem cavitation in roots of two CAM succulents, American Journal of Botany, 1999, 86(11):1538-1545
    [67] Milly, P C. D., A simulation analysis of Thermal effects on evaporation from soil, Water Resour. Res., 1984, 20(8):1087-1098
    [68] Monteith J L, 1995. A reinterpretation of stomatal responses to humidity. Plant, Cell and Environment, 18:357~364.
    [69] N. Nassar, Robert Norton, Heat and water transfer in compacted and layered soils, Journal ofEnvironmental Quality, 1997, 26(1):81-89
    [70] Penman, H. L., Natural evaporation from open water, bare soil, Adv. grass. Proc. Roy. Soc. A.,1948, 193:120-145
    [71] Philip, J. R. and D. A. de Vries, Moisture movement in porous materials under temperature gradients, Transactions of American Geophysical Union, 1957, 39(2):222-232
    [72] Philip, J. R., Plant water relations: some physical aspects, Ann. Rev. Plant Phys., 1966, 17:245-268
    [73] R. A. Vertessy, T. J. Hatton, P. Reece, S. K. O'sullivan and R. G. B enyon Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique, Tree Physiology,1997,17, 747-756.
    [74] Rony Avissar, Which type of soil-vegetation-atmosphere transfer scheme is needed for eneral circulation models: a proposal for a higher-order scheme, Journal of Hydrology, 1998, 21(2):136-154
    [75] Stand.Wullschleger, F.C.meinzer and R.A.Vertessy.A review of whole-plant water use studies in trees. Tree Physiology 18,499-512.
    [76] Taylor, H. M. and B. Klepper, The role of rooting characteristics in the supply of water to plants, Advances in Argonomy, 1978, 30:99-128
    [77] Thomas J. Hatton,StepenJ. Moore and Peter H. Reece Estimating stand transpiration in a Eucalyptus populnea woodland with the heat pulse method: measurement errors and sampling strategies Tree Physiology 1995,I5, 219-227.
    [78] Thomas J. Hatton,StepenJ. Moore and Peter H. Reece Estimating stand transpiration in a Eucalyptus populnea woodland with the heat pulse method: measurement errors and sampling strategies Tree Physiology ,1995,15, 219-227.
    [79] Van den Honert, T. H, Water transport in plants as catenary process, Discussions of Faraday Society, 1948, 3:146-153

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700