黄土丘陵半干旱区典型人工林蒸腾耗水动态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用热扩散技术在黄土丘陵半干旱区安塞县,对刺槐(Robinia pseucdoacacia)和侧柏(Platycladus orientalis)树干液流速率进行了连续的测量(2008年4月25日-10月28日)。结合树干直径,边材面积等指标,构建了相应的模型及参数,实现尺度的扩展。对于探明这2种林分的蒸腾耗水规律,水土保持林区水分管理、林地水文效益分析等具有重要参考价值。通过对刺槐,侧柏典型样木蒸腾耗水与环境因子的关系研究,取得了如下结论。
     一.人工刺槐树干液流速率动态及耗水规律
     1.刺槐在展叶期分为四个时期:芽期、展叶初期、中期和全叶期。在芽期,刺槐树干液流速率低,无明显昼夜变化;在展叶初期以后表现出明显的昼夜波动状态,且树干液流速率日变化均成单峰曲线。表现为从微弱波动逐渐增大到趋于平稳波动的总趋势,呈现上升快、下降缓慢的单峰曲线。其峰值在展叶初期与光合有效辐射最大值之间存在一定时滞效应。在展叶中期以后,刺槐树干液流峰值早于各气象参数最大值1-2h出现。刺槐在盛期树干液流速率的日变化呈宽峰形曲线,既树干液流速率达到峰值后并不是不再变动,而是有较小幅度的“波动”,形成多个小峰组成的“高峰平台”,然后才开始下降,没有明显的树干液流静止状态的界限,每日7:00-8:00左右启动,11:00左右达到最大值,21:00左右迅速降到最低值。刺槐在落叶初期呈单峰形曲线,由落叶期开始的昼夜变化峰值逐渐减小在随着叶片的逐渐脱落和自身的物候节律至10月下旬树干液流达到无绪状态,且峰值明显小于盛期的树干液流速率。
     2.多元线性回归表明:刺槐在展叶后期的全叶期树干液流速率与光合有效辐射、大气温度、水汽压差和风速呈极显著正相关,与相对湿度呈负相关。可用光合有效辐射、大气温度和树干液流速率线性表达式来估算刺槐展叶期的全叶期树木液流速率。在盛期,刺槐树干液流速率与光合有效辐射、大气温度、水汽压差呈极显著正相关,与相对湿度呈负相关。可用光合有效辐射、大气温度和树干液流速率线性表达式来估算刺槐盛期树木液流速率。
     3.刺槐边材面积与胸径之间存在着高度相关的关系。刺槐日耗水量随直径的增大而增大,即大径阶树木边材较大,相应耗水量也较多。
     二.人工侧柏树干液流速率动态及耗水规律
     1.侧柏树干液流速率在不同季节的日变化均为典型的单峰曲线,春、夏季每日从8:00左右启动,10:00左右达到最大值,秋季树干液流启动时间较春、夏季延迟至11:00点左右启动,13:00-14:00左右达到最大值。但从树干液流迅速下降时间来看,春季最晚,在20:00左右迅速下降;秋季最早,为18:00;夏季为19:00。
     2.多元线性回归表明:侧柏在4-5月树干液流速率与光合有效辐射、水汽压差、大气温度和相对湿度呈极显著的线性相关关系,相关程度顺序为光合有效辐射>水汽压差>大气温度>相对湿度。可用这几项气象因子的简单表达式来估测侧柏树木液流。
     3.侧柏边材面积和地径间呈良好的幂指数关系。并计算出侧柏人工林的单位边材面积为116.18 m2.hm-2。通过样木各月的平均流速得出4-10月各月的单位林分耗水量,最终计算出被测侧柏人工林在4-10月的总耗水量为1159.64 t.hm-2。
     三.刺槐、侧柏树干液流速率对比分析
     1.在抽芽展叶时期,侧柏树干液流速率高于刺槐。在生长盛期,刺槐树干液流速率峰值高出侧柏树干液流速率峰值。在10初期刺槐树干液流峰值高出侧柏树干液流峰值,在10月中期,刺槐树干液流峰值小于侧柏树干液流峰值,在10月15-16日以后由于叶片的脱落刺槐树干液流变得紊乱。
     2.刺槐和侧柏单木日耗水量在整个生长季与其树干液流速率变化规律相一致,即刺槐从生长初期经过生长盛期至生长末期,单株耗水量从展叶初期的较低值随着叶片的扩展逐渐增大到生长盛期达到最大,之后随之降低;侧柏耗水量是逐渐降低。
In this study, the thermal dissipation probe (TDP) was used to measure the sap flow velocity of Robinia pseucdoacacia and P.orientalis in Ansai County on the Loess Plateau of China(2008.4.25-2008.10.28). Combining the sap flow velocity with such indicators like trunk diameter and sapwood area, relative model was built and the expansion of the scale was achieved. Study the law of transpiration water consumption of those two forest types has important reference value to the water management of soil and water conservation forests as well as to the analysis of forest hydrologic effect. After the study of the relationship between transpiration water consumption and the environmental factors of those two typical kinds of local trees (Robinia pseudoacacia, p.orientalis), major conclusions got were as follows:
     I.Sap flow dynamics and water consumption regularity of artificial Robinia pseucdoacaci
     1. The leaf-flushing period of a Robinia pseudoacacia plantation were divided into four periods: germinating stage, the beginning period of leaf-flushing, the middle period of leaf-flushing and the full-leaf period of leaf-flushing. At germinating stage, the Sap flow velocity of R. pseudoacacia was low and there was no obvious diurnal variation. After the beginning period of leaf-flushing, diurnal variation was obvious and the diurnal variation of sap flow velocity displayed a fast-rising and slow-declining single-peak curve, the general trend was from weak fluctuation gradually increased to stable fluctuation. At the beginning period of leaf-flushing, there existed a certain time lag between the peak value of sap flow and that of photosynthetic active radiation. Since the middle period of leaf-flushing, Sap flow peak of Robinia pseucdoacaci appeared as early as 1-2 h before the maximum value of the meteorological parameters. The diurnal variation of sap flow displayed a wide-peaked curve during rapid growth season. That is, the sap flow velocity of Robinia pseudoacacia didn’t stop after reaching its peak, but there were minor fluctuations, a number of small peaks formed a "peak platform", and then began to decline. There were no clear boundaries of static states. It started around 7:00-8:00 every day, reached the maximum at 11:00 and around 21:00 it decreased rapidly to a minimum value. In the early period of defoliation, Sap flow of artificial Robinia pseucdoacaci was single peak-peak curve, and beginning from the defoliation period, the diurnal variation decreases gradually as the leaves fall off. In late October, sap flow started to be in disorder and the peak value was obviously less than that of the growing period.
     2. Linear regression indicates that sap flow velocity was outstanding positive correlated with PAR, air temperature, VPD and wind speed, and was negatively correlated with air relative humidity during the full-leaf period of leaf-flushing. Linear representations of PAR, air temperature and sap flow velocity could be used to estimate the sap flow velocity of Robinia pseucdoacacia during its full-leaf period. In growing season, sap flow velocity was significantly correlated with PAR, air temperature and VPD, and was negatively correlated with air relative humidity during the monitoring period, and linear representations of PAR, air temperature and sap flow velocity could be used to estimate the sap flow velocity of Robinia pseucdoacacia during its growing season.
     3. There exist significant correlations between sapwood area and breast height (DBH). The daily consumption of water of each individual tree was proportional to its stem diameter.
     II. Sap flow dynamics of artificial P.orientalis and water consumption regularity.
     1. The diurnal variation of p.orientalis sap flow velocity was all single-peak curves in different seasons. In spring and summer, every day it started from 8:00 and reached the maximum at 10:00.In autumn, the start time was later than that of spring and autumn at about 11:00 and reached the maximum around 13:00-14: 00. However, about the rapid decline time of sap flow, in spring it was the latest, the time was 20:00; in autumn, it was the earliest at about 18:00 and in summer it was19:00.
     2.Linear regression indicates that the sap flow velocity from April to May showed a linear correlation with PAR, air temperature, VPD, and the relative humidity, the degree of correlation was as follows: PAR>VPD> Temperature>relative humidity. So the linear expressions of those meteorological factors can be used to estimate the sap flow of P.orientalis.
     3. There was exponential function relation between the sapwood area of P. orientali and the ground diameter, so it was used to obtain an estimate of sapwood in the sample plots, which was 4.65 m2. And according to the monthly average velocity of the trees, the water consumption used for transpiration by each P. orientali plantation from april to October was calculated and finally, total water consumption used for transpiration by P. orientali plantation in the growing season from April to October was calculated, which was 1159.6 t·hm-2.
     III. A comparative analysis of sap flow velocity of two trees
     1. In the leaf-flushing period, it shows that sap flow velocity of p.oriental was higher than that of Robinia pseucdoacaci. In the growing season, it shows that sap flow velocity peak of Robinia pseucdoacaci was higher than that of P. orientali. In the early October, the sap flow velocity peak of Robinia pseucdoacaci was higher than that of P. orientali. In mid-October, the sap flow velocity peak of Robinia pseucdoacaci was lower than that of P. orientali. As a result Leaf abscission, the sap flow of Robinia pseucdoacaci become in disorder after October 15-16.
     2. Throughout the growing season, the daily water consumption of a single Robinia pseucdoacac and P. orientali was in accordance with the change of its sap flow velocity, that is, from the early growing season through the growing season to the late period of growth, the water consumption of a single Robinia pseucdoaca changed from low consumption, gradually reached the peak and then lowered again. Water consumption of P. orientali was gradually reduced.
引文
[1]黄锡荃.水文学[M].北京:高等教育出版社,1985,51-52.
    [2]魏天兴,朱金兆,张学培.林分蒸散耗水量测定方法述评[J].北京林业大学学报, 1999,21(3):85-91.
    [3]刘国彬,李敏,上官周平,等.西北黄土区水土流失现状与综合治理对策[J].中国水土保持科学,2008,6(1):16-21.
    [4]王华田.林木耗水性研究述评[J].世界林业研究,2003,16(2):23-27.
    [5]Vertessy R A,Benyon R,Sullivan S K,et al.Relationship between diameter,sapwood area,leaf area and transpiration in a young mountain ash forest[J].Tree Physiology,1995,15:559-568.
    [6]Frederiek C M,Gulllermo G,Holbrook N M,et al.Partitioning of soil water among canopy trees in a seasonally dry tropic forest.oecologia,1999,121:293-301.
    [7]王介民,高峰,刘绍民.流域尺度ET的遥感反演[J].遥感技术与应用,2003,18(5):332-338.
    [8]程积民,董建国.上黄试区主要灌木树种蒸腾作用的实验研究[J].水土保持通报,1995,15(2):22-25.
    [9]王孟本,李洪建,柴宝峰.晋西北小叶杨林水分生态的研究[J].生态学报,1996,16(3):232-237.
    [10]何兴东,丛培芳,等.荒漠植物蒸腾速率的变化与组织含水量的关系[J].干旱区资源与环境, 2001,15(3):68-70.
    [11]巨关升,刘奉觉,郑世锴.稳态气孔计与其它3种方法蒸腾测值的比较研究[J].林业科学,2000.13(4):360-365.
    [12]刘奉觉,郑世锴,巨关升。树木蒸腾耗水测算技术的比较研究[J].林业科学,1997,33(2):117-126.
    [13]Ladefoged K.A method for measuring the water consumption of larger intact trees[J].Physiologia Plantarum,1960,13(4):648–658.
    [14]Roberts J. The use of tree-cutting techniques in the study of the water relations of mature Pinus sylvestris L. J Exp Bot,1977,28:751-767.
    [15]Knight D H,Fahey T J,Running S W et al.Transpiration from 100-yr-oldlodgepole pine forests estimated with whole-tree potometers.Ecology,1981,62(3):717-726.
    [16]刘昌明.土壤-植物-大气连续体系统水分运行的界面过程研究[J].地理学报,1997,52(4):336-373.
    [17]孙鹏森,马履一,王小平,等.油松树干液流的时空变异性研究[J].北京林业大学报,2000,22(5):1-6.
    [18]黄妙芬.绿洲荒漠交界处波文比能量平衡法适用性的气候学分析[J].干旱区地理,2001,24(3):259 - 264.
    [19]马履一,王华田.油松边材液流时空变化及其影响因子研究[J].北京林业大学,2002,23(4):23-37.
    [20]李海涛,陈灵芝.应用热脉冲技术对棘皮桦和五角枫树干液流的研究[J].北京林业大学学报,1998,20(1):1-6.
    [21]张小由,龚家栋,周茂先,等.应用热脉冲技术对胡杨和怪柳树干液流的研究闭[J].冰川冻土,2003,25(5):585-590.
    [22]孙慧珍,周晓峰,康绍忠.应用热技术研究树干液流进展[J].应用生态报,2004,15(6):1074-1078.
    [23] Braun P,Schmid J.Sap flow measurements in grapevines ( Vitisvinifera L.)1. Stem morphology and use of the heat balance method [J].Plan t and Soil,1999,215:39-45.
    [24]孙慧珍,李夷平,王翠,等.不同木材结构树干液流对比研究[J].生态学杂志, 2005,24(12):1434-1439.
    [25]刘奉觉,郑世楷,巨关升,等.杨树树干液流时空动态研究[J].林业科学研究,1993,6(4):368-372.
    [26]王华田,马履一,孙鹏森.油松、侧柏深秋边材木质部液流变化规律的研究[J].林业科学,2002,38(5):31-37.
    [27]聂立水,李吉跃,翟洪波.油松、栓皮栎树干液流速率比较[J].生态学报, 2005,25(8):1934-1940.
    [28]孙龙,王传宽,杨国亭,等.应用热扩散技术对红松人工林树干液流通量的研究[J].林业科学, 2007,43(11):8-14.
    [29]李海涛,向乐,夏军,等.应用热扩散对亚热带红壤区湿地松人工林树干边材液流的研究[J].林业科学, 2006,42(10):31-38.
    [30]王孟本,李洪建,柴宝峰.1996.晋西北小叶杨林水分生态的研究[J].生态学报,16(3):232-237.
    [31]田晶会,贺康宁,王百田,等.黄土半干旱区侧柏蒸腾作用及其与环境因子的关系[J].北京林业大学学报, 2005,27(3):53-56.
    [32]莫兴国.土壤-植被-大气系统水分能量传输模拟和验证[J].气象学报,1998,56 (3):323-332.
    [33]Leyton, L. Continuous recording of sap flow rates in tree stems [R].1967, IUFRO Meetings:240-49.
    [34]刘发民.利用校准的热脉冲方法测定松树树干液流的研究[J].甘肃农业大学学报, 1996,31(2):167-170.
    [35]马长明,管伟,叶兵,等.利用热扩散式边材液流探针(TDP)对山杨树干液流的研究[J].河北农业大学学报,2005,28(l):39-43.
    [36]吴丽萍,王学东,尉全恩,等.樟子松树干液流的时空变异性研究[J].水土保持研究,2003,10(4):66-68.
    [37]高岩,刘静.应用热脉冲技术对小美旱杨耗水量的研究[J].内蒙古农业大学学报,2001,22(I):44-48.
    [38]张小由,龚家栋,周茅先,等.胡杨树干液流的时空变异性研究[J].中国沙漠,2004,24(4):489-492.
    [39]王瑞辉,马履一,奚如春.元宝枫生长旺季树干液流动态及影响因素[J].生态学杂志,2006,25(3):231-237.
    [40]Breda N A,Granie rand G,Aussenae.Effeets of thinning on soil and tree water relations,transpiration and growth in and oak forest (Quereus Petraea(Matt.)Liebl.) [J].Tree Physiol,1995,15:295-306.
    [41]O’Grady A P,Eamus D,Hutley B.Transpiration inereases during the dry season:Patterns of tree water use in euealypt open Northern, Australia.Treephysiol,1999,19:591-597.
    [42]F lagergren,A Lindroth.Transpiration response to soil water in pine and sprue trees in Sweden[[J].Agrieulture and Forest Meteorology,2002,112:67-85.
    [43]Teskey R O,Sheriff D W.Water use by Pinus radiate trees in a plantation[J].treePhysiol., 1996,16:273-279.
    [44]Hinckiey T M,Brooks J R,Cermak J,et al. Water flux in a hybrid Poplar stand[J].TreePhysiol., 1994,14:1005-1018.
    [45]孙慧珍,周晓峰,赵惠勋.白桦树干液流的动态研究[J].生态学报,2002,22(9):1387-1391.
    [46]Ladefoged K.Transpiration of forest trees inclosed stand.Physiologia Plantarum,1963,16:378-414.
    [47]Cermak J,Hzulak J,Penka M.Water potential and sap flow rate in adult trees with moist and dry soil as used for the assessment of root system depth.Biol.plant, 1980,22:34-41.
    [48]Hatton T J,Vertessy R A.Transpiration of plantation Pinus radiate estimated by the heat pulse method and th ebowen ratio.HydrolProc,1990,4:289-298.
    [49]马李一,孙鹏森,马履一.2001.油松、刺槐单木与林分水平耗水量的尺度转换[J].北京林业大学学报,23(4):1-5.
    [50]孙鹏森,马李一,马履一.油松、刺槐林潜在耗水量的预测及其与造林密度的关系[J].北京林业大学学报,2001,23(2):l-6.
    [51]熊伟,王彦辉,于澎涛,等.华北落叶松树干液流的个体差异和林分蒸腾估计的尺度上推.林业科学,2008,44(1):34-40.
    [52]王安志,裴铁幡.2001.森林蒸散测算方法研究进展与展望[J].应用生态学报,12(6):933-937.
    [53]王介民,高峰,刘绍民.流域尺度ET的遥感反演[J] .遥感技术与应用,2003,18(5):332-338.
    [54]王孟本,李洪建,柴宝峰,等.树种蒸腾作用光合作用和蒸腾效率的比较研究[J].植物生态学报,1999,23(5):401-410.
    [55]王翼龙,张硕新,雷瑞德,等.秦岭火地塘林区锐齿栎光合、蒸腾特性[J].西北林学院学报,2003,18(4):9-12.
    [56]肖文发,徐德应,刘世荣,等.杉木人工林针叶光合与蒸腾作用的时空特征[J].林业科学,2002,38(5):38-46.
    [57]翟洪波,李吉跃,魏晓霞.应用热扩散技术对油松栓皮栎比导率的研究[J].林业科学,2006,42(8):14-17.
    [58]孙龙,王传宽,杨国亭,等.应用热扩散技术对红松人工林树干液流通量的研究[J].林业科学,2007.43(11):8-14.
    [59]马玲,赵平,饶兴权.乔木蒸腾作用的主要测定方法[J].生态学杂志,2005,24(1):88-96.
    [60]刘奉觉.杨树叶片离体前后蒸腾速率的变化[J].植物生理学通讯,1990,1(1):57-59.
    [61]黄运平,严昌荣.暖温带落叶阔叶林中辽东栎蒸腾作用的特征[J].中南民族大学学报(自然科学版),2002,21(3):16-21.
    [62]李红丽,董智,丁国栋,等.浑善达克沙地植物蒸腾特征的研究[J].干旱区资源与环境,2003,17(5):135-140.
    [63]Ladefoged K.A method for measuring the water consumption of larger intact trees[J].Physiologia Plantarum,1960,13(4):648-658.
    [64]Roberts J.The use of tree-cutting techniques in the study of the water relations of mature Pinus sylvestris L[J].J.Exp.Bot,1977,28:751-767.
    [65]Knight D H,Fahey T J,Running S W,et al.Transpiration from 100-yr-oldlodgepole pine forests estimated with whole-tree potometers[J].Ecology,1981,62(3):717-726.
    [66]Grebet P,Cuenca R H.History of lysimeter design and effects of environmental disturbances [C]//Allen R G, Howell T A, Pruitt W O, et al. Proceeding of the International Symposium on Lysimetry,July23-25, Honolulu, Hawaiian Island, USA.New York:1991:10-18.
    [67]Vincent M,Mark R.Application of the deuterium tracing method for the estimation of tree sap flow and stand transpiration of a beech forest (Fagus silvatica L) in a mountainous Mediterranean region[J]. Journal of Hydrology,2004,285:248-259.
    [68]Calder I R, Kariyappa G S, Srinivasalu N V, Murty K V S.Deuterium tracing for the estimation of transpiration from trees.1.Field calibration[J].journal of Hydrology,1992,130:17-25.
    [69]满荣洲,董世仁,郭景唐.华北油松人工林蒸腾的研究[J].北京林业大学学报,1986,8(2):1-7.
    [70]陈杰,齐亚东.对应用氚水法测定林木蒸腾量的评价[J].东北林业大学学报,1990,18(3):105-113.
    [71]CermákJ,Kucera J,Nadezhdina N.Sap flow measurements with soethermo dynamic methods flow integration with in trees and scaling up from sample trees to entire forest stands[J]. Trees,2004,18:529 546.
    [72]高岩,张汝民,刘静.应用热脉冲技术对小美旱杨树干液流的研究[J].西北植物学报, 2001,21(4):644-649.
    [73]Leyton, L.Continuous recording of sap flow rates in tree stems[R].IUFRO Meetings:1967,240-249.
    [74] Steve G.Brent C.Bryan J.Theory and practical application of heat pulse to measure sap flow[J].Agronomy Journal,2003,95:1371-1379.
    [75]Cermák J,Kucera J.Scaling up transpiration data between trees stands and watersheds[J].Silva Carelica,1990,15:101-120.
    [76]Schulze E D,Cermák J,Matyssek R.Canopy transpiration and water fluxes in the xylem of larix and Picea trees-a comparison of xylem flow,porometer and cuvett measurements[J].Oecologia,1985,66:475 -483.
    [77]王翠,王传宽,孙慧珍.移栽自不同纬度的兴安落叶松(Larix gmelinii Rupr.)的树干液流特征[J].生态学报,2008,28(1):136-144.
    [78]张云吉,隆惠敏,谢恒星.应用热平衡技术测量龙爪槐液流的试验研究[J].安徽农业科学,2006,34(17):4229-4232.
    [79]Mattias L,Fredrik L,Anders L.Evaluation of heat balance and heat dissipation methods for sap flow measurements in pine and spruce[J].Ann For SCI,2001,58:625-638.
    [80]Granier A.Evaluation of transpiration in a Douglas-fir stands by means of sap flow measurements[J].Tree phsiol,1987,3:309-320.
    [81]Lu P,Urban L,Zhao P.Granier’s thermal dissipation Probe (TDP)method for measuring sap flow in trees: Theory and Practice[J].Acta Botnica Sinica,2004,46(6):631-646.
    [82]Kumagai T, Aoki S.Sap flow estimates of stand transpiration at two slop positions in a Japanese cedar forest watershed. [J].Tree Physiology,2007,27:161-168.
    [83]Swanson R H.,Whitfield D W A..A mimerieal and experimeni alanalysis of imPlanted-Probe heat Pulse theory[J].ExpBot,1981,32:221-239.
    [84]Edwards W R N,Beeker p.A unified nomenclature for sap flow measurements[J].Tree Physiology,1996,17:65-67.
    [85]GranierA.,R.Huc and S.T.Barigah.Transpiration of natural rain forest and it sdependence on climatic factors[J].Agrie.For.Meteorol,1996,78:19-29.
    [86]单长卷,梁宗锁.黄土高原刺槐人工林根系分布与土壤水分的关系[J].中南林学院学报, 2006,26(1):19-21.
    [87]王进鑫,王迪海,刘广全.刺槐和侧柏人工林有效根系密度分布规律研究[J].西北植物学报, 2004,24(12):2208-2214.
    [88]许文滔,赵平,王权,等.基于树干液流测定值的马占相思冠层气孔导度计算及数值模拟[J].生态学报, 2007,27(10):4122-4131.
    [89]樊敏,马履一,王瑞辉.刺槐春夏季树干液流变化规律[J].林业科学, 2008,44(1):41-45.
    [90]孙鹏森,马履一,等.油松树干液流的时空变异性研究[J].北京林业大学学报,2000,22(5):1-5.
    [91]张宁南,徐大平,JimMorris,等.雷州半岛尾叶按人工林树液茎流特征的研究[J].林业科学研究,2003,16(6):661-667.
    [92]]张继澍.植物生理学[M].西安:世界图书出版公司, 1999,45-55.
    [93]涂洁,刘琪景,李海涛,等.江西千烟洲湿地松生长旺季树干液流动态及影响因素分析.林业科学,2008,44(1):46-51.
    [94]Kostner B,Biron P,Siegwolf R,et al. Estimates of water vapor flux and canopy conductance of Scots pine at tree level utilizing different xylem sapflow methods[J].Theoretical and Applied Climatology,1996,53:105-113.
    [95]刘德良,李吉跃,马达,等.侧柏树干边材液流空间变化规律.生态学杂志,2008,27(8):1262-1286.
    [96]翟洪波,李吉跃.元宝枫苗木水力结构特征[J].应用生态学报,2003,14(9):1411-1415.
    [97]翟洪波,李吉跃,姜金璞.油松的水力结构特征[J].林业科学,2003,39(2):14-20.
    [98]沈国舫主编.森林培育学[M].北京:中国林业出版社,2001:259-262.
    [99]张小由,龚家栋,周茅先,等.胡杨树干液流的时空变异性研究[J].中国沙漠,2004,24(4):489-492.
    [100]张小由,龚家栋.利用热脉冲技术对梭梭液流的研究[J].西北植物学报,2004,24(12):2250-2254.
    [101]夏永秋,邵明安.黄土高原半干旱区柠条树干液流动态及其影响因子[J].生态学报,2008,28(4):1376-1381.
    [102]张金池,黄夏银,鲁小珍.徐淮平原农田防护林带杨树树干液流研究[J].中国水土保持科学,2004,2(4):21-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700