不同土壤水分下3个种源酸枣幼苗的耗水特性和抗旱机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以采自陕西榆林、杨凌和安塞3个种源酸枣的天然实生幼苗为试验材料,应用盆栽试验,人工控制土壤水分在75%θf、55%θf和40%θf条件下,对其耗水规律、水分生理特征、水分利用效率、渗透调节物质和保护酶活性、光合色素变化情况等进行了研究,并结合不同种源酸枣茎叶的形态解剖结构,对其进行了苗木抗旱性评价。旨在揭示3个种源苗木的耗水特性和抗旱性差异,为黄土高原酸枣林建设提供参考。取得主要结论如下:
     1.在干旱胁迫下,3个种源酸枣幼苗耗水量表现为:S1>S2>S3。且在3个水分梯度下的耗水量表现为:CK>MD>SD。各个种源酸枣幼苗在不同土壤水分条件下总耗水量均呈现极显著差异。3个种源苗木在不同土壤水分条件下的耗水节律基本相似,总耗水量在各旬、月份的分配比例也基本相同。整个水分处理期的旬耗水曲线为多峰波动曲线,耗水高峰期多集中于7月下旬至9月上旬;月耗水曲线为单峰曲线,最大耗水月出现在8月份。
     2.随水分胁迫时间的延续,3个种源酸枣叶片的SOD、CAT、APX的活性上下波动协调作用,叶片游离脯氨酸含量在中后期连续积累,可溶性糖也在后期累积加快,这些渗透调节物质与保护酶共同作用,使MDA含量在胁迫的中期和后期均呈下降趋势。3种源苗木在不同的水分条件下叶片相对含水量均保持在较高的水平上,水分饱和亏则相应的维持在较低的水平。种源S3苗木在各个水分条件下叶片均保持了稳定的持水力,种源S1则在重度胁迫下,叶片持水力有所提高,种源S2则在中度胁迫下保持了较高的叶片持水力。种源S1、S2叶片的叶绿素和类胡萝卜素含量变化相似,种源S3在8月份叶绿素a含量较高,而叶绿素b维持在较低的水平,从而保持了较高的叶绿素a/b值,体现出较高的光合活性和抗旱性。
     3.在中度胁迫下,S1种源能及时的调节有机物质分配,增加根冠比,利用有限的水资源,增强了抗旱性;在SD处理下,种源S3地上部生物量下降最少,地下部生物量也下降最少,种源S1则正好相反,S2则居中,表明重度胁迫下,种源S3更能够有效地分配有机物质,耐受土壤干旱。在同一水分处理下,种源S3苗木水分利用效率均高于其它2个种源,S1种源次之,S2种源水分利用效率最低,即3个种源酸枣苗木在同一土壤水分条件下的水分利用效率排序为S3>S1>S2。
     4. S3叶片栅栏组织与海绵组织厚度比极显著高于S1、S2叶片,并且S3种源叶片的厚度、上下表皮的厚度和栅栏组织厚度均高于S1、S2,叶片紧密度较大、疏松度最小。而种源S1叶片的栅栏组织和海绵组织厚度比居中,且上下表皮厚度和组织疏松度亦居中。S3茎木质部和韧皮部厚度的比值极显著高于S1、S2茎,并且S3种源茎的髓半径、髓/半径高于S1、S2,韧皮部厚度小,皮层所占比例大。而种源S2茎的木质部和韧皮部厚度的比值居中,且髓部和皮层所占比例亦居中。本文采用主成分分析方法对不同种源苗木的抗旱性进行了综合评价,结果表明3种源抗旱性大小为:S3>S2>S1。
The water consumption characteristics and drought-resistance mechanism were studied by pot-culture seedlings in Yangling of China. Three different levels of soil water treatments with 75% (CK), 55% (MD) and 40% (SD) field water capacity were set by artificially controlling the soil moisture. The three provenances of Wild Jujube seedlings were from Yulin, Yangling, and Ansai of Shaanxi, which were named as S1, S2 and S3 respectively. The physiological indexes include water physiological characteristics, water use efficiency, osmotic adjustment substance, principal protective enzyme activity, photosynthetic pigment etc. of three provenances of Wild Jujube seedlings under different soil-water stress. In addition, combined with the anatomical structure difference from stem and leaf of different provenances seedlings, we made a comprehensive evaluation of three provenances, expecting to discover the differences of the water consumption and drought-resistance among them. The results provided reference for construction of Wild Jujube forest in Loess Plateau. The main results are as follows:
     1. In the water-stress condition, the water consumption of the three provenances showed S1>S2>S3, and for the same provenance under different soil water content, that showed 75%(CK) >55%(MD) >40%(SD). Different soil water content had obviously affected the total water consumption of the three provenances of seedlings. Water consumption rhythm of the three provenances under different soil water content was basically similar, and so was the distribution proportion of total water consumption in every ten or thirty days. The water consumption trend among ten days was multi-peak waving curve, which concentrated on the last ten days in July until the first ten days in September; the water consumption trend among months was single-peak curve with the biggest value of that in August.
     2. With the extending of water stress, the activity of protective enzymes, such as SOD, CAT, and APX in the leaves of the three provenances were up-down fluctuating, and coordinated interactively. In the meanwhile, the content of osmoregulation substance, such as soluble proline and soluble sugar, accumulated continuously in the later period, which combined action with the protective enzymes above and made the content of MDA down in the middle-later period. The relative water content of the leaves on the three provenances in all treatments was in high level, and the water saturation deficit of leaves was in low level. The water holding ability of S3 leaves was stable after 1h and 12h in vitro, that of S1 was higher in serious stress, and that of S2 was higher in moderate stress. The content changes of chlorophyll and carotenoid of S1, S2 provenances were similar, while the content of chlorophyll a of S3 provenance was in high level, and chlorophyll b was in low level in August, therefore got a high ratio of a/b, which showed higher photosynthetic activity and drought-resistance.
     3. In moderate stress, S1 provenance could promptly regulate organic matter allocation, increase root-shoot ratio, use limited water resources, and enhance drought-resistance. While in serious stress, the biomass of S3 provenance both decreased least up-down ground, and S1 provenance showed in opposite way, S2 were in central tendency. It indicated that S3 provenance could regulate organic matter allocation more efficiently to adapt soil drought in serious stress. S3 provenance showed higher water use efficiency than S1, S2, so the water use efficiency of three provenances seedlings in the same soil water content showed S3>S1>S2
     4. the ratio of palisade tissue and spongy tissue of S3 leaves was higher extremely significantly than that of S1leaves and S2 leaves, and the thickness of leaves, upper epidermislo and lower epidermis of S3 were higher than those of S1 and S2. In addition, the tissue of S3 leaves was tighter than that of S1 and S2. The ratio of palisade tissue and spongy tissue of S1 leaves, the thickness of upper epidermislo and lower epidermis and leaf looseness were in the middle. The ratio of xylem and phloem of S3 stem was higher extremely significantly than that of S1 stem and S2 stem, and S3 stem had bigger pitch radius, higher ratio of pitch to stem radius, in addition, less phloem thick, and more cortex. Those of S2 stem were in the middle. Main component analysis was used to reveal the inherent mechanism of drought resistance and compare the ability of drought-resistance of different provenances of seedlings. The result is S3>S2>S1.
引文
[1]张继澍.植物生理学[M].北京:世界图书出版社, 1999.
    [2]杨建伟,韩蕊莲,魏宇昆,等.不同土壤水分状况对杨树、沙棘水分关系及生长的影响[J].西北植物学报, 2002, (03): 579~586.
    [3]傅坤俊.黄土高原植物志[M].北京:科学出版社, 2000.
    [4]茹桃勤,李吉跃,孔令省,等.刺槐耗水研究进展[J].水土保持研究, 2005, (02): 135~140.
    [5]王力,邵明安,王全九,等.黄土区土壤干化研究进展[J].农业工程学报, 2004, (05): 27~31.
    [6]周广泰,刘凤琴,郭书贤, et al.青海高山植物解剖特点的研究[J].青海师范大学学报(自然科学版), 1992, (04): 48~52.
    [7]靳淑英.酸枣[M].北京:中国林业出版社, 1987.
    [8]曲泽洲.北京果树志[M].北京:北京出版社, 1990.
    [9]何明勋.资源植物学[M].上海:华东师范大学出版社, 1995.
    [10]中国饲用植物志编辑委员会.中国饲用植物志[M].北京:农业出版社, 1992.
    [11]梁一民,陈云明.论黄土高原造林的适地适树与适地适林[J].水土保持通报, 2004, (03): 69~72.
    [12]邵学红,王振亮,张金香,等.太行山区野生酸枣资源再造成林技术[J].山地学报, 2005, (03): 381~384.
    [13]李光晨.果树旱作与节水栽培[M].北京:中国农业出版社, 1995.
    [14]李兰芳,赵淑云,吴树勋,等.不同生长期酸枣叶中总黄酮和芦丁的含量测定[J].中国中药杂志, 1992, (02): 81.
    [15]吴树勋,张建新,徐涛,等.酸枣(仁、叶、肉)与酸枣皂甙A对中枢神经系统作用的实验研究[J].中国中药杂志, 1993, (11): 685~687.
    [16]曾路,张如意,王序.酸枣仁化学成分研究Ⅱ[J].药学学报, 1987, (02): 114.
    [17] Lee S S, Lin B F, Liu K C. Three triterpene esters from Zizyphus jujuba[J]. Phytochemistry, 1996, 43(4): 847~851.
    [18]刘珏珏,秦葵,时振州,等.酸枣根对心脏影响的实验研究[J].时珍国医国药, 1997, (05): 420~421.
    [19]时振洲,刘树威,秦葵.酸枣树根催眠作用的实验研究[J].中国现代应用药学, 1995, (04): 16.
    [20]吴树勋,李兰芳,王洪占,等.酸枣的营养成分与营养实验研究[J].河北医药, 1990, (01): 31~32.
    [21]吴树勋,郎杏彩,贾秉义,等.酸枣果肉对家兔实验性动脉粥样硬化的影响[J].中国中药杂志, 1989, (07): 50~51.
    [22]李兰芳,赵淑兰,吴树勋,等.酸枣仁脂肪油化学成分的研究[J].中药材, 1993, (03): 29.
    [23]尹升镇,金河奎,金宝渊,等.酸枣仁生物碱的研究[J].中国中药杂志, 1997, (05): 296.
    [24]张照荣,周凤琴,战旗,等.山东产酸枣仁中微量元素及氨基酸分析[J].微量元素与健康研究, 1997, (03): 29.
    [25]董立莎,郭戎,许益民.酸枣仁中磷脂酰胆碱含量的HPLC法测定[J].贵阳中医学院学报, 1993, (04): 59.
    [26]郭胜民,范晓雯,宋少刚,等.酸枣仁总皂甙中枢抑制作用研究[J].西北药学杂志, 1996, (04): 166~168.
    [27]郭胜民,范晓雯,何建伟.酸枣仁总黄酮的中枢抑制作用[J].中药材, 1998, (11): 578~579.
    [28]万华印,孔祥平,丁力,等.酸枣仁总皂甙抗脂质过氧化作用[J].中草药, 1996, (02): 103.
    [29]袁秉祥,李庆.酸枣仁总皂甙对大鼠血脂和血脂蛋白胆固醇的影响[J].中国药理学通报, 1990, (01): 34~36.
    [30]郎杏彩,李明湘,贾秉义,等.酸枣仁、肉多糖增强小鼠免疫功能和抗放射性损伤的实验研究[J].中国中药杂志, 1991, (06): 366~368.
    [31]张国盛.干旱、半干旱地区乔灌木树种耐旱性及林地水分动态研究进展[J].中国沙漠, 2000, (04): 364~368.
    [32]司建华,冯起,张小由,等.植物蒸散耗水量测定方法研究进展[J].水科学进展, 2005, (03): 450~459.
    [33]牛丽丽,张学培,曹奇光.植物蒸腾耗水研究[J].水土保持研究, 2007, (02): 158~160.
    [34]王颖.林木蒸腾耗水研究综述[J].河北林果研究, 2007, (01): 39.
    [35]郭孟霞,毕华兴,刘鑫,等.树木蒸腾耗水研究进展[J].中国水土保持科学, 2006, (04): 114.
    [36]张满清,李吉跃,李世东.黄土高原退耕还林中的抗旱造林技术与应用研究进展[J].陕西林业科技, 2004, (01): 58.
    [37]奚如春,马履一,王瑞辉,等.林木耗水调控机理研究进展[J].生态学杂志, 2006, (06): 692~697.
    [38]周平,李吉跃,招礼军.北方主要造林树种苗木蒸腾耗水特性研究[J].北京林业大学学报, 2002, (Z1): 50.
    [39]马履一,王华田,林平.北京地区几个造林树种耗水性比较研究[J].北京林业大学学报, 2003, (02): 1.
    [40]王得祥,康博文,刘建军,等.主要城市绿化树种苗木耗水特性研究[J].西北林学院学报, 2004, (04): 20~23.
    [41]杨建伟,梁宗锁,韩蕊莲,等.不同干旱土壤条件下杨树的耗水规律及水分利用效率研究[J].植物生态学报, 2004, (05): 630~636.
    [42]韩蕊莲,梁宗锁,侯庆春,等.黄土高原适生树种苗木的耗水特性[J].应用生态学报, 1994, (02): 210~213.
    [43]王海珍,梁宗锁,韩蕊莲,等.不同土壤水分条件下黄土高原乡土树种耗水规律研究[J].西北农林科技大学学报(自然科学版), 2005, (06): 57~63.
    [44]安玉艳,梁宗锁,韩蕊莲,等.土壤干旱对黄土高原3个常见树种幼苗水分代谢及生长的影响[J].西北植物学报, 2007, (01): 91~97.
    [45]尹忠东,朱清科,毕华兴,等.黄土高原植被耗水特征研究进展[J].人民黄河, 2005, (06): 35.
    [46]张如一,王勤学,黄土高原综合气候区划.区域环境自然灾害地理研究[M].科学出版社:北京, 1991.
    [47]侯庆春,韩蕊莲,李宏平.关于黄土丘陵典型地区植被建设中有关问题的研究Ⅰ、土壤水分状况及植被建设区划[J].水土保持研究, 2000, (02): 102~109.
    [48]王青宁,王晗生,周景斌.黄土高原植被建造的林学基础分析[J].内蒙古农业大学学报(自然科学版), 2005, (02): 115~120.
    [49]黄子琛,沈渭.干旱区植物的水分关系与耐旱性[M].北京:中国环境科学出版社, 2000.
    [50]陈永金,陈亚宁,薛燕.干旱区植物耗水量的研究与进展[J].干旱区资源与环境, 2004, (06): 152.
    [51]梁宗锁,韩蕊莲.黄土高原树木水分生理生态学特征[M].北京:中国林业出版社, 2008.
    [52] Liang Z, Yang J, Shao H, et al. Investigation on water consumption characteristics and water use efficiency of poplar under soil water deficits on the Loess Plateau[J]. Colloids and Surfaces B: Biointerfaces, 2006, 53: 23~28.
    [53]唐承财,钟全林,王健.林木抗旱生理研究进展[J].世界林业研究, 2008, (01): 20~26.
    [54]李吉跃.植物耐旱性及其机理[J].北京林业大学学报, 1991, (03): 92~97.
    [55] Turner N C. Adaptation to water deficts - a changing pespective[J]. Austrslian Journal of Plant Physiology, 1986, 13(1): 175~190.
    [56]罗音,李卫民,孙明高,等.几个经济树种抗旱性的评价及其抗旱指标的选取[J].山东林业科技, 2003, (03): 3~5.
    [57]周席华,刘学全,胡兴宜,等.鄂西北主要造林树种耐旱生理特性分析[J].南京林业大学学报(自然科学版), 2005, (01): 67~70.
    [58]刘君娣,王有科,贺春燕,等.三个杏品种叶片主要抗旱生理指标的比较[J].甘肃农业大学学报, 2007, (06): 71~75.
    [59]李吉跃,翟洪波.木本植物水力结构与抗旱性[J].应用生态学报, 2000, (02): 301~305.
    [60]刘晓燕,李吉跃,翟洪波,等.从树木水力结构特征探讨植物耐旱性[J].北京林业大学学报, 2003, (03): 48~54.
    [61]翟洪波,李吉跃.元宝枫苗木的水力结构特征[J].应用生态学报, 2003, (09): 14~19.
    [62]翟洪波,李吉跃,聂力水.油松的水力结构特征[J].林业科学, 2003, (02): 1411~1415.
    [63]崔震海,王艳芳,樊金娟,等.植物渗透调节的研究进展[J].玉米科学, 2007, (06): 301~305.
    [64] Subbarao G V, Y.S. Chauhan C J. Patterns of osmotic adjustment in pigeonpea—its importance as a mechanism of drought resistance[J]. European Journal of Agronomy, 2000, 12: 239~249.
    [65]孙宪芝,郑成淑,王秀峰.木本植物抗旱机理研究进展[J].西北植物学报, 2007, (03): 629~634.
    [66]陈亚娟,李付广,刘传亮,等.植物渗透调节研究进展及与棉花耐旱遗传改良[J].分子植物育种, 2009, (01): 149~154.
    [67]孙景宽,张文辉,刘新成.干旱胁迫对沙枣和孩儿拳头的生理特性的影响[J].西北植物学报, 2008, (09): 1868~1874.
    [68]柴胜丰,蒋运生,韦霄,等.干旱胁迫对槐树幼苗生长和生理生态特征的影响[J].浙江林业科技, 2008, (02): 43~47.
    [69]陈鹏,潘晓玲.干旱和NaCl胁迫下梭梭幼苗中甜菜碱含量和甜菜碱醛脱氢酶活性的变化(简报)[J].植物生理学通讯, 2001, (06): 520~522.
    [70]高秀萍,闫继耀,刘恩科,等.水分胁迫下梨、枣和葡萄叶片中甜菜碱含量的变化[J].园艺学报, 2002, (03): 268~270.
    [71] Sanchez F J, Manzanares M, de Andres E F, et al. Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress[J]. Field Crops Research, 1998, 59: 225~235.
    [72] Jaleel C A, Manivannan P, Kishorekumar A, et al. Alterations in osmoregulation, antioxidant enzymes and indole alkaloid levels in Catharanthus roseus exposed to water deficit[J]. Colloids andSurfaces B: Biointerfaces, 2007, 59: 150~157.
    [73]范杰英,郭军战,彭少兵. 10个树种光合和蒸腾性能对水分胁迫的响应[J].西北林学院学报, 2005, (02): 36~38.
    [74]陈晓燕,田有亮,毛斌,等.包头市外来园林树种对水分胁迫的适应性研究[J].林业资源管理, 2008, (06): 80~85.
    [75] Mobin M, Khan N A. Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress[J]. Journal of Plant Physiology, 2007, 164: 601~610.
    [76]徐利霞,杨水平,姚小华,等.石漠化地区3个树种幼苗在水分胁迫下的光合特性与抗旱性关系[J].林业科学研究, 2006, (06): 785~790.
    [77]王海燕,陈晓燕,何炎红,等.珍珠绣线菊等7种园林树木光合、水分生理生态特性的研究[J].干旱区资源与环境, 2009, (01): 193~196.
    [78]贾利强,李吉跃,郎南军,等.水分胁迫对黄连木、清香木幼苗的影响[J].北京林业大学学报, 2003, (03): 55~58.
    [79]罗青红,李志军,伍维模,等.胡杨、灰叶胡杨光合及叶绿素荧光特性的比较研究[J].西北植物学报, 2006, (05): 983~988.
    [80]李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报, 2002, (04): 503~507.
    [81]柯世省,金则新.干旱胁迫对夏腊梅叶片脂质过氧化及抗氧化系统的影响[J].林业科学, 2007, (10): 28~33.
    [82]王列富,杨玉珍,彭方仁.干旱胁迫对不同种源香椿苗木膜脂过氧化作用的影响[J].安徽农业科学, 2008, (01): 137~139.
    [83] Liu F, Liu Q, Liang X, et al. Morphological, anatomical, and physiological assessment of ramie [Boehmeria Nivea (L.) Gaud.] tolerance to soil drought[J]. Genetic Resources and Crop Evolution, 2005, 52: 497~506.
    [84] Iturbe-Ormaetxe I, Escuredo P R, Arrese-Igor C, et al. Oxidative damage in pea plants exposed to water deficit or paraquat[J]. Plant Physiology, 1998, 116(1): 173~181.
    [85] Kar M, Mishra D. Catalase, peroxidase, and polyphenollxidase activities during rice leaf senescence[J]. Plant Physiology, 1976, 57(2): 315~319.
    [86]吴志华,曾富华,马生健,等.水分胁迫下植物活性氧代谢研究进展(综述Ⅰ)[J].亚热带植物科学, 2004, (02): 77~80.
    [87]刘勇.苗木质量控制理论与技术[M].北京:中国林业出版社, 1999.
    [88]师晨娟,刘勇,荆涛.植物激素抗逆性研究进展[J].世界林业研究, 2006, (05): 18~26.
    [89]梁建生,张建华.根系逆境信号ABA的产生和运输及其生理作用[J].植物生理学通讯, 1998, (05): 329~338.
    [90]王霞,候平,尹林克,等.土壤缓慢水分胁迫下柽柳植物内源激素的变化[J].新疆农业大学学报, 2000, (04): 41~43.
    [91]潘根生,钱利生,吴伯千,等.茶树新梢生育的内源激素水平及其调控机理(第三报)干旱胁迫对茶树内源激素的影响[J].茶叶, 2001, (01): 35~38.
    [92]李芳兰,包维楷.植物叶片形态解剖结构对环境变化的响应与适应[J].植物学通报, 2005, (S1): 118~127.
    [93]吴林,霍焰,聂小兰,等.沙棘叶片组织结构观察及其与抗旱性关系的研究[J].吉林农业大学学报, 2003, (04): 390~393.
    [94]王怡.三种抗旱植物叶片解剖结构的对比观察[J].四川林业科技, 2003, (01): 64~67.
    [95]韩刚,李少雄,徐鹏,等. 6种灌木叶片解剖结构的抗旱性分析[J].西北林学院学报, 2006, (04): 43~46.
    [96]李代琼,梁一民,黄瑾,等.半干旱黄土区沙棘的形态解剖学特性研究[J].沙棘, 2004, (01):
    [97]李小燕,王林和,李连国,等.沙棘叶片组织解剖构造与其生态适应性研究[J].干旱区资源与环境, 2006, (05): 209~212.
    [98]史刚荣,汤盈,张铮.淮北相山恢复演替群落优势树种叶片的生态解剖[J].植物生态学报, 2006, (02): 314~322.
    [99] Maricle B R, Cobos D R, Campbell C S. Biophysical and morphological leaf adaptations to drought and salinity in salt marsh grasses[J]. Environmental and Experimental Botany, 2007, 60: 458~467.
    [100]吴秀菊,李桂琴,袁强.杏营养器官解剖结构及抗旱性机理研究[J].东北农业大学学报, 2005, (02): 186~190.
    [101]胡云,燕玲,李红. 14种荒漠植物茎的解剖结构特征分析[J].干旱区资源与环境, 2006, (01): 202~208.
    [102]李晓燕,王林和,李连国,等.沙棘茎的形态解剖特征与其生态适应性研究[J].干旱区资源与环境, 2008, (03): 188~191.
    [103]王静,黄薇.初生根的形态解剖结构与春小麦抗旱性的关系初探[J].兰州大学学报(自然科学版), 1998, (04): 154~156.
    [104]李晓燕,王林和,李连国,等.沙棘根系形态解剖特征与其生态适应性研究[J].内蒙古农业大学学报(自然科学版), 2007, (04): 62~66.
    [105]高俊凤.植物生理学实验技术[M].西安:世界图书出版社, 2000.
    [106]时忠杰,杜阿朋,胡哲森,等.水分胁迫对板栗幼苗叶片活性氧代谢的影响[J].林业科学研究, 2007, (05): 683~687.
    [107]柯世省,杨敏文.水分胁迫对云锦杜鹃抗氧化系统和脂类过氧化的影响[J].园艺学报, 2007, (05): 1217~1222.
    [108]任东涛,赵松岭.水分胁迫对半干旱区春小麦旗叶蛋白质代谢的影响[J].作物学报, 1997, (04): 468~473.
    [109]吕金印,刘军,曹翠玲,等.水分胁迫下小麦叶片蛋白质、淀粉和纤维素合成的示踪研究[J].西北植物学报, 1996, (06): 46~50.
    [110]陈立松,刘星辉.水分胁迫对荔枝叶片氮和核酸代谢的影响及其与抗旱性的关系[J].植物生理学报, 1999, (01): 49~56.
    [111]吴秀菊,李桂琴,袁强.杏营养器官解剖结构及抗旱性机理研究[J].东北农业大学学报, 2005, (02): 186~190.
    [112]胡云,燕玲,李红. 14种荒漠植物茎的解剖结构特征分析[J].干旱区资源与环境, 2006, (01): 202~207.
    [113] Jamieson P D, Francis G S, Wilson D R, et al. Effects of water deficits on evapotranspiration from barley[J]. Agricultural and Forest Meteorology, 1995, 76: 41~58.
    [114] Chartzoulakis K, Patskas A, Kofidis G, et al. Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivers[J]. Scientia Horticulturae, 2002, 95: 39~50.
    [115] Li Yanqiong1 L X, Shaowei Z, Hong C, et al. Drought-resistant physiological characteristics of four shrub species in arid valley of Minjiang River, China[J]. Acta Ecologica Sinica, 2007, 27: 870~878.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700