环式电子传递在植物抗环境胁迫过程中的重要作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光是光合作用的驱动力,但是过剩的光能会导致光损伤。各种环境胁迫会降低光合作用效率,导致叶片吸收的光能大大超过光合作用消耗的光能,进而引起光损伤。植物叶片也进化出各种保护措施来应对过剩光能的存在,其中,环式电子传递是近几年来备受关注的光保护机制之一。但是,关于环式电子传递在抗环境胁迫过程中的重要作用还缺乏了解。本研究通过对热带植物环式电子传递对干旱、低温和强光条件的响应研究,试图阐述环式电子传递在植物适应环境胁迫过程中的重要作用。
     零上低温是限制植物生长的一个重要环境因子,以前的研究发现冷敏感植物的光系统Ⅱ对零上低温胁迫不敏感,而光系统Ⅰ对零上低温胁迫敏感。我们的研究发现热带树木的光系统Ⅱ对零上低温十分敏感是导致热带树木难以在亚热带地区过冬的重要原因之一。零上低温导致光系统Ⅱ损伤的机制并不符合传统观念认为的自由基损伤假说,而是新的两步损伤假说:首先是放氧复合体的受损,然后是光系统Ⅱ反应中心的受损,放氧复合体的受损速率决定了光系统Ⅱ反应中心的受损速率。热带树木光系统Ⅰ和Ⅱ对零上低温的敏感程度与环式电子传递在零上低温下的激发程度有关。环式电子传递激发程度高的叶片对零上低温的敏感性较低。经过零上低温处理后,在常温下环式电子传递的激发有助于补充ATP的合成,加快光系统Ⅱ的光损伤的恢复。热带树木在热带北缘地区冬季的适应过程中光系统Ⅰ和Ⅱ活性都保持稳定,这个过程依赖于环式电子传递的激发,因为环式电子传递的激发一方面保护了光系统Ⅰ,另一方面保护了光系统Ⅱ。
     干旱胁迫是影响植物生长的重要限制条件。大部分植物都不能适应极端干旱条件,但是复苏植物却能够忍受极度干旱,其中的光合生理机制并不清楚。我们的研究发现一种复苏植物蛛毛苣苔的叶片在失水条件下环式电子传递被强烈激发,一方面减缓其光系统Ⅱ受损的程度,另一方面保护了光系统Ⅰ。但是,长期失水的蛛毛苣苔叶片的光系统Ⅰ和Ⅱ活性都大幅度降低,当复水一天后,光系统Ⅰ和Ⅱ活性都完全恢复,这与模式植物拟南芥缓慢的光系统Ⅰ修复速度相悖。
     环式电子传递保护光系统Ⅱ的机制主要有两个,一种是直接缓解光损伤的程度,另一种是防止光损伤的修复受到抑制。目前被研究的较透彻后一种机制,关于前一种机制的了解很少。我们的研究发现当环式电子传递被解除后,放氧复合体的损伤程度以及光系统Ⅱ反应中心的损伤程度都明显加剧,表明强光下环式电子传递的激发保护了放氧复合体。此外,放氧复合体受损的程度决定整个光系统Ⅱ发生损伤的程度,也更好的解释了环式电子传递如何直接缓解光系统Ⅱ的损伤。
     叶片在强光下的主动合拢是一个十分有趣的生态现象,我们的研究发现在强光下主动合拢的叶片的环式电子传递和热耗散受强光激发的程度比不会主动合拢的叶片低,表明叶片合拢是为了弥补生理性光保护机制的不足。我们的研究从光保护的角度解释了叶片运动的重要意义。
     通过上述四项实验,我们的研究一方面证实了环式电子传递在热带植物抵御低温、干旱和强光胁迫过程中发挥重要的作用,另一方面解释了环式电子传递保护光系统Ⅱ的另外一个重要机制是保护放氧复合体,为认识环式电子传递的重要性提供了新的视角。此外,还从光保护的角度解释了叶片运动的重要意义。
Light is the driving force of photosynthesis. However, excess light energy could induce photoinhibition. Environmental stresses induce the decrease in photosynthetic rate so that leads to the increase in excess light energy and then cause photoinhibition. Plants develop several mechanisms to protect leaves against excess light energy, such as cyclic electron flow (CEF), which has been widely studied in recent years. In order to explore the significant role of CEF in acclimation of plants to environmental stresses, the present study focuses on the response of CEF to chilling temperature, drought stress and high light. The results indicat that:1) The extreme sensitivity of photosystem Ⅱ (PSⅡ) to chilling-and-light stress is an important mechanism for why tropical plants cannot survive the winter in subtropical areas;2) In contrast to the traditional understanding of photoinhition of PSⅡ, the present study gives support to the new two-step scheme responsible for the photoinhibition of PSⅡ in tropical trees illuminated at chilling temperature;3) The extent of stimulation of CEF at chilling temperature determines the extent of photoinhibition of photosystem Ⅰ (PSI) and PSⅡ in tropical trees when illuminated at chilling temperature;4) After chilling-and-light treatment, CEF is stimulated under low light to help the fast recovery of PSⅡ activity at room temperature;5) Cyclic electron flow plays an important role during the acclimation of tropical trees to winter in marginal tropical areas;6) Cyclic electron flow plays an important role in photoprotection for resurrection plant under drought stress;7) Resurrection plant has the ability to rapidly repair PSI reaction centers, which contrasts to the low rate of recovery of PSI activity in non-resurrection plants;8) One role of CEF in alleviating PSⅡ photodamage is to protect oxygen-evolving complex, and the photodamage to oxygen-evolving complex is a limiting step of PSⅡ photoinhibitiom;9) An important mechanism of leaf folding is to remedy the deficiency of CEF and non-photochemical quenching. The present study indicates that CEF plays an impotant role in tropical trees under environmental stresses, such as chilling temperature, drought and high light. Furthermore, we found that a role of CEF in photoprotection for PSⅡ is stabilizing oxygen-evolving complex, which extends our understanding in the role of CEF.
引文
Adir N, Shochat S, Ohad 1.1990. Light-dependent D1 protein synthesis and translocation is regulated by reaction center Ⅱ [J]. J Biol Chem,265:12563-12568.
    Allakhverdiev, S.I. and Murata, N.2004. Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem Ⅱ in Synechocystis sp. PCC 6803 [J]. Biochim Biophys Acta,1657:23-32.
    Allakhverdiev S I, Nishiyama Y, Takahashi S, Miyairi S, Suzuki I, Murata N.2005. Systematic analysis of the relation of electron transport and ATP synthesis to the photodamage and repair of photosystem Ⅱ in synechocystis [J]. Plant Physiol,137:263-273.
    Allen J F.2003. Cyclic, pseudocyclic and noncyclic photophosphorylation:new links in the chain [J]. Trends Plant Sci,8:15-19.
    Arnon D I.1959. Conversion of light into chemical energy in photosynthesis [J]. Nature,184:10-21.
    Aro EM, Virgin I, Andersson B.1993a. Photoinhibition of photosystem Ⅱ. Inactivation, protein damage and turnover [J]. Biochim Biophys Acta,1143:113-134.
    Aro EM, McCaffery S, Anderson J.1993b. Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances [J]. Plant Physiol,103:835-843.
    Barbato R, Friso G, Rigoni F, Dalla VF, Giacometti GM.1992. Structural changes and lateral redistribution of Photosystem Ⅱ during donor side photoinhibition of thylakoids [J]. J Cell Biol, 119:325-335.
    Barber J, Andersson B.1992. Too much of a good thing:light can be bad for photosynthesis [J]. Trends Biochem Sci,17:61-66.
    Barth C, Krause G H, Winter K.2001. Responses of photosystem I compared with photosystem Ⅱ to high-light stress in tropical shade and sun leaves [J]. Plant Cell Environ,24:163-176.
    Bukhov NG, Govindachary S, Rajagopal S, Joly D, Carpentier R.2004. Enhanced rates of P700+ dark-reduction in leaves of Cucumis sativus L photoinhibited at chilling temperature [J]. Planta, 218:852-861.
    Chow W S, Aro E M.2005. Photoinactivation and mechanisms of recovery [A]. In:Wydrzynski T, Satoh K eds. Photosystem Ⅱ:The light-driven water:plastoquinone oxidoreductase Advances in photosynthesis and respiration. Dordrecht:Springer,627-648.
    Clarke J, Johnson G N.2001. In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley [J]. Planta,212:808-816.
    Comic G.1994. Drought stress and high light effects on leaf photosynthesis [A]. In:Baker NR (ed) Photoinhibition of photosynthesis:from molecular mechanisms to the field. BIOS, Oxford, pp 297-313.
    DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schunemann D, Finazzi G, Joliot P, Barbato R, Leister D.2008. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis[J]. Cell,132:273-285.
    Driever SM, Baker NR.2011. The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted [J]. Plant Cell Environ,34:837-846.
    Elsheery N, Wilske, B, Zhang J-L, Cao K-F.2007. Seasonal variations in gas exchange and chlorophyll fluorescence in the leaves of five mango cultivars in southern Yunnan, China [J]. J Horticult Sci Biotechnol,82:855-862.
    Endo T, Shikanai T, Sato F, Asada K.1998. NAD(P)H dehydrogenase-dependent, antimycin A-sensitive electron donation to plastoquinone in tobacco chloroplasts [J]. Plant Cell Physiol, 39:1226-1231.
    Ettinger W F, Clear A M, Fanning K J, Peck M L.1999. Identification of a Ca2+/H+ antiport in the plant chloroplast thylakoid membrane [J]. Plant Physiol,119:1379-1385.
    Fan DY, Nie Q, Hope AB, Hillier W, Pogson BJ, Chow WS.2007. Quantification of cyclic electron flow around photosystem Ⅰ in spinach leaves during photosynthetic induction [J]. Photosynth Res,94:347-357.
    Feng Y-L, Cao K-F.2005. Photosynthesis and photoinhibition after night chilling in seedlings of two tropical tree species grown under three irradiances [J]. Photosynthetica,43:567-574.
    Gao S, Shen S-D, Wang G-C, Niu J-F, Lin A-P, Pan G-H.2011. PS1-driven cyclic electron flow allows intertidal macro-algae Ulva sp.(Chlorophyta) to survive in desiccated conditions. Plant Cell Physiol 52:885-893.
    Genty B, Briantais JM, Baker NR.1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence [J]. Biochim Biophys Acta,990:87-92.
    Genty B, Harbinson J, Baker N R.1990. Relative quantum efficiencies of the 2 photosystems of leaves in photorespiratory and nonphotorespiratory conditions [J]. Plant Physiol Biochem,28: 1-10.
    Golding A J, Johnson G N.2003. Down-regulation of linear and activation of cyclic electron transport during drought [J]. Planta,218:107-114.
    Guenther JE, Melis A.1990. The physiological significance of Photosystem Ⅱ heterogeneity in chloroplasts [J]. Photosynth Res,23:105-109.
    Guo Y-H, Cao K-F.2004. Effect of night chilling on photosynthesis of two coffee species grown under different irradiances [J]. Journal of Horticultural Science and Biotechnology,79: 713-716.
    Hakala M, Tuominen I, Keranen M, Tyystjarvi T, Tyystjarvi E.2005. Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of photosystem Ⅱ [J]. Biochim Biophys Acta,1706:68-80.
    Harbinson J, Foyer CH.1991. Relationships between the efficiencies of photosystems Ⅰ and Ⅱ and stomal redox state in CO2-free air:Evidence for cyclic electron flow in vivo [J]. Plant Physiology,97:41-49.
    Havaux M, Davaud A.1994. Photoinhibition of photosynthesis in chilled potato leaves is not correlated with a loss of photosystem Ⅱ activity-preferential inactivation of photosystem Ⅰ [J]. Photosynth Res,40:75-92.
    Heber U, Walker DA.1992. Concerning a dual function of coupled cyclic electron transport in leaves [J]. Plant Physiol,100:1621-1626.
    Hendrickson L, Furbank RT, Chow WS.2004. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence [J]. Photosynth Res,82:73-81.
    Hirotsu N, Makino A, Yokota S, Mae T.2005. The photosynthetic properties of rice leaves treated with low temperature and high irradiance [J]. Plant Cell Physiol,46:1377-1383.
    Hormann H, Neubauer C, Schreiber U.1994. An active Mehler-peroxidase sequence can prevent cyclic PSI electron transport in the presence of dioxygen in intact chloroplasts [J]. Photosynth Res,57:61-70.
    Horvath EM, Peter SO, Joet T, Rumeau D, Cournac L, Horvath GV, Kavanagh TA, Schafer C, Peltier G, Medgyesy P.2000. Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure [J]. Plant Physiol,123: 1337-1349.
    Huang W, Zhang S-B, Cao K-F.2010a. The different effects of chilling stress under moderate illumination on photosystem Ⅱ compared with photosystem Ⅰ and subsequent recovery in tropical tree species [J]. Photosynth Res,103:175-182.
    Huang W, Zhang S-B, Cao K-F.2010b. Stimulation of cyclic electron flow during recovery after chilling-induced photoinhibition of PSⅡ [J]. Plant Cell Physiol,51:1922-1928.
    Huang W, Zhang S-B, Cao K-F.2011. Cyclic electron flow plays an important role in photoprotection of tropical trees illuminated at temporal chilling temperature [J]. Plant Cell Physiol,52:297-305.
    Huang W, Yang S-J, Zhang S-B, Zhang J-L, Cao K-F.2012. Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress. Planta,235:819-828.
    Ivanov AG, Morgan RM, Gray GR, Velitchkova MY, Huner NPA.1998. Temperature/light dependent development of selective resistance to photoinhibition of photosystem Ⅰ [J]. FEBS Lett,430:288-292.
    Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J.2010. Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis [J]. Nature,464: 1210-1213.
    Johnson G N.2011. Physiology of PSI cyclic electron transport in higher plants [J]. Biochem Biophys Acta,384-389.
    Joliot P, Jonhnson GN.2011. Regulation of cyclic and linear electron flow in higher plants [J]. Proc Natl Acad Sci USA,,108:13317-13322.
    Kanervo E, Tasaka Y, Murata N, Aro EM.1997. Membrane lipid unsaturation modulates processing of the photosystem Ⅱ reaction center protein D1 at low temperatures [J]. Plant Physiol,114:841-849.
    Kim S J, Lee C H, Hope A B, Chow W S.2001. Inhibition of photosystem I and Ⅱ and enhanced back flow of photosystem Ⅰ electrons in cucumber leaf discs chilled in the light [J]. Plant Cell Physiol,42:842-848.
    Kramer DM, Johnson G, Kiirats O, Edwards GE.2004. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes [J]. Photosynth Res,79:209-218.
    Krieger-Liszkay A, Fufezan C, Trebst A.2008. Single oxygen production in photosystem Ⅱ and related protection mechanism [J]. Photosynth Res,98:551-564.
    Krieger A, Weis E.1993. The role of calcium in the pH-dependent control of Photosystem Ⅱ. Photosynth Res [J].37:117-130.
    Kudoh H, Sonoike K.2002. Irreversible damage to photosystem Ⅰ by chilling in the light:cause of the degradation of chlorophyll after returning to normal growth temperature [J]. Planta,215: 541-548.
    Li P-M, Cheng L-L, Gao H-Y, Jiang C-D, Peng T.2009. Heterogeneous behavior of PSII in soybean(Glycine max) leaves with identical PSⅡ photochemistry efficiency under different high temperature treatments [J]. Plant Physiol,166:1607-1615.
    Lehtimaki N, Lintala M, Allahverdiyeva Y, Aro E M, Mulo P.2010. Drought stress-induced upregulation of components involved in ferredoxin-dependent cyclic electron transfer [J]. J Plant Physiol,167:1018-1022.
    Makino A, Miyake C, Yokota A.2002. Physiological functions of the water-water cycle (Mehler reaction) and the cyclic electron flow around PSI in rice leaves [J]. Plant Cell Physiol, 43:1017-1026.
    Maxwell K, Johnson GN.2000. Chlorophyll fluorescence-a practical guide [J]. J Exp Bot,51: 659-668.
    Mi H, Endo T, Ogawa T, Asada K.1995. Thylakoid membrane-bound pyridine nucleotide dehydrogenase complex mediates cyclic electron transport in the cyanobacteria Synechocystis PCC6803 [J]. Plant Cell Physiol,36:661-668.
    Mi H, Endo T, Schreiber U, Ogawa T, Asada K.1992. Electron donation from cyclic and respiratory flows to the photosynthetic intersystem chain is mediated by pyridine nucleotide dehydrogenase in the cyanobacterium Synechocystis PCC6803 [J]. Plant Cell Physiol,33: 1233-1237.
    Miyake C, Shinzaki Y, Miyata M, Tomizawa K.2004. Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of non-photochemical quenching of chl fluorescence in intact leaves of tobacco plants [J]. Plant Cell Physiol,45:1426-1433.
    Miyake C, Horiguchi S, Makino A, Shinzaki Y, Yamamoto H, Tomizawa K.2005a. Effects of light intensity on cyclic electron flow around PSI and its relationship to non-photochemical quenching of chl fluorescence in tobacco leaves [J]. Plant Cell Physiol,46:1819-1830.
    Miyake C, Miyata M, Shinzaki Y, Tomizawa K.2005b. CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves—relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of chl fluorescence [J]. Plant Cell Physiol,46:629-737.
    Miyake C.2010. Alternative electron flows (water-water cycle and cyclic electron flow around PSI) in photosynthesis:molecular mechanisms and physiological functions [J]. Plant Cell Physiol,51:1951-1963.
    Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T.2004. Cyclic electron flow around photosystem I is essential for photosynthesis [J]. Nature,429: 579-582.
    Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T.2002. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis [J]. Cell, 110:361-371.
    Munekage Y, Genty B, Peltier G.2008. Effect of PGR5 impairment on photosynthesis and growth in Arabidopsis thalianai [J]. Plant Cell Physiol,49:1688-1698.
    Murata N, Allakhverdiev SI, Nishiyama Y.2012. The mechanism of photoinhibition in vivo: Re-evaluation of the roles of catalase, a-tocopherol, non-photochemical quenching, and electron transport [J]. Biochim Biophys Acta, doi:10.1016/j.bbabio.2012.02.020.
    Murata N, Takahashi S, Nishiyama Y, Allakhverdiev, SI.2007. Photoinhibition of photosystem Ⅱ under environmental stress [J]. Biochim Biophys Acta,1767:414-421.
    Nandha B, Finazzi G, Joliot P, Hald S, Johnson G N.2007. The role of PGR5 in the redox poising of photosynthetic electron transport [J]. Biochim Biophys Acta,1767:1252-1259.
    Nishiyama Y, Allakhverdiev SI, Murata N.2006. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem Ⅱ [J]. Biochim Biophys Acta,1757: 742-749.
    Nishiyama Y, Allakhverdiev SI, Murata N.2011. Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem Ⅱ [J]. Physiol Plant,142:35-46.
    Nishiyama Y, Allakhverdiev SI, Yamamoto H, Hayashi H, Murata N.2004. Singlet oxygen inhibits the repair of photosystem Ⅱ by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803 [J]. Biochemistry,43:11321-11330.
    Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N.2001. Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery [J]. EMBO J,20: 5587-5594.
    Nishiyama Y, Allakhverdiev SI, Murata N.2005. Inhibition of the repair of photosystem Ⅱ by oxidative stress in cyanobacteria [J]. Photosynth Res,84:1-7.
    Niyogi KK.1999. Photoprotection revisited:Genetic and molecular approaches [J]. Annu Rev Plant Physiol Plant Mol Biol,50:333-359.
    Nuijs AM, Shuvalov A, van Gorkom HJ, Plijter JJ, Duysens LNM.1986. Picosecond absorbance difference spectroscopy on the primary reactions and the antenna-excited states in photosystem I particles [J]. Biochim Biophys Acta,850:310-318.
    Oguchi R, Terashima I, Kou J, Chow WS.2011. Operation of dual mechanisms that both lead to photoinactivation of photosystem Ⅱ in leaves by visible light [J]. Physiol Plant,142:47-55.
    Ohnishi N, Allakhverdiev SI, Takahashi S, Higashi S, Watanabe M, Nishiyama Y, Murata N. 2005. Two-step mechanism of photodamage to photosystem Ⅱ:step one occurs at the oxygen-evolving complex and step two occurs at the photochemical reaction center [J]. Biochemistry,44:8494-8499.
    Oxborough K, Baker NR.1997. Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-calculation of qP and Fv'/Fm'without measuring Fo'[J]. Photosynth Res,54:135-142.
    Peng L, Shimizu H, Shikanai T.2008. The chloroplast NAD(P)H dehydrogenase complex interacts with photosystem Ⅰ in Arabidopsis [J]. J Biol Chem,283:34873-34879.
    Peng L, Fukao Y, Fujiwara M, Takami T, Shikanai T.2009. Efficient operation of NAD(P)H dehydrogenase requires the supercomplex formation with photosystem Ⅰ via minor LHCI in Arabidopsis [J]. Plant Cell,21:3623-3640.
    Peng L, Cai W, Shikanai T.2010. Chloroplast stromal proteins, CRR6 and CRR7, are required for assembly of the NAD(P)H dehydrogenase subcomplex A in Arabidopsis [J]. The Plant Journal, 63:203-211.
    Peng L, Shikanai T.2011. Supercomplex formation with photosystem Ⅰ is required for the stabilization of the chloroplast NADH dehydrogenase-like complex in Arabidopsis [J]. Plant Physiology,155:1629-1639.
    Powles SB.1984. Photoinhibition of photosynthesis induced by visible light [J]. Annu Rev Plant Physiol,35:15-44.
    Prasil O, Adir N, Ohad I.1992. Dynamics of photosystem Ⅱ:mechanism of photoinhibition and recovery processes [A]. In:Barber J (ed) Topics in Photosynthesis, Elsevier, Amsterdam, The Netherlands, pp 295-348.
    Schansker G, Toth, SZ, Strasser RJ.2005. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem Ⅰ in the Chl a fluorescence rise OJIP [J]. Biochim Biophys Acta,1706:250-261.
    Shikanai T, Endo T, Hashimoto T, Yamada Y, Asada K, Yokota A.1998. Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem Ⅰ [J]. Proc Natl Acad Sci USA,95:9705-9709.
    Shikanai T.2007. Cyclic electron transport around photosystem Ⅰ:genetic approaches [J]. Annu Rev Plant Biol,58:199-217.
    Smirnoff N.1993. The role of active oxygen in response of plants to water deficit and desiccation [J]. New Phytol,125:27-58.
    Sobczyk EA, Marszalek A, Kacperska. A.1985. ATP involvement in plant tissue responses to low temperature [J]. Physiol Plant,63:399-405.
    Sonoike K, Terashima I.1994. Mechanism of photosystem-Ⅰ photoinhibition in leaves of Cucumis sativus L [J]. Planta,194:287-293.
    Sonoike K.1995. Selective photoinhibition of photosystem Ⅰ in isolated thylakoid membranes from cucumber and spinach [J]. Plant Cell Physiol,36:825-830.
    Sonoike K.1996. Degradation of psa B gene product, the reaction center subunit of photosystem I, is caused during photoinhibition of photosystem I:possible involvement of active oxygen species [J]. Plant Sci,115:157-164.
    Sonoike K.1999. The different roles of chilling temperatures in the photoinhibition of photosystem Ⅰ and photosystem Ⅱ [J]. J Photochem Photobiol B:Biol,48:136-141.
    Sonoike K.2006. Photoinhibition and protection of photosystem Ⅰ [A]. In Golbeck JH eds. Photosystem Ⅰ:the light-driven plastocyanin:ferredoxin oxidoreductase, series advances in photosynthesis and respiration. Dordrecht:Springer,657-668.
    Strasser BJ.1997. Donor side capacity of photosystem Ⅱ probed by chlorophyll a fluorescence transients [J]. Photosynth Res,52:147-55.
    Strasser RJ, Srivastava A, Tsimilli-Michael M.2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples [A]. In Probing Photosynthesis:Mechanism, Regulation and Adaptation. Edited by Yunus, M., Pathre, U. and Mohanty, P. Taylor and Francis Press, London, pp 445-483.
    Strasser RJ, Tsimill-Michael M, Srivastava A.2004. Analysis of the chlorophyll a fluorescence transient [A]. In Advances in Photosynthesis and Respiration. Edited by Papageorgiou, G. and Govindjee, KAP Press, Netherlands, pp 1-47.
    Srivastava A, Guisse B, Greppin H, Strasser RJ.1997. Regulation of antenna structure and electron transport in PSⅡ of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient:OKJIP [J]. Biochim Biophys Acta,1320: 95-106.
    Sun Z-L, Lee H-Y, Matsubara S, Hope AB, Pogson BJ, Hong Y-N, Chow WS.2006. Photoprotection of residual functional photosystem Ⅱ units that survive illumination in the absence of repair, and their critical role in subsequent recovery [J]. Physiol Plant,128:415-424.
    Takahashi S, Milward S E, Fan D Y, Chow W S, Badger M R.2009. How does cyclic electron flow alleviate photoinhibition in Arabidopsis [J]? Plant Physiol,149:1560-1567.
    Teicher HB, M(?)ller BL, Scheller H.2000. Photoinhibition of Photosystem Ⅰ in field-grown barley (Hordeum vulgare L.):Induction, recovery and acclimation [J]. Photosynth Res,64:53-61.
    Terashima I, Funayama S, Sonoike K.1994. The site of photoinhibition in leaves of Cucumis-sativus L. at low temperatures is photosystem Ⅰ, not photosystem Ⅱ [J]. Planta,193: 300-306.
    Tjus SE, M(?)ller BL, Scheller HV.1998. Photosystem Ⅰ is an early target of photoinhibition in barley illuminated at chilling temperatures [J]. Plant Physiol,116:755-764.
    Tjus SE, M(?)ller BL, Scheller HV.1999. Photoinhibition of photosystem Ⅰ damages both reaction centre proteins PSI-A and PSI-B and acceptor side located small photosystem Ⅰ polypeptides [J]. Photosynth Res,60:75-86.
    van Wijk KJ, Bingsmark S, Aro EM, Andersson B.1995. In vitro synthesis and assembly of Photosystem Ⅱ core proteins. The Dl protein can be incorporated into Photosystem Ⅱ in isolated chloroplasts and thylakoids [J]. J Biol Chem,270:25685-25695.
    Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye J-Y, Mi H-L.2006. Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress [J]. Plant Physiol,141:465-474.
    Yamamoto H, Kato H, Shinzaki Y, Horiguchi S, Shikanai T, Hase T, Endo T, Nishioka M, Maniko A, Tomizawa K, Miyake C.2006. Ferredoxin limits cyclic electron flow around PSI (CEF-PSI) in higher plants—stimulation of CEF-PSI enhances nonphotochemical quenching of Ch1 fluorescence in transplastomic tobacco [J]. Plant Cell Physiol,47:1355-1371.
    Zhang S-P, Scheller HV.2004. Photoinhibition of photosystem Ⅰ at chilling temperature and subsequent recovery inArabidopsis [J]. Plant Cell Physiol,45:1595-1602.
    Zhu J-J, Zhang J-L, Liu H-C, Cao K-F (2009) Photosynthesis, non-photochemical pathways and activities of antioxidant enzymes in a resilient evergreen oak under different climatic conditions from a valley-savanna in Southwest China [J]. Physiol Plant 135:67-72.
    Zhang J-L, Meng L-Z, Cao K-F (2009) Sustained diurnal photosynthetic depression in uppermost-canopy leaves of four dipterocarp species in the rainy and dry seasons:does photorespiration play a role in photoprotection [J]? Tree Physiol 29:217-228.
    张一平,许在富.2000.1999年西双版纳严重寒害气象原因初步分析。云南热作科技,23(2):6-8.
    姜艳娟.2008.西双版纳雾凉季低温对3种热带植物光合作用和抗氧化酶活性的影响.西北植物学报,28(8):1675-1682.
    周婧,蓝庆江,唐君海和卢艳春.2008.广西热带亚热带植物种质资源寒害调查。广西热带农业,4:25-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700