高流动性尼龙6的合成及结晶动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高流动性尼龙通常可用于薄壁或精密器件的制作,近几十年来,如何提高尼龙的流动性引起了大量研究者的关注。大量文献显示,往尼龙中加入少量的有机、无机分子或低聚体,通过共混的方式,均能得到高流动性尼龙,但力学性能往往不易得到保证。
     从上世纪80年代以来,树枝状聚酰胺-胺(即PAMAM)的出现,引起了越来越多的研究者的兴趣。PAMAM因外围含有大量的活性官能团,具有独特的三维结构、低粘度、高溶解能力及高反应活性。近年来,在催化,药物或基因载体,螯合剂,自组装等方面的应用和研究引起人们广泛关注,但在塑料工程领域的应用并不多见。
     本工作采用一个新的策略合成了一种高流动性尼龙6,即利用1.0代、2.0代和3.0代聚酰胺-胺(PAMAM),分别与对苯二甲酸等当量反应,制得含树枝状结构单元的母盐溶液;适量的母盐溶液、封端剂、己内酰胺投入到高压反应釜中,利用原位聚合法,制得高流动性尼龙6。红外光谱显示,与纯尼龙6比较,高流动性尼龙6的N-H峰(γN-H和2δN-H)发生了蓝移。当尼龙6基体中含较少量的PAMAM树枝单元时,新型尼龙6的流动性得到了显著的改善(熔融流动指数增加了70-90%)。力学性能测试显示,拉伸强度没有下降,断裂伸长率降低了20-35%,各种高流动性尼龙6的缺口冲击强度均有不同程度的增强。用扫描电镜(SEM)对经过缺口冲击实验的断面进行分析,发现高流动性尼龙具有脆性断裂行为。用差示扫描量热分析仪(DSC)对高流动性尼龙6的非等温结晶过程进行了初步分析,结果发现高流动性尼龙6具有比纯尼龙6更宽的结晶峰。
     利用DSC,以Avrami方程为基础研究了高流动性尼龙6的等温结晶动力学。结果显示,同纯尼龙6相比较,高流动性尼龙6具有较低的结晶速率。高流动性尼龙6的结晶速率随着尼龙6基体中PAMAM树枝单元的代数而变化,并且随着基体中PAMAM树枝单元含量的增加有轻微的增加。传统分析显示,与由DSC结晶曲线直接得出的实际的最大结晶时间相比较,通过半结晶法得到的最大结晶时间比由Avrami曲线拟合得到的Avrami参数所求取的最大结晶时间更接近实际的最大结晶时间。这意味着由半结晶法得到的Avrami参数比由Avrami曲线直接拟合得到的参数更符合实际的结晶机理。同时发现,由DSC结晶曲线直接得出的实际最大结晶时间和半结晶法得到的最大结晶时间随着尼龙6基体中PAMAM树枝单元代数的增加和结晶温度的降低而越来越相一致。为了更准确地描述高流动性尼龙6的结晶机理,本论文设计了局部连续拟合法,得到了Avrami参数随结晶时间的变化规律。Avrami参数对结晶时间的关系图显示,高流动性尼龙6的结晶是分三段完成的。对Avrami参数对结晶时间的关系曲线求积分,得到Avrami参数的积分平均值nav和Kav,再由nav和Kav求得另外一套最大结晶时间。通过对比得知,这一套最大结晶时间tmaxav比用半结晶法求得的最大结晶时间更接近实际的最大结晶时间。这个结果意味着由局部连续拟合法和积分平均值法得到的Avrami参数比由半结晶法求得的Avrami参数更接近实际的结晶机理。高流动性尼龙6的Avrami指数n在2.1和2.4之间,这意味着高流动性尼龙6结晶成核和生长方式是二维的生长方式。作者利用Arrhenius方程求得了各样品的结晶活化能,结果显示:高流动性尼龙6的结晶活化能随尼龙6基体中PAMAM树枝单元的代数的增加而减小;同时高流动性尼龙6的结晶活化能还随尼龙6基体中PAMAM树枝单元的含量的增加而轻微减小。
     同样利用DSC,采用Ozawa法和建立在Ozawa与Avrami方程基础上的莫志深复合法对高流动性尼龙6的非等温结晶过程进行了研究。按照Ozawa法,得到lg[-ln(1-X(T))]~lgФ的双对数曲线,发现该曲线的线性关系很差。当按照不同的降温速率将曲线分成三个部分,再对每条线段进行线性拟合,得到了在不同结晶温度下的Ozawa指数m及冷却函数lgF(T)值。结果显示,高流动性尼龙6样品和纯尼龙6样品的Ozawa指数m及lgF(T)值随着温度的变化有着很显著的不同。对所有样品而言,Ozawa指数m是随着结晶温度的升高而增大的,这意味着随着结晶温度的升高聚合物的结晶越来越复杂;同时也反映出传统的Ozawa法通过新的解析方法得到了与实际结晶机理更相一致的结论。研究结果显示,高流动性尼龙6的Ozawa指数m与lgF(T)值随冷却速率的增加而增大,但它们也随结晶温度的降低和尼龙6基体中PAMAM树枝单元的代数的增加而减小。同时,结果还显示,高流动性尼龙6的Ozawa指数m和lgF(T)值对尼龙6基体中PAMAM树枝单元的含量比较敏感。总体而言,高流动性尼龙6比纯尼龙6具有更加复杂的结晶机理和较慢的结晶速率。
     利用莫志深复合法研究发现,每个样品的lgФ-lgt曲线均有很好的线性关系;这表示,建立在Avrami方程和Ozawa方程基础上的复合方法能很好地解析高流动性尼龙6和纯尼龙6的结晶动力学。结果显示,高流动性尼龙6的结晶速率比纯尼龙6慢,并且在基体中随着PAMAM树枝单元含量的增加其结晶速率明显减慢;高流动性尼龙6的结晶速率与尼龙6基体中PAMAM树枝单元的代数也有关系;较高代数的PAMAM树枝单元在结晶过程中起到了成核作用。
     利用Kissinger方程求取了各个样品在非等温结晶过程的结晶活化能。与纯尼龙6相比,高流动性尼龙6的结晶活化能都要低些;同时,在高流动性尼龙6基体中PAMAM树枝单元的代数和含量对其活化能也均有明显的影响。
     本论文还以PAMAM为原料,对多壁碳纳米管(MWNTs)进行修饰改性,用原位聚合法得到了另外一种新型的功能化MWNTs/PA6复合材料。首先多壁碳纳米管经过混酸(硫酸和硝酸)氧化,再与亚硫酰氯反应;得到的MWNTs-COCl分别与过量的1.0代和2.0代聚酰胺-胺(G1 PAMAM和G2 PAMAM)反应。红外光谱FTIR和热失重分析TGA证明了MWNTs已成功实现了功能化。MWNTs-G1 PAMAM和MWNTs-G2 PAMAM分别与适量的己内酰胺,蒸馏水和封端剂进行原位聚合反应,得到新型功能化碳纳米管复合材料: MWNTs-G1/PA6和MWNTs-G2/PA6。为了对比,在相同条件下,未处理的MWNTs也与适量的己内酰胺等原料进行反应,得到了MWNTs/PA6复合材料。与纯尼龙6相比,MWNTs-G1/PA6和MWNTs-G2/PA6复合材料具有更加优越的抗弯曲强度和冲击强度。扫描电镜SEM分析显示,在尼龙6基体中,MWNTs-G1 PAMAM比MWNTs-G2 PAMAM及原始的MWNTs要分散均匀些。DSC曲线显示,原始的和PAMAM功能化的MWNTs均起到不同程度的成核作用。
Nylon with high flowability was often used in molded products of small parts with thin walls or precision parts, which has attracted a great deal of interest over several decades. Lots of work showed that high flow polyamides were almost prepared by melting blend and the flow behavior was improved by feeding low content of organic, inorganic or oligomer components and so on, unfortunately, however it might be hard to maintain their mechanical properties.
     Since 1980s, polyamidoamine (PAMAM) dendrimers have been paid more and more attentions due to their unique features such as three-dimensional architecture, low intrinsic viscosity, good solubility and high reactivity because of the presence of large amount of terminal functional groups. PAMAM dendrimers have attracted much more attention for their many potential applications, including nanoscale catalysts, drug or gene carriers, chelating agent, building blocks for assembly nanoconjugates and so forth. But few applications have been found in plastic engineering area.
     A new synthetic strategy for high flow nylon 6 was developed in this article. Generation 1, 2, 3 (G1, G2, G3) PAMAM dendrimers reacted with p-phthalic acid by equimolar terminal groups in water solution respectively,mother salt solution was then prepared. The high flow nylon 6 was prepared with suitable quantity of mother salt solution, end capping agent andε-caprolactam by in situ polymerization. Blue shifts are found for the peaks of NH (γN-H and 2δN-H) of the high flow nylon 6 compared with pure nylon 6 in the IR spectra. Comparing with the pure nylon 6, the high flow nylon 6 containing low content of PAMAM units, has high flow property and almost the same mechanical property. The high flow nylon 6 with low content of PAMAM units has greater melt-flow index (MFI) (the value of MFI increased by 70-90%). Hardly any decrease in the tensile strength is observed with the elongation at break decreasing by 20-35%. But the izod impact strength of the high flow nylon 6 increases. The SEM images show that the high flow nylon 6 presents brittle fracture with conglomeration-like structure while pure nylon 6 exhibits plastic fracture with island-like structure. DSC thermograms of non-isothermal crystallization exhibit that the peak of high flow nylon 6 broadens comparing with the pure nylon 6 and the broader peak means the wider processing temperature.
     The isothermal crystallization kinetics was investigated by differential scanning calorimetry for high-flow nylon 6. The Avrami equation has been adopted to study the crystallization kinetics. Comparing with pure nylon 6, the high-flow nylon 6 has lower crystallization rate, which varies with the generation and content of PAMAM units in nylon 6 matrix. The traditional analysis indicates that the values of Avrami parameters calculated from the half time of crystallization might be more in agreement with the actual crystallization mechanism than the parameters determined from the Avrami plots. Meanwhile, the plots of parameters n or K versus time were also obtained by local linear fitting. The results imply the parameters n or K from local linear fitting approach the actual crystallization mechanism more precisely than the parameters calculated from the half time of crystallization. The n values of the high-flow nylon 6 range between 2.1 and 2.4, meaning the crystallization of the high-flow nylon 6 is a two-dimensional growth process. The activation energies were determined by Arrhenius’method. The activation energies decrease with the increase in the generation of PAMAM units, but decrease quite slowly with the increase in the content of PAMAM units in nylon 6 matrix.
     The crystallization kinetics of the high-flow nylon 6 containing PAMAM dendrimers units in nylon 6 matrix was investigated by differential scanning calorimetry. Ozawa and Mo equation were used to describe the crystallization kinetics under non-isothermal condition. The values of Avrami exponent m and the cooling crystallization function F(T) were determined from the Ozawa plots, which showed bad linearity and were divided into three sections depending on different cooling rates. The plots of the m and lgF(T) values versus crystallization temperatures were obtained, which indicated that the actual crystallization mechanisms might change with the crystallization temperatures. The high-flow nylon 6 has higher values of m and lgF(T) than pure nylon 6, which implied that the high-flow nylon 6 had more complicated crystallization mechanisms and slower crystallization rate than pure nylon 6. The good linearity of the Mo plots verified the success of this combined approach. The activation energies of the high-flow nylon 6 were determined by the Kissinger method. TheΔE values were lower than that of pure nylon 6, and meanwhile theΔE was affected by both the generation and the content of PAMAM units in the nylon 6 matrix.
     The crude MWNTs were oxidized using sulfuric and nitric acid solution, then reacted with thionyl chloride, resulting in MWNTs-COCl, which reacted respectively with an excess of G1 PAMAM and G2 PAMAM respectively. FTIR and TGA indicated the successful functionalization of MWNTs. The MWNTs-G1 PAMAM and MWNTs-G2 PAMAM were respectively put into an autoclave along withε-caprolactam, distilled water and acetic acid, and then MWNTs-G1/PA6 and MWNTs-G2/PA6 composites were obtained by in situ polymerization. For comparison, PA6 and crude MWNTs/PA6 were also prepared under the same condition. Compared with pure nylon 6, the bending strength and izod impact strength of MWNTs-G1/PA6 and MWNTs-G2/PA6 composites were significantly improved. The SEM images indicated that MWNTs-G1 PAMAM was more uniformly dispersed than MWNTs-G2 PAMAM and crude MWNTs in the PA6 matrix. DSC analysis showed the crude and functionalized MWNTs might act as heterogeneous crystal nuclei of the matrix.
引文
[1] Tomalia D A, Baker H, Dewald J R, et al. A New Class of Polymers: Starburst-dendritic Macromolecules [J]. Polym J, 1985, 17(1): 117-132
    [2] Tomalia D A. Dendritic Macromolecules: Synthesis of Starburst Dendrimers Macromolecules [J]. Macromolecules, 1986, 19(9): 2466-2468
    [3]谭惠民,罗运军.树枝形聚合物[M].北京:化学工业出版社,2001: 91-202
    [4] Martin I K, Twyman L J. The synthesis of unsymmetrical PAMAM dendrimers using a divergent/divergent approach [J]. Tetrahedron Letters, 2001, 42(6): 1119-1121
    [5]郑世昭,徐伟箭.聚酰胺-胺树形大分子的合成与应用[J].高分子通报,2004,1():81-84
    [6] Brunner H, Forst J. Optically Active Expanded Chelate Phos-phinesDerived from 1,ω-Bis( dichlorophosphino) alkanes [J]. Tetrahedron Lett, 1994, 50(): 13-15.
    [7] Gong A J, Fan Q H, Chen Y M, et al. Two-phase hydroformylation reaction catalysed by rhodium-complexed water-soluble dendrimers [J]. J Mol Catal A-Chem, 2000, 159(2): 225-232
    [8] Groehn F, Bauer B J, Akpalu Y A, et al. Dendrimer Templates for the Formation of Gold Nanoclusters [J]. Macromolecules, 2000, 33(16): 6042
    [9] He J A, Valluzzi R, Yang K, et al. Electrostatic Multilayer Deposition of a Gold-Dendrimer Nanocomposite [J]. Chem Mater, 1999, 11(11): 3268-3274
    [10] Tokuhisa H, Zhao M, Baker L A, et al. Preparation and Characterization of Dendrimer Monolayers and Dendrimer-Alkanethiol Mixed Monolayers Adsorbed to Gold [J]. J Am Chem Soc, 1998, 120(18): 4492-4501
    [11] Liu C H, Gao C, Yan D Y. Honeycomb-Patterned Photoluminescent Films Fabricated by Self-Assembly of Hyperbranched Polymers [J]. Angew Chem Int Ed, 2007, 46(): 4128–4131
    [12] Chechik V, Zhao M, Crooks R M. Self-Assembled Inverted Micelles Prepared from a Dendrimer Template: Phase Transfer of Encapsulated Guests [J]. J Am Chem Soc, 1999, 121(20): 4910-4911
    [13]王俊,万家齐,李杰等.枝状大分子聚酰胺胺对布洛芬的增溶性能研究[J].应用化工,2004,33(3):13-15
    [14]卢伟红.树枝状聚氨酯丙烯酸酯的合成与应用:[湖南大学硕士学位论文][D].长沙:湖南大学化学化工学院,2006: 40-41
    [15] Masaki O, Masamichi M, Yuri K, et al. Curing of epoxy resin by ultrafine silica modified by grafting of hyperbranched polyamidoamine using dendrimer synthesis methodology [J]. J Appl Polym Sci, 2001, 80(4): 573-579
    [16] Kim T, Seo H J, Choi J S, et al. PAMAM-PEG-PAMAM: Novel Triblock Copolymer as a Biocompatible and Efficient Gene Delivery Carrier [J]. Biomacromolecules, 2004, 5(6): 2487-2492
    [17] Gao H, Carlson J, Stalcup A M, et al. Separation of Aromatic Acids, DOPA and Methyl-DOPA by Capillary Electrophoresis with Dendrimers as Buffer Additives [J]. J Chromatogr Sci, 1998, 36(3): 146-154
    [18] Palmer C P, Terabe S. Micelle Polymers as Pseudostationary Phases in MEKC: Chromatographic Performance and Chemical Selectivity [J]. Anal Chem, 1997, 69(10): 1852-1860
    [19] Kyu T, Zhou Z L, Zhu G C, et al. Novel filled polymer composites prepared from in situ polymerization via a colloidal approach: I. Kaolin/Nylon-6 in situ composites [J]. J Polym Sci Part B: Polym Phy, 1998, 34(10): 1761-1768
    [20]于中振,欧玉春,陈金凤等.高岭土填充尼龙6的结晶行为[J].高分子学报,1994,()(3):295-300
    [21]李馥梅,刘新海.硅灰石/玻纤增强尼龙6复合材料的研制[J].现代塑料加工应用,2003,5():1-4
    [22]赵煌,张敬阳,吴伟端.有机活性绢云母填充量对尼龙6力学性能的影[J].华侨大学学报(自然科学版),2005,3():263-266
    [23] Yu D M, Wu J S, Zhou L M, et al. The dialectric and mechanical properties of a potassium-titanate-whisker-reinforced PP/PA blend. Composites Science and Technology [J], 2000, 60(): 499-508
    [24]尹志辉,张晓民,张亚杰等.氧化钕填充尼龙6的结晶行为[J].中国塑料,1995,9(6):56-59
    [25] Utracki L A. History of commercial polymer alloys and blends (from a perspective of the patent literature) [J]. Polm Eng Sci, 1995, 35(1):2-17.
    [26] Shan G F, Yang W, Xie B H, et al. Double yielding behaviors of polyamide 6 and glass bead filled polyamide 6 composites [J]. Polymer Testing, 2005, 24(6): 704-711
    [27] GüllüA, ?zdemir A, ?zdemir E. Experimental investigation of the effect of glass fibres on the mechanical properties of polypropylene (PP) and polyamide 6(PA6) plastics [J]. Mater Design, 2006, 27(4): 316-323
    [28]高志秋,陶炜,金文兰等.长玻纤增强尼龙6复合材料研究[J].工程塑料应用,2001,29(7):2-5
    [29]唐良忠,刘罡,叶淑英等.玻璃微珠/玻纤复合增强尼龙6的研制[J].塑料,2004,33(5):74-76
    [30] Chen Y H, Qi W. Preparation, properties and characterizations of halogen-free nitrogen–phosphorous flame-retarded glass fiber reinforced polyamide 6 composite[J]. Polym Degrad Stabil, 2006, 91(9): 2003-2013
    [31] Lee C H, Lee Y M, Choi H K, et al. Effect of a functional triblock elastomer on morphology in polyamide 6/polycarbonate blend [J]. Polymer, 1999, 40(23): 6321-6327
    [32]夏金魁,李馥梅,邬智勇.新型弹性体极性化SBS增韧尼龙6的研究[J].高分子材料科学与工程,2006,5():236-244
    [33] Huang J J, Keskkula H, Paul D R. Elastomer particle morphology in ternary blends of maleated and non-maleated ethylene-based elastomers with polyamides: Role of elastomer phase miscibility [J]. Polymer, 2006, 47(2): 624-638
    [34] Huang J J, Keskkula H, Paul D R. Comparison of the toughening behavior of nylon 6 versus an amorphous polyamide using various maleated elastomers [J]. Polymer, 2006, 47(2): 639-651
    [35] Wu D Z, Wang X D, Jin R G. Toughening of poly(2,6-dimethyl-1,4-phenylene oxide)/nylon 6 alloys with functionalized elastomers via reactive compatibilization: morphology, mechanical properties, and rheology [J]. Eur Polym J, 2004, 40(6): 1223-1232
    [36] Huang J J, Keskkula H, Paul D R. Rubber toughening of an amorphous polyamide by functionalized SEBS copolymers: morphology and Izod impact behavior [J]. Polymer, 2004, 45(12): 4203-4215
    [37]唐成华.苯乙烯-GMA共聚物的合成及其在尼龙6/聚苯醚共混体系中的应用[J].化工进展,2003,22(2):199-203
    [38]Takayanagi M, Ogata T, Morikawa M. Polymer composites of rigid and flexile molecular: system of wholy aromatic and aliphatic polyamides [J]. Macromol J Sci Phys, 1980, B17 (4): 591-615
    [39]王晓春,杨桂生,郑强.尼龙6与半芳香性非晶尼龙原位共混物的结构与性能[J].高分子学报,2007,()(9):796-801
    [40] Coltelli M B, Passaglia E, Ciardelli F. One-step functionalization and reactive blending of polyolefin/polyamide mixtures (EPM/PA6) [J]. Polymer, 2006, 47(1): 85-97
    [41] Lahor A, Nithitanakul M, Grady B P. Blends of low-density polyethylene with nylon compatibilized with a sodium-neutralized carboxylate ionomer [J]. Eur Polym J, 2004, 40(11): 2409-2420
    [42]贾宏葛,王雅珍,李华维.PP-g-MAH对聚丙烯/尼龙6共混体的影响[J].塑料工业,2006,S1():129-131
    [43]谢续明,李颖,杨讯.尼龙6/马来酸酐-苯乙烯多单体接枝聚丙烯反应共混物[J].高分子材料科学与工程,2003,19(3):141-144
    [44]张景春,谢续明,郭宝华.多组分单体接枝聚丙烯/尼龙6反应共混物结晶行为研究[J].高分子学报,2002,()(3):282-286
    [45] Qin S H, Yu J, Zheng Q, et al. Morphology and Mechanical Properties of Nylon 6/PBT Blends Compatibilized with Styrene/Maleic Anhydride Copolymer [J]. Chem Res Chinese U, 2007, 23(6): 726-732
    [46] Okada A, Kawasumi M, Usuki A, et al. Synthesis and properties of nylon-6/clay hybrids. In: Schaefer DW, Mark JE, editors. Polymer based molecular composites. MRS Symposium Proceedings [R], Pittsburgh: 1990, 171(): 45–50
    [47] Vaia RA, Ishii H, Giannelis EP. Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates [J]. Chem Mater, 1993, 5(): 1694–6
    [48] Usuki A, Kawasumi M, Kojima Y, et al. Swelling behavior of montmorillonite cation exchanged forω-amine acid byω-caprolactam [J]. J Mater Res, 1993, 8(): 1174–8
    [49]李跃文,苏胜培,陈如意等.尼龙6/纳米钛合金复合材料的性能研究[J].工程塑料应用,2006,34(7):5-8
    [50]李跃文,苏胜培,刘燕等.尼龙6/纳米钛合金复合材料的制备及结构[J].塑料,2006,35(5):20-23
    [51] Sun L, Yang J T, Lin G Y, et al. Crystallization and thermal properties of polyamide 6 composites filled with different nanofillers [J]. Mater lett, 2007, 61(18): 3963-3966
    [52]杜栓丽,李迎春.有机化纳米SiO2填充改性尼龙6复合材料的研究[J].塑料工业,2007,8():25-27
    [53] Ou Y C, Yang F, Yu Z Z. A new conception on the toughness of nylon 6/silicananocomposite prepared via in situ polymerization [J]. J Polym Sci PartB: Polym Phys, 1998, 36(5): 789-795
    [54] Yang F, Ou Y C, Yu Z Z. Polyamide 6/silica nanocomposites prepared by in situ polymerization [J]. J Appl Polym Sci, 1998, 69(2): 355-361
    [55] Li Y, Yu J, Guo Z X. The influence of interphase on nylon-6/nano-SiO2 composite materials obtained from in situ polymerization [J]. Polym Int, 2003, 52(6): 981-986
    [56] Li Y, Yu J, Guo Z X. The influence of silane treatment on nylon 6/nano-SiO2 in situ polymerization [J]. J Appl Polym Sci, 2002, 84(4): 827-834
    [57]冯钠,黄锐,徐德增等.纳米碳酸钙填充尼龙6体系结晶行为的研究[J].工程塑料应用,2006,5():45-48
    [58] Ozdilek C, Kazimierczak K, Beek D, et al. Preparation and properties of polyamide-6-boehmite nanocomposites [J]. Polymer, 2004, 45(15): 5207–5214
    [59] ?zdilek C, Kazimierczak K, Picken S J. Preparation and characterization of titanate-modified Boehmite–polyamide-6 nanocomposites [J]. Polymer, 2005, 46(16): 6025–6034
    [60] Liu T X, Phang I Y, Shen L, et al. Morphology and Mechanical Properties of Multiwalled Carbon Nanotubes Reinforced Nylon-6 Composites [J]. Macromolecules, 2004, 37(19): 7214-7222
    [61]贾志杰,王正元,徐才录等.原位法制取碳纳米管/尼龙6复合材料[J].清华大学学报(自然科学版),2000,40(4): 14-16
    [62]赵海玉,李金美,徐军等.共沉淀法制备尼龙6/碳纳米管复合材料及其性能研究[J].塑料,2006,35(5):1-4
    [63]刘彤,李小宁,杨中开等.己内酰胺-己内酯共聚物的合成与表征[J].北京服装学院学报,2005,25(2):8-12
    [64]王新华,张清,张小斌等.MC共聚尼龙弹性体的性能表征研究[J].塑料工业,1996,6():55-58
    [65]文彦飞.PA6系热塑性弹性体[J].化工新型材料,2000,28(5):11-13
    [66] Hideyuki U, Masahiro S. Polyamide resin composition and molded production[P]. JP Patent: 200034404, 2000-02-02
    [67] Toru N, Kimiya K, Toru Y. Polyamide resin composition and preparation thereof [P]. JP Patent: 2000212432, 2000-08-02
    [68] Franz-erich A, Maik G, Wolfgang C, et al. Composition with long-lasting, consistently good flowability, comprising polyamide powder and flow aid[P].NZ Patent: 528933, 2005-01-28
    [69] Anton C. Production of fast flowing polyamides[P]. GB Patent: 1116392, 1968-06-06
    [70] Atsushi M. High-flowability polyamide resin composition[P]. US Patent: 2001003762, 2001-06-14
    [71] Avarami M. Kinetics of phase change.I.General theory [J]. J Chem Phys, 1939, 7(): 1103-1112
    [72] Avarami M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei [J]. J Chem Phys, 1940, 8(): 212-224
    [73] Khanna P, Taylor T. Comments and recommendations on the use of the avrami equation for physico-chemical kinetics [J]. Polym Eng Sci, 1988, 28(16):1042–5
    [74] Dietz W. Spharolithwachstum in polymeren [J]. Colloid Polym Sci, 1981, 259(): 413–29
    [75] Velisaris C, Seferis J. Crystallization kinetics of polyether etherketone (PEEK) matrices [J]. Polym Eng Sci, 1986, 26(22):1574–81
    [76] Ozawa T. Kinetic analysis of derivative curves in thermal analysis[J]. J Therm Anal Calorim, 1970, 2(3): 301~324
    [77] Ziabicki A, Jarecki L. Theoretical analysis of oriented and non-isothermal crystallization III. Kinetics of crystal orientation [J]. Colloid and Polymer Science, 1978, 256(4): 332-342
    [78] Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c [J]. Polymer, 1978, 19(10): 1142-1144
    [79] Mandelkern L. Crystallization of Polymers [M]. New York: McGraw Hill, 1964: 254-271
    [80] Liu SY, Yu Y N, Cui Y, et al. Isothermal and nonisothermal crystallization kinetics of nylon-11 [J]. J Appl Polym Sci, 1998, 70(12): 2371-2380
    [81] Ko C Y,Chen M,Wang C L,et al. Poly(trimethylene terephthalate) copolyester containing ethylene glycol moieties. Part 1: Crystallization kinetics and melting behavior [J]. Polymer,2007,48(8):2415-2424
    [82]叶子浓,吴承训.超支化聚酯共混聚合物等温结晶动力学研究[J].合成纤维工业,2007,30(2):26-28
    [83]高光辉,李卫华,颜德岳.尼龙1218的等温及非等温结晶动力学研究[J].高分子学报,2004,()(4):465-470
    [84]任敏巧,莫志深,陈庆勇等.间规1,2-聚丁二烯的非等温结晶动力学[J].高分子学报,2005,()(3):374-378
    [85]张声春.聚苯硫醚/尼龙6非等温结晶动力学的研究[J].现代塑料加工应用,2007,19(2):37-39
    [86]阳军亮,赵婷,崔继军等.聚左旋乳酸-聚乙二醇二嵌段共聚物的非等温结晶行为研究[J].高等学校化学学报,2006,27(6):1162-1166
    [87]秦传香.PA1212的结晶动力学研究[J].合成纤维工业,2007,30(1):18-21
    [88] Koning Cornelis E, De Koning G J M, Crevecoeur J J. High-molecular polyamide composition with improved flow behavior [P]. US Pat: 0103287, 2002-08-01
    [89] Coltelli M B, Angiuli M, Passaglia E, et al. Formation of short and long chain branches during the free radical functionalization of polyamide 6 in the melt [J]. Macromolecules, 2006, 39(6): 2153-2161
    [90] Seo Y, Hong S M, Kim K U. Structure Development during Flow of Ternary Blends of a Polyamide (Nylon 46), a Thermotropic Liquid Crystalline Polymer (Poly(ester amide)), and a Thermoplastic Elastomer (EPDM) [J]. Macromolecules, 1997, 30(10): 2978-2988
    [91] Fish JR, Yefim Brun. High flow, toughened, weatherable polyamide compositions containing a blend of stabilizers [P]. US Patent: 0113532, 2005-05-26
    [92] Gao C, Yan D. Hyperbranched polymers: from synthesis to applications [J]. Prog Polym Sci, 2004, 29(3): 183-275
    [93] Jikei M, Kakimoto M. Hyperbranched polymers: a promising new class of materials [J]. Prog Polym Sci, 2001, 26(8): 1233-1285
    [94] Voit B. New developments in hyperbranched polymers [J]. J Polym Sci Part A: Polym Chem, 2000, 38(14): 2505-2525
    [95] Inoue K. Functional dendrimers, hyperbranched and star polymers J]. Prog Polym Sci, 2000, 25(4): 453-571
    [96] Bosman A W, Janssen H M, Meijer E W. About Dendrimers: Structure, Physical Properties, and Applications [J]. Chem Rev, 1999, 99(7): 1665-1688
    [97] Kim Y H. Hyperbranched polymers 10 years after [J]. J Polym Sci Part A: Polym Chem, 1998, 36(11): 1685-1698
    [98] Malmstr?m E, Hult A. Hyperbranched polymer: A review [J]. J Macromol Sci Rev Macromol Chem Phys, 1997, C37(): 555-579
    [99] Fréchet J M. Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy [J]. Science, 1994, 263(): 1710-1715
    [100] Fréchet J M J, Henmi M, Gitsov I, et al. Self-condensing vinyl polymerization: an approach to dendritic materials [J]. Science, 1995, 269(): 1080–1083.
    [101] Tomalia D A, Dewald J R. Dense star polymers having two dimensional molecular diameter [P]. US Patent: 4587329, 1986-05-06
    [102] Tomalia D A, Naylor A M, Goddard III W A. Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter [J]. Angewandte Chemie International Edition in English Angew Chem Int Ed Eng1, 1990, 29(2): 138-175
    [103] Zeng F, Zimmerman S C. Dendrimers in Supramolecular Chemistry: From Molecular Recognition to Self-Assembly [J]. Chem Rev, 1997, 97(5): 1681-1712
    [104] Balog L, Tomalia D A. Poly(amidoamine) Dendrimer-Templated Nanocomposites. 1. Synthesis of Zerovalent Copper Nanoclusters [J]. J Am Chem Soc, 1998, 120(29): 7355-7356
    [105] Beezer A E, King A S H, Martin I K, et al. Dendrimers as potential drug carriers; encapsulation of acidic hydrophobes within water soluble PAMAM derivatives [J]. Tetrahedron, 2003, 59(22): 3873-3880
    [106] Tarazona-Vasquez F, Balbuena P B. Complexation of the Lowest Generation Poly(amidoamine)-NH2 Dendrimers with Metal Ions, Metal Atoms, and Cu(II) Hydrates: An ab Initio Study [J]. J Phys Chem B, 2004, 108(41): 15992-16001
    [107] Venditto V J, Regino C A S, Brechbiel M W. PAMAM Dendrimer Based Macromolecules as Improved Contrast Agents [J]. Molecular Pharmaceutics(Review), 2005, 2(4): 302-311
    [108] Amaiti P K, Bagchi B. Structure and Dynamics of DNA-Dendrimer Complexation: Role of Counterions, Water, and Base Pair Sequence [J]. Nano Lett, 2006, 6(11): 2478-2485
    [109] Kono K, Miyoshi T, Haba Y, et al. Temperature Sensitivity Control of Alkylamide-Terminated Poly(amidoamine) Dendrimers Induced by Guest Molecule Binding [J]. J Am Chem Soc, 2007, 129(23): 7222-7223
    [110] Zhao M, Sun L, Crooks R M. Preparation of Cu Nanoclusters within Dendrimer Templates [J]. J Am Chem Soc, 1998, 120(19): 4877-4878
    [111] Pittelkow M, Moth-Poulsen K, Boas U, et a1. Poly(amidoamine) -Dendrimer-Stabilized Pd(0) Nanoparticles as a Catalyst for the Suzuki Reaction[J]. Langmuir, 2003, 19(18): 7682-7684
    [112] Lim Y, Kim SM, Lee Y, Lee W, Yang T, Lee M, Suh H, Park J. Cationic hyperbranched poly(amino ester): a novel calss of DNA condensing molecule with cationic surface, biodegradable three-dimensional structure, and tertiary amine groups in the interior [J]. J Am Chem Soc, 2001, 123(10): 2460–2461
    [113] Zhao M Q, Crooks R M. Dendrimer-encapsulated Pt nanoparticles: Synthesis, characterization, and applications to catalysis [J]. Adv Mater, 1999, 11(): 217-220
    [114] Zhao M Q, Crooks R M. Intradendrimer exchange of metal nanoparticles [J]. Chem Mater, 1999, 11(): 3379-3385
    [115] Zanini D, Roy R. Practical Synthesis of Starburst PAMAMα-Thiosialodendrimers for Probing Multivalent Carbohydrate-Lectin Binding Properties [J]. J Org Chem, 1998, 63(10): 3486-3491
    [116] Zhuo R X, Du B, Lu Z R. In vitro release of 5-fluorouracil with cyclic core dendritic polymer [J]. J Control Release, 1999, 579(3): 249-257
    [117] Roberts J C, Adams Y E, Tomalia D, et al. Using starburst dendrimers as linker molecules to radiolabel antibodies [J]. Bioconjug Chem, 1990, 1(5): 305-308
    [118] Barth R F, Adams D M, Soloway A H, et al. Boronated starburst dendrimer-monoclonal antibody immunoconjugates: Evaluation as a potential delivery system for neutron capture therapy [J]. Bioconjug Chem, 1994, 5(1): 58-66
    [119] Luo D, Haverstick K, Belcheva N, et al. Poly(ethylene glycol)-Conjugated PAMAM Dendrimer for Biocompatible, High-Efficiency DNA Delivery [J]. Macromolecules, 2002, 35(9): 3456-3462
    [120] Kim T I, Seo H J, Choi J S, et al. PAMAM-PEG-PAMAM: Novel Triblock Copolymer as a Biocompatible and Efficient Gene Delivery Carrier [J]. Biomacromolecules, 2004, 5(6): 2487-2492
    [121] Patri A K, Majoros I J, Baker J R. Dendritic polymer macromolecular carriers for drug delivery [J]. Curr Opin Chem Biol, 2002, 6(4): 466-471
    [122] Esfand R, Tomalia D A. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications [J]. Drug Discovery Today, 2001, 6(8): 427-436
    [123] Diallo M S, Balogh L, Shafagati A, et al. Poly(amidoamine) Dendrimers: A New Class of High Capacity Chelating Agents for Cu(II) Ions [J]. Environ SciTechnol, 1999, 33(5): 820-824
    [124] Jensen A W, Maru B S, Zhang X, et al. Preparation of Fullerene-Shell Dendrimer-Core Nanoconjugates [J]. Nano Lett, 2005, 5(6): 1171-1173
    [125]桂红星,罗运军,廖建和等.PAMAM/PA6共混合金的结晶结构与性能[J].高分子材料科学与工程,2004,20(6):146-149
    [126] Warakomski J M. Synthesis and properties of star-branched nylon 6 [J]. Chem Mater, 1992, 4(5): 1000-1004.
    [127] Liu C H, Gao C, Yan D Y. Aliphatic Hyperbranched Poly(amido amine)s (PAMAM)s: Preparation and Modification [J]. Chem Res Chinese U, 2005, 21(): 345-354
    [128]何曼君,陈维孝,董西侠.高分子物理(修订版) [M].上海:化学工业出版社,2001: 92-93
    [129]彭冶汉,施祖培.塑料工业手册:聚酰胺[M].北京:复旦大学出版社,2001: 70-150
    [130] Alsewailem F D. Rubber Toughening of Glass-Fiber-Reinforced Nylon 66: [Doctor Dissertation of West Virginia University][M]. West Virginia: West Virginia University, 2002: 87-135
    [131] Burnett G M, Hay J N, MacArthur A J. in The Chemistry of Polymerization Processes, Monograph 20, Society of Chemical Industry, London, 1966: 139-140
    [132] Majury T G. Amines and carboxylic acids as initiators of polymerization in caprolactam [J]. J Polym Sci, 1958, 31(123): 383-397
    [133] Xu Y, Gao C, Kong H, et al. One-Pot Synthesis of Amphiphilic Core-Shell Suprabranched Macromolecules [J]. Macromolecules, 2004, 37(17): 6264-6267
    [134]李莹,于建,郭朝霞.树状分子PAMAM接枝改性纳米SiO2与尼龙6的原位复合[J].塑料工业,2004,32(8):23-26
    [135] Fréchet J M J and Hawker C J. Hyperbranched polyphenylene and hyperbranched polyesters: new soluble, three-dimensional, reactive polymers [J]. Reactive and Functional Polymers, 1995, 26(1-3): 127-136
    [136] Lovell P A, Stanford J L, Wang Y F, et al. Formation and Properties of Model Crystalline Blends Comprising Diacetylene-Containing Polyester and Polyolefin: Processing, Thermal Behavior, and Morphology [J]. Macromolecules, 1998, 31(3): 834-841
    [137] Kumar A A, Alagar M, Rao R M V G K. Synthesis and characterization of siliconized epoxy-1,3-bis(maleimido)benzene intercrosslinked matrix materials[J]. Polymer, 2002, 43(3): 693-702
    [138]于中振,欧玉春.尼龙6/(乙烯-辛烯)共聚物弹性体的流变及结晶行为[J].高分子学报.1999,()(3):377-380
    [139] Ozawa T. Kinetics of non-isothermal crystallization [J]. Polymer, 1971, 12(3): 150-158
    [140] Risch B G, Wilkes G L, Warakomski J M. Crystallization kinetics and morphological features of star-branched nylon-6: effect of branch-point functionality [J]. Polymer, 1993, 34(11): 2330-2343
    [141] Liu, T X, Mo Z S, Wang S E, et al. Mo Isothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) (PEEKK) [J]. Eur Polym J, 1997, 33(9): 1405-1414
    [142] Lorenzo M L D, Silvestre C. Non-isothermal crystallization of polymers [J]. Prog Polym Sci, 1999, 24(6): 917-950
    [143] Mandelkern L, Alamo R G, Haigh J A. Crystallization Kinetics of High Molecular Weight n-Alkanes [J]. Macromolecules, 1998, 31(3): 765-768
    [144] Li Y J, Zhu X Y, Yan D Y. Isothermal and nonisothermal crystallization kinetics of nylon 1012 [J]. Polym Eng Sci, 2000, 40(9): 1989-1995
    [145] Ren M Q, Mo Z S, Chen Q Y, et al. Crystallization kinetics and morphology of nylon 1212 [J]. Polymer, 2004, 45(10): 3511-3518
    [146] Yang J, McCoy B J, Madras G. Kinetics of Nonisothermal Polymer Crystallization [J]. J Phys Chem B, 2005, 109(39): 18550-18557
    [147] Wang L, Dong C M. Synthesis, crystallization kinetics and spherulitic growth of linear and star-shaped poly(L-lactide)s with different numbers of arms [J]. J Polym Sci Part A: Polym Chem, 2006, 44(7): 2226-2236
    [148] Du J, Niu H, Dong J Y, et al. Nascent Phase Separation and Crystallization Kinetics of an iPP/PEOc Polymer Alloy Prepared on a Single Multicatalyst Reactor Granule [J]. Macromolecules, 2008, 41(4): 1421-1429
    [149] Hao Q, Li F, Li Q, et al. Preparation and Crystallization Kinetics of New Structurally Well-Defined Star-Shaped Biodegradable Poly(L-lactide)s Initiated with Diverse Natural Sugar Alcohols [J]. Biomacromolecules, 2005, 6(4): 2236-2247
    [150] Long Y, Shanks R A and Stachurski Z H. Kinetics of polymer crystallization [J]. Prog Polym Sci, 1995, 20(4): 651-701
    [151] Wang Z, Jiang B. Crystallization Kinetics in Mixtures of Poly(ε-caprolactone)and Poly(styrene-co-acrylonitrile) [J]. Macromolecules, 1997, 30(20): 6223-6229
    [152] An Y X, Dong L S, Xing P X, et al. Crystallization kinetics and morphology of poly(β-hydroxybutyrate) and poly(vinyl acetate) blends [J]. Eur Polym J, 1997, 33(9): 1449-1452
    [153] An Y X, Dong L S, Li L X, et al. Isothermal crystallization kinetics and melting behavior of poly(β-hydroxybutyrate)/poly(vinyl acetate) blends [J]. Eur Polym J, 1999, 35(3): 365-369
    [154] Xu J T, Fairclough J P A, Mai S M, et al. Isothermal Crystallization Kinetics and Melting Behavior of Poly(oxyethylene)-b-poly(oxybutylene)/Poly- (oxybutylene) Blends [J]. Macromolecules, 2002, 35(18): 6937-6945
    [155] Zhang G S, Li Y J, Zhu X Y, et al. Nylon 10 10-montmorillonite nanocomposite made by intercalating polymerization [J]. Polym Eng Sci, 2003, 43(1): 204-213
    [156] Liu M Y, Zhao Q X, Wang Y D, et al. Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212 [J]. Polymer, 2003, 44(8): 2537-2545
    [157] Fornes T D, Paul D R. Crystallization behavior of nylon 6 nanocomposites [J]. Polymer, 2003, 44(14): 3945-3961
    [158] Kuo S W, Chan S C, Chang F C. Effect of Hydrogen Bonding Strength on the Microstructure and Crystallization Behavior of Crystalline Polymer Blends [J]. Macromolecules, 2003, 36(17): 6653-6661
    [159] Kim B, Lee S H, Lee D, et al. Crystallization Kinetics of Maleated Polypropylene/Clay Hybrids [J]. Ind Eng Chem Res, 2004, 43(19): 6082-6089
    [160] Liu Z J, Yan D Y. Non-isothermal crystallization kinetics of polyamide 1010/montmorillonite nanocomposite [J]. Polym Eng Sci, 2004, 44(5): 861-867
    [161] Zeng H L, Gao C, Wang Y P, et al. In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: Mechanical properties and crystallization behavior [J]. Polymer, 2006, 47(1): 113-122
    [162] Homminga D S, Goderis B, Mathot V B F, et al. Crystallization behavior of polymer/montmorillonite nanocomposites. Part III. Polyamide-6/montmorillonite nanocomposites, influence of matrix molecular weight, and of montmorillonite type and concentration [J]. Polymer, 2006, 47(5): 1630-1639
    [163] Yang J, McCoy B J, Madras G. A Distribution Kinetics Approach for Crystallization of Polymer Blends [J]. J Phys Chem B, 2006, 110(31): 15198-15204
    [164] Chen E C, Wu T M. Isothermal and nonisothermal crystallization kinetics of nylon 6/functionalized multi-walled carbon nanotube composites [J]. J Polym Sci Part B: Polym Phys, 2008, 46(2): 158-169
    [165] Zhang F, Zhou L, Liu Y. et al. High-Flow Nylon 6 by In Situ Polymerization: Synthesis and Characterization [J]. J Appl Polym Sci, 2008, 108(4): 2365-2372
    [166] Albano C, Papa J, Ichazo M, et al. Application of different macrokinetic models to the isothermal crystallization of PP/talc blends [J]. Compos Struct, 2003, 62(): 291-302
    [167] Mubarak Y, Harkin-Jones E, Martin P J, et al. Effect of Nucleating Agents and Pigments on Crystallisation, Morphology, and Mechanical Properties of Polypropylene [J]. Plast Rubber Compos, 2000, 29(7): 307-315
    [168] Cebe P, Hong S D. Crystallization behaviour of poly(ether-ether-ketone) [J]. Polymer, 1986, 27(8): 1183-1192
    [169] Yamashita K, Kobayashi H, Asada M. Thermoplastic resin composition having high heat resistance [P]. US Patent: 5798403, 1998-08-25
    [170]丁会利.聚甲亚胺/尼龙6原位聚合复合材料制备、表征与性能研究:[天津大学博士学位论文] [M].天津:天津大学,2002: 4-7
    [171] Mandelkern L, Alamo R G, Haigh J A. Crystallization Kinetics of High Molecular Weight n-Alkanes [J]. Macromolecules, 1998, 31(3): 765-768
    [172] Ren M Q, Mo Z S, Chen Q Y, et al. Crystallization kinetics and morphology of nylon 1212 [J]. Polymer, 2004, 45(10): 3511-3518
    [173] Patel R M, Bheda J H,Spruiell J E. Dynamics and structure development during high-speed melt spinning of nylon 6. II. Mathematical modeling [J]. J Appl Polym Sci, 1991, 42(6): 1671-1684
    [174] Li J, Fang Z P, Tong L F, et al. Effect of multi-walled carbon nanotubes on non-isothermal crystallization kinetics of polyamide 6 [J]. Eur Polym J, 2006, 42(12): 3230-3235
    [175]殷敬华,莫志深.现代高分子物理学(上册)[M].北京:科学出版社,2001: 108-117
    [176] Liu T X, Mo Z S, Zhang H F. Isothermal and nonisothermal melt crystallization kinetic behavior of poly(aryl ether biphenyl ether ketone ketone):PEDEKK [J]. J Polym Eng, 1998, 18(4): 283-299
    [177]乔秀颖,孙再成,赵晓江等.烷基取代聚噻吩的非等温结晶动力学[J].高分子学报,1999,()(6):649-653
    [178] Zhang Q X, Mo Z S. Isothermal and nonisothermal Crystallization kinetics of nylon 66 [J]. Chin J Polym Sci, 2001, 87(19): 237-246
    [179] Kissinger H E. Variation of peak temperature with heating rate in differential thermal analysis [J]. J Res Natl Bur Stand, 1956, 57(): 217-219
    [180] Iijima S. Helical microtubles of graphitic carbon [J]. Nature, 1991, 354(6314): 56-58
    [181] Popov V N. Reports Carbon nanotubes: properties and application [J]. Mater Sci Eng R, 2004, 43(3): 61-102
    [182] Bin Y, Kitanaka M, Zhu D, et al. Development of Highly Oriented Polyethylene Filled with Aligned Carbon Nanotubes by Gelation/Crystallization from Solutions [J]. Macromolecules, 2003, 36(16): 6213-6219
    [183] Ruan S L, Gao P, Yang X G, et al. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes [J]. Polymer, 2003, 44(19): 5643-5654
    [184] Meincke O, Kaempfer D, Weickmann H, C. et al. Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene [J]. Polymer, 2004, 45(3): 739-748
    [185] Chen G X, Kim H S, Park B H, et al. Multi-walled carbon nanotubes reinforced nylon 6 composites [J]. Polymer, 2006, 47(13): 4760-4767
    [186] Jeong J S, Jeon S Y, Lee T Y, et al. Fabrication of MWNTs/nylon conductive composite nanofibers by electrospinning [J]. Diamond Relat Mater, 2006, 15 (11-12): 1839-1843
    [187] Jose M V, Steinert B W, Thomas V, et al. Morphology and mechanical properties of Nylon 6/MWNT nanofibers [J]. Polymer, 2007, 48(4): 1096-1104
    [188] Zhao C G, Hu G J, Justice R, et al. Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization [J]. Polymer, 2005, 46(14): 5125-5132
    [189] Zeng H L, Gao C, Wang Y P, et al. In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: Mechanical properties and crystallization behavior [J]. Polymer, 2006, 47(1): 113-122
    [190] Tong X, Liu C, Cheng H M, et al. Surface modification of single-walledcarbon nanotubes with polyethylene via in situ Ziegler-Natta polymerization [J]. J Appl Polym Sci, 2004, 92(6): 3697-3700
    [191] Xu Y, Gao C, Kong H, et al. Growing Multihydroxyl Hyperbranched Polymers on the Surfaces of Carbon Nanotubes by in Situ Ring-Opening Polymerization [J]. Macromolecules, 2004, 37(24): 8846-8853
    [192] Gao C, Jin Y Z, Kong H, et al. Polyurea-Functionalized Multiwalled Carbon Nanotubes: Synthesis, Morphology, and Raman Spectroscopy [J]. J Phys Chem B, 2005, 109(24): 11925-11932
    [193] Kang M S, Myung S J, Jin H J. Nylon 610 and carbon nanotube composite by in situ interfacial polymerization [J]. Polymer, 2006, 47(11): 3961-3966
    [194] Kuznetsova A, Mawhinney D B, Naumenko V, et al. Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports [J]. Chem Phys Lett, 2000, 321(3-4): 292-295
    [195] Zeng Y L, Huang Y F, Jiang J H, et al. Functionalization of multi-walled carbon nanotubes with poly(amidoamine) dendrimer for mediator-free glucose biosensor [J]. Electrochem Commun, 2007, 9(): 185-190
    [196] Bose S, Bhattacharyya A R, Kodgire P V, et al. Fractionated crystallization in PA6/ABS blends: Influence of a reactive compatibilizer and multiwall carbon nanotubes [J]. Polymer, 2007, 48 (1): 356-362

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700