复合纳米材料修饰电极及其电催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料具有比表面积大、催化活性高、亲和力强等特点,在电催化及传感器材料领域有着广阔的应用前景。研究表明,电化学过程与电极材料的表面性质密切相关。由于该材料的尺寸效应和介电限域效应等特性,将纳米材料修饰到电极表面,能增加电流响应,降低检测限,大大提高检测的灵敏度。本论文致力于纳米材料修饰电极的制备及其电催化性能的研究,修饰电极过程简单、方便,实现了将纳米材料、修饰电极和电分析化学三者的有机结合。主要工作如下:
     1.聚吡咯-铂(PtPPy)复合纳米粒子的制备与表征及其电化学性质
     采用CTAB作为分散剂,一步合成PtPPy复合纳米粒子。并应用紫外-可见分光光度计(UV-vis),扫描电子显微镜(SEM),红外光谱(IR),热重分析(TA)等方法进行表征。该材料修饰电极的过程简单,可以不借助其它分子而直接吸附到Au电极表面。PPy的存在,阻止了铂纳米粒子的进一步团聚,而且修饰电极更加稳定,对O_2表现出较好的电催化还原活性。此材料有望应用于燃料电池和生物传感器领域。
     2.聚吡咯-金(AuPPy)复合纳米粒子的制备及其电催化还原氧气
     纳米金的比表面积大,反应活性高,表面活性中心多,吸附能力强,稳定性好和催化性能高,常常用于自组装电极的设计和制备各种特定功能的化学传感器。本文制备了AuPPy复合纳米材料并研究了其电催化性能。SEM可以看出,AuPPy复合纳米粒子为球形颗粒。AuPPy可以直接吸附到Au电极表面,表现出比裸Au电极更好的电催化活性。这种方法合成的AuPPy用于修饰电极可以不借助其它连接剂直接固定到电极表面,避免纳米粒子离心、洗涤的复杂过程。进一步研究了漆酶固定在AuPPy修饰电极上的直接电化学行为,并采用2,2′-连氮-双(3-乙基苯并噻唑-6-磺酸)(简称ABTS)作为电子介体,研究了漆酶修饰电极对O_2的电催化还原。结果表明该材料修饰电极有良好的稳定性和生物兼容性,可用于金属纳米粒子修饰电极和生物传感器的研制。
     3.生物多肽为稳定剂制备聚吡咯-金或铂的纳米复合物用于修饰电极及其电催化研究
     两亲性生物多肽多粘菌素B(PMB)具有很好的亲水性,在水溶液中容易形成稳定的胶束结构,可作为制备纳米材料的分散剂。本文在PMB的存在下,用吡咯单体一步还原HAuCl_4或K_2PtCl_6,得到稳定的、分散均匀的AuPPy、PtPPy胶体溶液。此外,将胶体溶液直接滴加到Au电极表面,溶剂挥发后,残留的复合纳米粒子可以强烈吸附到Au电极表面,所得修饰电极电子转移效率增强,对O_2电催化还原明显优于裸Au电极,该方法可用于制备贵金属纳米粒子修饰电极并应用于电催化和电分析领域。
     4、血红素直接自组装在碳纳米管修饰电极上的电化学性能
     制备了血红素/碳纳米管修饰电极,并研究对O_2、H_2O_2及对-SH化合物的电催化行为。结果表明,该修饰电极的循环伏安曲线有一对对称的氧化还原峰,峰位差为61mV,峰电流与扫描速率、式电位与pH均成线性关系。碳纳米管的存在,一方面起到固定血红素的作用,另一方面促进了电子传递,增加电流响应,提高了检测的灵敏度。碳纳米管/血红素修饰电极有望应用于生物传感器和电分析研究。
Nanomaterials have been studied extensively due to their large specific area, high surface activity, and strong affinity. Also they indicate the wide application prospect in electrocatalysis and sensor materials. The electrochemical responses of modification of electrodes are related to the electrode materials. Current response can be improved and detection limit extended when the nanomaterial modified electrodes are employed. The main work of this paper is focus on preparation of nanomaterial modified electrodes and study of the electrocatalytical properties. Compared with the traditional modified electrodes, the process of preparation is simple and convenient. Besides, the other emphasis of the work is to apply these nanomaterials modified electrodes to detect and analysize some analysts, such as oxygen, hydrogen peroxide, L-cysteine. The details are listed below:
     1. Preparation and characterization of Pt-polypyrrole nanocomposites for electrochemical reduction of oxygen.
     An easy and simple method of one-step reaction was employed to synthesize the platinum-adsorbed polypyrrole nanocomposite (PtPPy) in a cetyltrimethylammonium bromide (CTAB) solution. The prepared nanocomposites were characterized using UV-vis absorption spectroscopy(UV-vis), scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(IR), thermogravimetric analysis(TA), and cyclic voltammetry(CV). Polypyrrole within nanocomposites could crosslink to improve its stability on the Au substrates. O_2 reduction was performed at Au electrodes modified PtPPy. The results clearly show that modification of PtPPy nanocomposites results in the enhancement of the electrocatalytic reduction of oxygen. The nanocomposites may provide a novel electrode material for application in fuel cells and oxygen sensors.
     2. Preparation of Au-polypyrrole composite nanoparticles and study of their electrocatalytical reduction to oxygen with (without) laccasse.
     Au nanoparticles are often employed to design self-assembling electrodes and prepare functionalized sensors due to their characteristics, such as the large surface-to-volume ratio, high activity and strong absorbtion. In the section, the colloids of Au-polypyrrole (AuPPy) composite nanoparticles were prepared by oxidizing pyrrole monomer with HAuCl_4 in a cetyltrimethylammonium bromide (CTAB) solution. Scanning electron microscopy (SEM) suggests the AuPPy nanoparticles in the form of regular spheres, approximately 200 run in diameter. The resulting colloid of AuPPy composite nanoparticles strongly adheres to the surface of Au electrodes and exhibits better electrocatalytical reduction of oxygen than bare Au electrodes. It means that the complex procedures of centrifuge and wash are avoided. Also, no linker molecules are needed and the immobilization of nanoparticles is achieved easily in a single-step procedure. The direct electron transfer of laccase is observed after it is immobilized on AuPPy modified electrodes by glutaraldehyde. With the help of mediator 2,2'-azino-bis-(3-ethylbenzothiazoline-sulfonic acid)(ABTS), laccase electrode gives an electrocatalytical reduction wave of oxygen. It is proved that these nanocomposites not only have a stable electric signal, but show the environmental compatibility for biomolecule. These materials are excellent choice for the design of metal nanoparticles modified electrodes or biosensors.
     3. Direct assembly and electrochemical study of Au-polypyrrole and Pt-polypyrrole composite nanoparticles in the colloids with bioderivative peptide polymyxin B as stabilizer.
     The amphipathic molecule polymyxin B(PMB) is employed dispersion nanopaticles. The hydrophilic property of PMB is excellent. The stable colloids of Au-polypyrrole or Pt-polypyrrole composite nanoparticles were prepared by oxidizing pyrrole monomer with HAuCl_4 or K_2PtCl_6 respectively in the presence of PMB. On the one hand, the Au-polypyrrole and Pt-polypyrrole composite nanoparticles are dispersed well in colloid solution due to excellent hydrophilic property of PMB. On the other hand, after the colloid solution is spread on Au surface followed by the evaporation of the solvent, the resulting composite nanoparticles strongly adhere to the Au surface due to the existence of polypyrrole. It is a facile and versatile route to immobilize Au-polypyrrole or Pt-polypyrrole nanoparticles. The composite nanoparticles exhibit better electron transfer and electrocatalytical reduction of oxygen than bare Au electrodes. It makes these polypyrrole-based composite nanomaterials an excellent choice to prepare noble metal nanoparticle-modified surface for electrocatalytical or electroanalytical applications.
     4. Electrochemistry of self-assembled hemin from hexadecyl trimethyl ammonium bromide (CTAB) water solution on single wall carbon nanotube modified glass carbon electrodes.
     The hemin is adsorbed on the surface of single-wall carbon nanotube modified GC electrodes by self-assembly. The modified electrodes exhibit a well-defined, reversible redox peaks with the reduction potential at -0.30V and potential separation of 61mV at pH 7.0. The peak current is found to increase linearly with the scan rate in the range of 25-200mV and the peak potential to be pH dependent. The modified electrodes exhibit obvious signal enhancement for the electrochemical reduction of O_2 and H_2O_2, and oxidation of cysteine, which is useful to develop their application in electroanalysis and biosensors.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,1-10.
    [2]Gleiter H,Marquardt P.Nanocrystalline structures-an approach to new materials[J].Metallkd.Z.,1984,75:263-267.
    [3]Shipway AN,Katz E,Willner I.Nanoparticle arrays on surfaces for electronic,optical,and sensor applications[J].Chemphyschem.,2000,1:18-52.
    [4]Han W Q,Fan S S,Li Q Q,et al.Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction[J].Science,1997,277:1287-1289.
    [5]Sun Y G,Xia Y N.Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes[J].Anal.Chem.,2002,74:5297-5305.
    [6]Mazur M.Electrochemically prepared silver nanoflakes and nanowires[J].Eleetrochem.Commun.,2004,6(4):400-403.
    [7]Lee G J,Shin S,Kim Y C,et al.Preparation of silver nanorods through the control of temperature and pH of reaction medium[J].Mater.Chem.Phys.,2004,84:197-204.
    [8]Brust M,Kiely C J.Some recent advances in nanostructure preparation from gold and silver particles:a short topical review[J].Colloids Surf.A,2002,202:175-186.
    [9]Wang Y,Herron N.Nanometer-sized semiconductor clusters:materials synthesis,quantum size effects,and photophysical properties[J].J.Phys.Chem.,1991,95:525-532.
    [10]Kubo R.Electronic properties of metallic fine particles[J].J.Phys.Soc.Jpn.,1962,17:975-986.
    [11]Reed M A,Frensley W R,Matyi R J,et al.Realization of a three-terminal resonant tunneling device:the bipolar quantum resonant tunneling transistor[J].Appl.Phys.Lett.,1989,54:1034-1036.
    [12]Vehara M,Barbara B,Dieny B,et al.Staircase behavior in the magnetization reversal of a chemically disordered magnet at low temperature[J].Phys.Lett.1986,114A:23-26.
    [13]Siegal R W.Nanophase ultrafine-grained materials[J].Mater.Sci.Forum.,1989,37:299.
    [14]Ruoff R S,Lorents D S.Mechanical and thermal properties of carbonnanotubes[J].Carbon,1995:95-97.
    [15]赵立志,纳米材料的应用[J].天津化工,2003,17(5):39-41.
    [16]朱屯,王福明,王习东.国外纳米材料技术与应用[M].北京:化学工业出版社,2002.
    [17]Cai C X,Chcn J.Direct electron transfer and bioclcctrocatalysis of hemoglobin at a carbon nanotube electrode[J].Anal.Biochcm.,2004,325:285-292.
    [18]Wang J.Nanomatcrial-bascd elcetroebemieal biosensors[J].Analyst,2005,130:421-426.
    [19]Iijima S.Helical mierotubulcs of graphitie carbon[J].Nature,1991,354:56-58.
    [20]麦亚潘.碳纳米管-科学与应用,刘忠范等译[M].北京:科学出版社,2007,160-180.
    [21]Stevens R,Nguyen C,Casscll A,ct al.Improved fabrication approach for carbon nanotube probe devices[J].Appl.Phys.Lett.,2000,77:3453-3455.
    [22]Nguyen CV,So C,Stevens R M,et al.High lateral resolution imaging with sharpened tip of multi-walled carbon nanotube scanning probe[J].J.Phys.Chem.B,2004,108:2816-2821.
    [23]Zhou C Kong J Ycnlimez E,et al.Modulated chemical doping of individual carbon nanotubcs[J].Science,2000,290:1552-1555.
    [24]Liu X,Lee R,Hart J,et al.Carbon nanotube field-effect inverters[J].Appl.Phys.Lett.,2001,79:3329-3331.
    [25]Gao B,Kleinhammes A,Tang X P,et al.Electrochemical intercalation of single-walled carbon nanotubes with lithium[J].Chem.Phys.Lett.,1999,307(3-4):153-157.
    [26]Sakamoto J S,Duma B.Vanadium oxide-carbon nanotube composite electrodes for use in secondary lithium batteries[J].J.Electrochem.Soc.,2002,149:A26-A30.
    [27]罗红霞,施祖进,李南强等.羧基化单层碳纳米管修饰电极的电化学表征及其电催化作用[J].高等学校化学学报,2000,21(9):1372-1374.
    [28]Luo H X,Shi Z J,Li N Q,et al.Investigation of the electrochemical and eleetrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode[J].Anal.Chem.,2001,73:915-920.
    [29]Nugent J M,Santhanam K S V,Rubio A,et al.Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes[J].Nano.Lett.,2001,1(2):87-91.
    [30]ZhaoY D,Zhang D W,Chen H,et al.Anodic oxidation of hydrazine at carbon nanotube powder mieroeleetrode and its detection[J].Talanta,2002,58:529-534.
    [31]Zhang G Y,Wang E G.Cu-filled carbon nanotubes by simultaneous plasma-assisted copper incorporation[J].Appl.Phys.Lett.,2003,82:1926-1928.
    [32]Sloan J,Hammer J,Zwiefka-Sibley M,et al.The opening and filling of single walled carbon nanotubes(SWTs)[J].Chem.Comm.,1998:347-348.
    [33]Benzryadin C N,Lau A,Tinkham M Q.One of the main challenges in nanoscience and nanotechnology consists in the production and isolation of metallic atomic-scale nanowires[J].Nature,2000,404:971-974.
    [34]Zhang Y,Dai H.Formation of metal nanowires on carbon nanotubes[J].Appl.Phys.Lett.,2000,77:3015-3017.
    [35]Azamian B R,Coleman K S,Davis J J,et al.Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes[J].Chem.Comm.,2002:366-367.
    [36]Xue B,Chen P,Hong Q,et al.Growth of Pd,Pt,Ag and Au nanopartieles on carbon nanotubes[J].J.Mater.Chem.,2001,11:2378-2381.
    [37]Li J,Moskovits M,Haslett T L.Nanoscale electroless metal deposition in aligned carbon nanotubes[J].Chem.Mater.,1998,10:1963-1967.
    [38]Choi H C,Shim M,Bangsaruntip S.Spontaneous reduction of metal ions on carbon nanotube sidewalls[J].J.Am.Chem.Soc.,2002,124:9058-9059.
    [39]Kurppa K,Jiang H,Szilvay G R,et al.Controlled hybrid nanostructures through protein-mediated noncovalent functionalization of carbon nanotubes[J].Angew.Chem.Int.Ed.,2007,46:6446-6449.
    [40]Hong H G,Kim Y.Electrochemical characteristics of an indium-tin oxide electrode modifiedwith 2,5-bis(phosphonomethyl)hydroquinone[J].Electrochim.acta,2001,46:2313-2319.
    [41]董绍俊,车广礼,谢远武.化学修饰电极[M].北京:科学出版社,16-44.
    [42]Moses P R,Wier L,Murray R W A.Chemically modified tin oxide electrode[J].Anal.Chem.,1975,47:1882-1886.
    [43]Watkins B F,Behling J R,Kariv E,et al.A chiral electrode[J].J.Am.Chem.Soc.,1975,97:3549-3550.
    [44]董绍俊,许莉娟,马跃.化学修饰电极的研究Ⅴ:铁卟啉修饰电极对氧的催化还原[J].化学学报,1983,41:809-816.
    [45]Evans J F,Kuwana T,Radiofrequency oxygen plasma treatment of pyrolytic graphite electrode surfaces[J].Anal.Chem.,1977,49(11):1632-1635.
    [46]Lin A W C,Yeh P,Yacynych A M,et al.Cyanuric chloride as a general linking agent for the attachment of redox groups to pyrolytic graphite and metal oxide electrodes[J].J.Electroanal.Chem.,1977,84:411-419.
    [47]Lenhard J R,Murray R W.Chemically modified electrodes:part Ⅶ covalent bonding of a reversible electrode reactant to Pt electrodes using an organosilane reagent[J].J.Electroanal.Chem.,1977,78:195-201.
    [48]Fox M A,Nobs F J,Voynick T A.Covalent attachment of arenes to tin oxide (SnO_2)-semiconductor electrodes[J].J.Am.Chem.Soc.,1980,102(12):4029-4036.
    [49]Ianello R M,Yacynych A M.Immobilized enzyme chemically modified electrode as an amperometric sensor[J].Anal.Chem.,1981,53(13):2090-2095.
    [50]Lane R F,Hubbard A T.Electrochemistry of chemisorbed molecules I reactants connected to electrodes through olefinic substituents[J].J.Phys.Chem.,1973,77(11):1401-1410.
    [51]Bockris J O' M,Jeng K T.In-situ studies of adsorption of organic compounds on platinum electrodes[J].J.Electroanal.Chem.,1992,330:541-581.
    [52]Palecek E,Fojta M.Differential pulsed voltammetric determination of RNA at the picomole level in the presence of DNA and nucleic acid components[J].Anal.Chem.,1994,66:1566-1571.
    [53]Marraza G,Chianella I,Mascini M.Disposable DNA electrochemical sensor for hybridization detection[J].Biosens.Bioelectron.,1999,14:43-51.
    [54]刘有芹,沈含熙.氯化血红素修饰玻碳电极的制备及其作用机理[J].分析化学,2004,32:41-45.
    [55]Xiao H,Liu L,Meng E Electrochemical approach to detect apoptosis[J].Anal.Chem.,2008,80:5272-5275.
    [56]Oyama N,Yap K B,Anson F C.Spontaneous coating of graphite electrodes by amino ferrocenes[J].J.Electroanal.Chem.,1979,100:233-246.
    [57]沈丽,胡乃非.血红素蛋白质在聚酰胺-胺(PAMAM)树枝状大分子薄膜电极上的直接电子转移与电化学催化[J].广西师范大学学报(自然科学版),2003,21:91-92.
    [58]Poter M D,Bright T B,Allara D L,et al.Spontaneously organized molecular assemblies 4 structural characterization of nalkylthiol monolayers on gold by optical ellipsometry,infrared spectroscopy,and electrochemistry[J].J.Am.Chem.Soc.,1987,109(12):3559-3568.
    [59]Nuzzo R G,Dubois L H,Allara D L.Fundamental studies of microscopic wetting on organic surfaces formation and structural characterization of a self-consistent series of polyfunctional organic monolayers[J].J.Am.Chem.Soc.,1990,112(2):558-569.[60]Allara D L,Nuzzo R G Spontaneously organized molecular assemblies formation,dynamics,and physical properties of nalkanoic acids adsorbed from solution on an oxidized aluminum surface[J].Langmuir,1985,1(1):45-52.
    [61]Maoz R,Netzer L,Gun J,et al.Self-assembling monolayers in the construction of planned supramolecular structures and as modifiers of surface properties[J].J.Chim.Phys.,1988,85(11-12):1059-1065.
    [62]Hickman J J,Zou C,Ofer D,et al.Combining spontaneous molecular assembly with microfabrication to pattern surfaces:selective binding of isonitriles to platinum microwires and characterization by electrochemistry and surface spectroscopy[J].J.Am.Chem.Soc.,1989,111(18):7271-7272.
    [63]Li Y C,Li P C H,Parameswaram M,et al.Inkjet printed electrode arrays for potential modulation of DNA self-assembled monolayers on gold[J].Anal.Chem.,2008,80:8814-8821.
    [64]Xu X,Bard A.Immobilization and hybridization of DNA on an aluminum(Ⅲ) alkanebis -phosphonate thin film with electrogenerated chemiluminescent detection[J].J.Am.Chem.Soc.,1995,117:2627-2631.
    [65]华炳增,胡文云,陈衍珍,等.硬脂酸镍LB膜对甲醇的电催化氧化[J].电化学,1997,3:282-286.
    [66]Daifuku H,Yoshimura I,Hirata I,et al.Analysis of current-potential curves for mediated electron-transfer reactions at rotating disk electrodes:electrocatalysis by polypyridine osmium and ruthenium complexes confined to tin oxide electrodes as a Langmuir -Blodgett monomolecular layer[J].J.Electroanal.Chem.,1986,199:47-68.
    [67]Fujihira M,Poosittisak S.Precise control of amount of electrodeposited Pt by using the Langmuir-Blodgett film and its application to electrocatalysis of molecular oxygen reduction[J].Chem.Lett.,1986,251-254.
    [68]Fujihira M,Poosittisak S.Electrocatalysis by electrodeposited Pt from PtCl_6~(2-) confined in a Langmuir-Blodgett film on a glassy carbon electrode[J].J.Electroanal.Chem.,1986,199:481-484.
    [69]叶淑玉,郭渡,陆天虹,等.LB膜修饰电极[J].分析化学,1991,19:612-617.
    [70]Michael R,Van de M,Miller L L.A poly-p-nitrostyrene electrode surface potential dependent conductivity and electrocatalytic properties[J].J.Am.Chem.Soc.,1978,100(10):3223-3225.
    [71]Malitesta C,Palmisano F,Torsi L,et al.Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine)film[J].Anal.Chem.,1990,62(24):2735-2740.
    [72]Yano J,Shimoyama A,Ogura K.Poly(o-phenylenediamine)-film-coated electrode:incorporation of o-benzoquinone and permselectivity of I~- and Br~-[J].J.Chem.Soc.Faraday.Trans.,1992,88:2523-2527.
    [73]Wang J,Hutchins L D.Thin-layer electrochemical detector with a glassy carbon electrode coated with a base-hydrolyzed cellulosic film[J].Anal.Chem.,1985,57(8):1536-1541.
    [74]Sittampalam G,Wilson G S.Surface-modified electrochemical detector for liquid chromatography[J].Anal.Chem.,1983,55(9):1608-1610.
    [75]Kalcher K.Chemically modified carbon paste electrode in voltammetric analysis[J].Electroanal.,1990,2(6):419-433.
    [76]Giersig M,Mulvaney P.Preparation of ordered colloid monolayers by electrophoretic deposition[J].Langmuir,1993,9:3408-3413.
    [77]Hosteler M J, Green S J, Stokes J J, et al. Monolayers in three dimensions: synthesis and electrochemistry of co-functionalized alkanethiolate-stabilized gold cluster compounds[J].J. Am. Chem. Soc., 1996,18(17):4212-4213.
    [78]Doron A, Katz E, Willner I. Application of the metal-colloid films as base interfaces to construct redox-active and photoactive self-assembled monolayers[J]. Langmuir, 1995,11:1313-1317.
    [79]Willner I, Katz E, Willner B. Electrical-contact of redox enzyme layers associated with electrodes: routes to amperometric biosensors[J]. Electroanal., 1997, 9:965-977.
    [80]Hu X Y, Xiao Y, Chen H Y. Adsorption characteristics of Fe(CN)_6~(3-/4-) on Au colloids as monolayer films on cysteamine-modified gold electrode[J]. J. Electroanal. Chem., 1999,466:26-30.
    [81]Xiao Y, Ju H X, Chen H Y. Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer[J].Anal. Chim. Acta., 1999, 391:73-82.
    [82]Xiao Y, Ju H X, Chen H Y. Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode[J]. Anal. Biochem., 2000,278:2228-2234.
    [83]Gu H Y, Yu A M, Chen H Y. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode[J]. J. Electroanal.Chem., 2001, 516:119-126.
    [84]Gu H Y, Yu A M, Yu S S, et al. Amperometric nitric oxide biosensor based on the immobilization of hemoglobin on a nanometer-sized gold colloid modified an electrode [J]. Anal. Lett., 2002,35:647-661.
    [85]Patolsky F, Gabriel T, Willner I. Controlled electrocatalysis by microperoxidase-11 and Au-nanoparticle superstructures on conductive supports[J]. J. Electroanal. Chem., 1999,479:69-73.
    [86]Gua H Y, Chenb Z, Sa R X, et al. The immobilization of hepatocytes on 24 nm-sized gold colloid for enhanced hepatocytes proliferation[J]. Biomaterials, 2004,25:3445-3451.
    [87]Alexeyeva N,Laaksonen T,Kontturi K,et al.Oxygen reduction on gold nanoparticle /multi-walled carbon nanotubes modified glassy carbon electrodes in acid solution[J].Electrochem.Commun.,2006,8:1475-1480.
    [88]Eftekhari A.Electrochemical behavior and enhanced stability of a thin film of prussian blue deposited under magnetic field[J].Phys.Chem.,2003,217:1369-1386.
    [89]Michael D M,David J P,Steven L B.Electrochemical properties of colloidal Au-based surfaces:multilayer assemblies and seeded colloid films[J].Langrnuir,1999,15:844-850.
    [90]Davis J J,Coles R J,Alien H,et al.Protein electrochemistry at carbon nanotube electrodes[J].J.Electroanal.Chem.,1997,440:279-282.
    [91]Britto P J,Santhanam K S V,Ajayan P M.Carbon nanotube electrode for oxidation of dopamine[J].Bioelectrochem.Bioenerg.,1996,41:121-125.
    [92]Wang J,Li M,Shi Z,et al.Investigation of the electrocatalytic behavior of single-wall carbon nanotube films on an Au electrode[J].Microchem.J.,2002,73:325-333.
    [93]Wang J,Li M,Shi Z,et al.Electrocatalytic oxidation of norepinephrine at a glassy carbon electrode modified with single wall carbon nanotubes[J].Electroanal.,2002,14:225-230.
    [94]Wang J,Li M,Shi Z,et al.Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes[J].Anal.Chem.,2002,74:1993-1997.
    [95]Li Y,Wang P,Wang L,et al.Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications[J].Biosens.Bioelectron.,2007,22(12):3120-3125.
    [96]郝春香,赵常志,唐桢安,等.碳纳米管修饰电极对多巴胺和抗坏血酸的电催化氧化[J].分析化学,2003,31(8):958-960.
    [97]孙延一,吴康兵,胡胜水.多壁碳纳米管-Nation化学修饰电极在高浓度抗坏血酸和尿酸体系中选择性测定多巴胺[J].高等学校化学学报,2002,23:2067-2069.
    [98]Wang L,Wang J,Zhou F.Direct electrochemistry of catalase at a gold electrode modified with single-wall carbon nanotubes[J].Electroanal.,2004,16:627-632.
    [99]Raj C R,Okajima T,Ohsaka T.Gold nanopartiele arrays for the voltammetdc sensing of dopamine[J].J.Electroanal.Chem.,2003,543:127-133.
    [100]Tian S,Liu J,Zhu T,et al.Polyaniline doped with modified gold nanoparticles and its electrochemical properties in neutral aqueous solution[J].Chem.Comm.,2003:27-38.
    [101]Vered P Y,Eugenii K,Julian W,et al.Aeetylcholine esterase-labeled CdS nanoparticles on electrodes:photoeleetrochemical sensing of the enzyme inhibitors[J].J.Am.Chem.Soc.,2003,125:622-623.
    [102]龚宽平,毛兰群,熊少祥等,纳米碳管/Nafion复合物修饰电极对高半胧氨酸的电化学催化氧化及其分析应用[J].广西师范大学学报,2003,21,4:85-86.
    [103]Chen Z W,Waje M,Li W Z,et al.Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions[J].Angew.Chem.Int.Ed.,2007,46:4060-4063.
    [104]Zhang J L,Vukmirovic M B,Sasaki K,et al.Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics[J].J.Am.Chem.Soe.,2005,127:12480-12481.
    [105]Maye M M,Kaxiuki N N,Luo J,et al.Electrocatalytie reduction of oxygen:old and gold-platinum nanoparticle catalysts prepared by two-phase protocol[J].Gold Bulletin,2004,37:217-223.
    [106]Zhao D,Xu B Q.Enhancement of Pt utilization in electrocatalyst using gold nanoparticles[J].Angew.Chem.Int.Ed.,2006,45:4955-4959.
    [107]Metz K M,Goel D,Hamers R J.Molecular monolayers enhance the formation of eleetrocatalytic platinum nanoparticles on vertically aligned carbon nanofiber scaffolds [J].J.Phys.Chem.C,2007,111:7260-7265.
    [108]Cui H F,Ye J S,Zhang W D,et al.Electrocatalytie reduction of oxygen by a platinum nanoparticle/carbon nanotube composite electrode[J].J.Eleetroanal.Chem.,2005,577:295-302.
    [109]Vercelli B,Zotti G.Polypyrrole self-assembled monolayers and eleetrostatieally assembled multilayers on gold and platinum electrodes for molecular junctions[J].Chem.Mater.,2006,18:3754-3763.
    [110]Jang J,Bae J,Park E.Selective fabrication of poly(3,4-ethylenedioxythio-phene)nanocapsules and mesocellular foams using surfactant-mediated interfacial polymerize -tion[J].Adv.Mater.,2006,18:354-358.
    [111]Choi S J,Park S M.Electrochemical growth of nanosized conducting polymer wires on gold using molecular templates[J].Adv.Mater.,2000,12:1547-1549.
    [112]Valsesia A,Lisboa P,Colpo P,et al.Fabrication of polypyrrole-based nano-eleetrode arrays by colloidal lithography[J].Anal.Chem.,2006,78:7588-7591.
    [113]Ramanavi(c)ius A,Ramanavi(c)ien(?) A,Malinauskas A.Electrochemical sensors based on conducting polymer-polypyrrole(review)[J].Electrochim.Acta.,2006,51:6025-6037.
    [114]Wuang S C,Neoh K G,Kang E T,et al.Synthesis and functionalization of polypyrrole-Fe_3O_4 nanoparticles for applications in biomedicine[J].J.Mater.Chem.,2007,17:3354-3362.
    [115]Ferreira M,Zucolotto V,Huguenin F,et al.Layer-by-layer nanostructured hybrid films of polyaniline and vanadium oxide[J].J.Nanosci.Nanotech.,2002,2:29-32
    [116]Liu Y C,Chuang T C.Synthesis and characterization of gold/polypyrrole core-shell nanocomposites and elemental gold nanoparticles based on the gold-containing nanocomplexes prepared by electrochemical methods in aqueous solutions[J].J.Phys.Chem.B,2003,107:12383-12386.
    [117]Pint(?)r E,Patakfalvi R,F(u|¨)lei T,et al.Characterization of polypyrrole-silver nano -composites prepared in the presence of different dopants[J].J.Phys.Chem.B,2005,109:17474-17478.
    [118]Sigaud M,Li M,Chardon-Noblat S,et al.Electrochemical preparation of nanometer sized noble metal particles into a polypyrrole functionalized by a molecular electro -catalyst precursor[J].J.Mater.Chem.,2004,14:2606-2608.
    [119]Selvaraj V,Alagar M,Kumar K S.Synthesis and characterization of metal nanoparticles -decorated PPY-CNT composite and their electrocatalytic oxidation of formic acid and formaldehyde for fuel cell applications[J].Appl.Catal.B-Environ.,2007,75:129-138.
    [120]Zhang X,Zhang J,Song W,et al.Controllable synthesis of conducting polypyrrole nanostructures[J].J.Phys.Chem.B,2006,110:1158-1165.
    [121]Rinaldi A W,Kunita M H,Santos M J L,et al.Solid phase photopolymerization of pyrrole in poly(vinylchloride) matrix[J].Eur.Polym.J.,2005,41:2711-2717.
    [122]Brito A, Garcia F J, Alvarez-Galv(?)n M C, et al. Catalytic behaviour of Pt or Pd metal nanoparticles-zeolite bifunctional catalysts for n-pentane hydroisomerization[J]. Catal.Commun., 2007, 8:2081-2086.
    [123]Welch C M, Banks C E, Simm A O, et al. Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide[J].Anal. Bioanal. Chem., 2005, 382:12-21.
    [124]Letant S E, Herberg J, Dinh L N, et al. Structure and catalytic activity of POSS -stabilized Pd nanoparticles[J]. Catal. Commun., 2007, 8:2137-2142.
    [125]Blomsma E, Martens J A P, Jacobs A. Isomerization and hydrocracking of heptane over bimetallic bifunctional PtPd/H-beta and PtPd/USY zeolite catalysts[J]. J. Catal., 1997,165:241-248.
    [126]Martins C R, de Almeida Y M, do Nascimento G C, et al. Metal nanoparticles incorporation during the photopolymerization of polypyrrole[J]. J. Mater. Sci., 2006, 41:7413-7418.
    [127]Chu S, Kawamura H, Mori M. Fabrication and characteristics of Pd nanoparticles/nanofilms on ceramics toward catalytic electrodes[J]. Electrochim. Acta., 2007, 53:92-99.
    [128]Du D, Ding J, Cai J, et al. Electrochemical thiocholine inhibition sensor based on biocatalytic growth of Au nanoparticles using chitosan as template[J]. Sens. Actuators B,2007, 127: 317-322.
    [129]Lin J, Zhang L, Zhang S. Amperometric biosensor based on coentrapment of enzyme and mediator by gold nanoparticles on indium-tin oxide electrode[J]. Anal. Biochem.,2007,370:180-185.
    [130]Jing S, Xing S, Yu L, et al. Synthesis and characterization of Ag/polypyrrole nanocomposites based on silver nanoparticles colloid[J]. Mater. Lett., 2007, 61:4528-4530.
    [131]Panda A R, Chattopadhyay A A. Water-soluble polythiophene-Au nanoparticle composite for pH sensing[J]. J. Colloid. Interf. Sci., 2007,316:962-967.
    [132]Selvaraj V, Alagar M. Pt and Pt-Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation[J]. Electrochem.Commun., 2007, 9:1145-1153.
    [133]Lu X, Chao D, Chen J, et al. Preparation and characterization of inorganic/organic hybrid nanocomposites based on Au nanoparticles and polypyrrole[J]. Mater. Lett., 2006,60:2851-2854.
    [134]Henry M C, Hsueh C, Timko B P, et al. Reaction of pyrrole and chlorauric acid a new route to composite colloids[J]. J. Electrochem. Soc, 2001,148:D155-D162.
    [135]Park J, Atobe M, Fuchigami T. Sonochemical synthesis of conducting polymer-metal nanoparticles nanocomposite[J]. Electrochim. Acta, 2005, 51:849-854.
    [136]Zhou X, Zhang X, Yu X, et al. The effect of conjugation to gold nanoparticles on the ability of low molecular weight chitosan to transfer DNA vaccine[J]. Biomaterials, 2008,29:111-117.
    [137]Wang Z F, Xiao P F, Shen B, et al. Synthesis of palladium-coated magnetic nanoparticle and its application in Heck reaction[J]. Colloids Surf. A, 2006,276:116-121.
    [138]Chen Z, Peng Z, Luo Y, et al. Successively amplified electrochemical immunoassay based on biocatalytic deposition of silver nanoparticles and silver enhancement[J].Biosens. Bioelectron., 2007,23:485-491.
    [136]Han G, Ghosh P, Rotello V M. Multi-functional gold nanoparticles for drug delivery[J].Adv. Exp. Med. Biol., 2007,620:48-56.
    [140]Bharde A, Kulkarni A, Rao M, et al. Bacterial enzyme mediated biosynthesis of gold nanoparticles[J]. J. Nanosci. Nanotechnol., 2007, 7:4369-4377.
    [141]Pan J, Li H, Cao X, et al. Nanogold-assisted multi-round polymerase chain reaction (PCR)[J]. J. Nanosci. Nanotechnol., 2007,7:4428-4433.
    [142]Kang M, Jung R, Kim H, et al. Silver nanoparticles incorporated electrospun silk fibers[J]. J. Nanosci. Nanotechnol., 2007, 7:3888-3891.
    [143]Calvo M E B, Renedo O D, Martinez M J A. Determination of lamotrigine by adsorptive stripping voltammetry using silver nanoparticle-modified carbon screen-printed electrodes[J]. Talanta, 2007,74(1): 59-64.
    [144]Diaz-Ayala R, Fachini E R, Raptis R, et al. Palladium nanostructures and nanoparticles from molecular precursors on highly ordered pyrolytic graphite[J]. Langmuir, 2006, 22(24): 10185-10195.
    [145]Corduneanu O, Diculescu V C, Chiorcea-Paquim A, et al. Shape-controlled palladium nanowires and nanoparticles electrodeposited on carbon electrodes[J]. J. Electroanal.Chem., 2008, 624:97-108.
    [146]Lin J, Qu W, Zhang S. Disposable biosensor based on enzyme immobilized on Au-chitosan-modified indium tin oxide electrode with flow injection amperometric analysis[J]. Anal. Biochem., 2007, 360(2):288-293.
    [147]Kim K, Kim Y, Jeong W, et al. Preparation of nanosized Pt-Au alloy catalyst and its activity in methanol oxidation[J]. J. Nanosci. Nanotechnol., 2007, 7:4073-4076.
    [148]Njagi J, Andreescu S. Stable enzyme biosensors based on chemically synthesized Au-polypyrrole nanocomposites[J]. Biosens. Bioelectron., 2007,23:168-175.
    [149]Crespilho F N, Borges T F C C, Zucolotto V. Synthesis of core-shell Au@polypyrrole nanocomposite using a dendrimer-template approach[J]. J. Nanosci. Nanotechnol., 2006,6:2588-2590.
    [150]Huang K, Zhang Y J, Han D X, et al. One-step synthesis of 3D dendritic gold-polypyrrole nanocomposites via a self-assembly method[J]. Nanotech., 2006, 17:283-288.
    [151]Ron E Z, Rosenberg E. Natural roles of biosurfactants[J]. Environ. Microbiol., 2001,3:229-236.
    [152]Martin N I, Hu H, Moake M M, et al. Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclic peptide antibiotic produced by paenibacillus kobensis[J]. J. Biol. Chem., 2003,278:13124-13132.
    [153]Chirea M, Garcia-Morales V, Manzanares J A, et al. Electrochemical characterization of polyelectrolyte/gold nanoparticle multilayers self-assembled on gold electrodes[J]. J.Phys. Chem. B, 2005,109: 21808-21817.
    
    [154]Abdelrahman A I, Mohammad A M, Okajima T, et al. Fabrication and electrochemical application of three-dimensional gold nanoparticles: self-assembly[J]. J. Phys. Chem. B,2006,110:2798-2803.
    [155]Wang L, Bai J, Huang P, et al. Self-assembly of gold nanoparticles for the voltammetric sensing of epinephrine[J]. Electrochem. Commun., 2006, 8:1035-1040.
    [156] Shi Q F, Cai W B, Scherson D A. In situ surface-enhanced Raman scattering studies of the nitrosyl adduct of hemin adsorbed on roughened silver surfaces in aqueous electrolytes[J]. J. Phys. Chem. B, 2004,108:17281-17284.
    [157]Chen G N, Zhao Z F, Wang X L, et al. The electrochemical behavior of tryptophan and its derivatives at a glassy carbon electrode modified with hemin[J]. Anal. Chim. Acta,2002,452:245-254.
    [158]L(?)tzbeyer T, Schuhmann W, Schmidt H L. Direct electrocatalytical H_2O_2 reduction with hemin covalently immobilized at a monolayer-modified gold electrode[J]. J. Electroanal.Chem, 1995,395:341-344.
    [159]Zheng N, Zeng Y, Osborne P G, et al. Electrocatalytic reduction of dioxygen on hemin based carbon paste electrode[J]. J. Appl. Electrochem. 2002,32:129-133.
    [160]Zheng W, Li J, Zheng Y F. An amperometric biosensor based on hemoglobin immobilized in poly(epsilon-caprolactone) film and its application[J]. Biosens.Bioelectron., 2008,23:1562-1566.
    [161]Wang B Z, Du X Y, Wang M Q, et al. Electrochemistry of hemin self-assembled from aqueous hexadecyltrimethylammonium bromide (CTAB) solution on single-wall-carbon-nanotube-modified glassy carbon electrodes[J]. J. Anzai. Electroanal., 2008, 20:1028-1031.
    [162]Sultana N, Schenkman J B, Rusling J F. Direct electrochemistry of cytochrome P450 reductases in surfactant and polyion films[J]. Electroanal., 2007,19:2499-2506.
    [163]Hu Y, Sun H, Hu N F. Assembly of layer-by-layer films of electroactive hemoglobin and surfactant didodecyldimethylammonium bromide[J]. J. Colloid. Interf. Sci., 2007, 314:131-140.
    [164]Beissenhirtz M K, Kafka J, Sch(?)fer D, et al. Electrochemical quartz crystal microbalance studies on cytochrome c/polyelectrolyte multilayer assemblies on gold electrodes[J]. Electroanal., 2005,17:1931-1937.
    [165]Li Y X, Lin X Q, Jiang C M. Fabrication of a nanobiocomposite film containing heme proteins and carbon nanotubes on a choline modified glassy carbon electrode: direct electrochemistry and electrochemical catalysis[J]. Electroanal., 2006, 18:2085-2091.
    [166]Shan D, Han E, Xue H G, et al. Self-assembled films of hemoglobin/laponite/chitosan:application for the direct electrochemistry and catalysis to hydrogen peroxide[J].Biomacromolecules, 2007, 8:3041-3046.
    [167]Willner I, Willner B, Katz E. Biomolecule-nanoparticle hybrid systems for bioelectronic applications[J]. Bioelectrochemistry, 2007,70:2-11.
    [168]Wang Z G, Ke B B, Xu Z K. Covalent immobilization of redox enzyme on electrospun nonwoven poly(acrylonitrile-co-acrylic acid) nanofiber mesh filled with carbon nanotubes: A comprehensive study[J]. Biotechnol. Bioeng., 2007,97:708-720.
    [169]Turdean G L, Popescu I C, Curulli A, et al. Iron(III) protoporphyrin IX-single-wall carbon nanotubes modified electrodes for hydrogen peroxide and nitrite detection[J].Electrochim. Acta, 2006, 51:6435-6441.
    [170]de Groot M T, Merkx M, Wonders A H, et al. Electrochemical reduction of NO by hemin adsorbed at pyrolitic graphite[J]. J. Am. Chem. Soc., 2005, 127: 7579-7586.
    [171]Garcia de la Rosa A, Castro-Ouezada E, Gutierrez-Granados S, et al. Stable hemin embedded in Nafion? films for the catalytic reduction of trichloroacetic acid under hydrodynamic conditions[J]. Electrochem. Commun., 2005, 7 (8):853-856.
    [172]Kara P, Ozkan D, Kerman K et al. DNA sensing on glassy carbon electrodes by using hemin as the electrochemical hybridization label[J]. Anal. Bioanal. Chem., 2002, 373:710-716.
    [173]Ye J S, Wen Y, Zhang W D, et al. Application of multi-walled carbon nanotubes functionalized with hemin for oxygen detection in neutral solution[J]. J. Electroanal.Chem., 2004, 562:241-246.
    [174]Xu L H, Zhu Y H, Tang L H, et al. Biosensor Based on self-assembling glucose oxidase and dendrimer-encapsulated Pt nanoparticles on carbon nanotubes for glucose detection[J]. Electroanal., 2007,19(6):717-722.
    [175]Sun Y X,Wang S F.Direct electrochemistry and electrocatalytic characteristic of heme proteins immobilized in a new sol-gel polymer film[J].Bioelectrochemistry,2007,71(2):172-179.
    [176]Zhang J,Mo Y,Vukmirovic M B,et al.Platinum monolayer electrocatalysts for O_2reduction:Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles[J].J.Phys.Chem.B,2004,108(30):10955-10964.
    [177]Golikand A N,Irannejad L.Electroreduction of oxygen and electrooxidation of methanol at carbon and single wall carbon nanotube supported platinum electrodes[J].Electroanal.,2008,20(10):1121-1127.
    [178]Shao M H,Huang T,Liu P,et al.Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction[J].Langmuir,2006,22:10409-10415.
    [179]Bednarski T M,Jordan J.The oxymercuration-demercuration of representative olefins a convenient,mild procedure for the markovnikov hydration of the carbon-carbon double bond[J].J.Am.Chem.Soc.,1967,89:1522-1524.
    [180]Qu F,Zhu Z,Li N Q,Electrochemical studies of the hemin-DNA interaction[J].Electroanal.,2000,12(11):831-835.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700