离位增韧RTM复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树脂传递模塑Resin transfer molding(RTM)是近年来飞速发展的一种低成本高效率的复合材料成型技术,目前已被广泛应用于航空、汽车等工业中。但是RTM是一种比较难增韧改性的工艺方式,相对于现在较先进的热压罐/预浸料系统而言,RTM的主要缺点是较低的损伤容限。没有有效改善RTM复合材料韧性的有效手段大大限制了RTM在航空等各个领域的应用。
     本文表征了北京航空材料研究院先进复合材料国防科技重点实验室树脂组新开发出的RTM用中温固化环氧树脂体系3266(玻璃化转变温度为119.88℃)其粘度随时间、温度的变化关系,在粘度实验和DSC热分析实验的基础上,对用于RTM工艺的该环氧树脂体系的化学流变特性进行研究,并根据双阿累尼乌斯方程建立树脂体系的流变模型。模型与实验结果具有良好的一致性。模型揭示了树脂体系在不同工艺条件(T,t)下的粘度变化规律,定量预报RTM工艺树脂的低粘度平台工艺窗口,为合理制定RTM工艺参数、保证产品质量和实现工艺参数的全局优化提供必要的科学依据。
     针对RTM复合材料抗冲击性能差的缺点,本文提出一种全新RTM增韧方法—“离位”,使RTM这种很难被增韧的先进复合材料生产工艺更加具有实用性,实验表明:通过离位改性后,在不降低其他力学性能的情况下,复合材料的韧性提高了73%。电镜分析表明离位改性的碳纤维单向布周期性增强体系,在每两层增强体之间都有很薄一层规整的球性两相结构,正是这个独特的多层结构使其抗冲击性能大幅提高,而且不会对其他重要的力学性能产生不利影响。
Resin transfer molding (RTM) has drawn more attention in the last decade because its manufacture cost is significantly lower than traditional techniques of fabricating fiber-reinforced composites. However, the major limitation of composites via RTM in the aerospace industry is their lower impact damage resistance compared to those via traditional methods.
    National Key Laboratory of Advanced Composites(LAC) in Beijing Institute of Aeronautics Materials(BIAM) has developed a new medium temperature curing epoxy resin system ,of which the glass transition temperature is 119.88℃, for resin transfer molding(RTM). In order to investigate the relation between viscosity and time-temperature, The rheological behavior of the system was studied by DSC and viscosity experiments. A rheological model based on the dual-Arrhenius equation was established and used to simulate the rheological behavior of the resin, which was in good agreement with experimental data. The processing window of the resin system can be well determined by the developed model. The rheological model is important for processing simulation and quality control of RTM processing for high performance composites.
    Due to the RTM's major limitation - low impact damage resistance, this thesis concentrates on toughening epoxy resin for RTM technology by a new concept "Ex-situ". It showed that 73% increasing of toughness in modified composites was achieved without the reduction of other mechanical properties. SEM has showed the periodically interleaved system where the co-continuously connected granular structure occurs layer by layer between each ply and the interlayer was relatively very thin.
引文
1 陈祥宝.先进树脂基复合材料扩大应用的关键[J]. 高科技纤维与应用,2002,27(6):1
    2 汪明,张佐光,胡宏军,李宏运.RTM用环氧树脂体系的固化工艺研究 [J].FRP/CM,2002,No.2:38—40
    3 Habermeier J. Doing business in the new millennium. SAMPE Journal 1999;35(4):30
    4 Hayes BS, Simulation Engineering f polymeric Prepreg Composite Systems, Doctorate thesis, University of Washington 1997
    5 孙曼灵.环氧树脂应用原理与技术[M]. 机械工业出版社,2002:555—558
    6 吴人洁.复合材料[M]. 天津:天津大学出版社,2000:1—23
    7 陈祥宝.高性能树脂基体[M]. 北京:化学工业出版社,1999:1—5
    8 Bunsell.A.R. Fiber Reinforcement For Composites Materials[M]. Elsevier, Amsterdam, 1988: 211—369
    9 罗益锋.高分子科学的今天和明天[M]. 北京:化学工业出版社,1994:213—232
    10 罗益锋.世界高科技纤维的重要动向[J]. 高科技纤维与应用,1998;23(1):1
    11 罗益锋.世纪末国内外高性能纤维极其展望[J]. 高科技纤维与应用,1999;24(1):1
    12 罗益锋.世纪末国内外高性能纤维极其展望[J]. 高科技纤维与应用,1999;24(2):8
    13 吴人洁.高性能与高功能纤维的应用[J]. 宇航材料工艺,1998:28(6):1
    14 Timothy G Gutowsi. Advanced Composite Manufacturing[M]. John Wiley&Sons, Inc,1997:393—456
    15 吴人洁.复合材料[M]. 天津:天津大学出版社,2000:86—142
    16 赵稼祥.国外先进复合材料的现状与发展—第四十届国际尖端材料学会
    
    与展览[A]. 第九届全国复合材料学术会议论文集(下册).世界图书出版公司,1996:5—9
    17 李萍.复合材料闭模成型工艺介绍[A]. 上海经济区玻璃技术经济信息网.http://203.207.221.17/BLG/5202121101.htm
    18 唐邦铭.用于RTM的复合材料树脂研究进展[A]. 第九届全国复合材料学术会议论文集(下册.世界图书出版公司,1996:702—705
    19 Beckwith S W, Craig R H. A Decade of Technology Advances[J]. Resin Transfer Molding, SAMPE Joumal, 1998; 34 (6): 3-23
    20 徐敬一,马玉录.树脂传递摸塑(RTM)成型工艺及应用[J]. 中国塑料,1992;6(2):9-16
    21 Kerdall knetal. Characterization of the RTM Process[J]. Composites Manufacturing, 1992; 3 (4):235-277
    22 Rank K.Ko, Aart Wvan Vuure. Textile Performing for Complex Shape Structural Composites[J]. SAMPE Journal, 1999: 41-47.
    23 Marsh George. Putting SCRIMP in context[J]. Reinforced Plastics, 1997(1): 22-26
    24 杨桂等.编织结构复合材料制作、工艺及工业实践[M]. 北京:科学出版社,1999:125—184
    25 杨桂等.编织结构复合材料制作、工艺及工业实践[M]. 北京:科学出版社,1999:51—125
    26 陈祥宝.高性能树脂基体[M]. 北京:化学工业出版社,1999:38-61
    27 焦剑,蓝立文,狄西岩.高性能环氧树脂基体的发展[J]. 粘接,2000;2:33—39
    28 Bucknall CB, Gilbert AH. Toughening tetraftmctional epoxy resins using polyetherimide. Polymer 1989; 30: 213
    29 Dewhirst KC.resin materials, Shell oil company, 1988
    30 Hillermeier RW, Hayes BS, Seferis JC. Processing of highly elastomeric toughened cyanate esters through a modified resin transfer molding technique. Polymer Composite 1999; 20(1): 155.
    31 Grezezuk LB. Effect of voids on strength properties of filamentary
    
    composites. Proceedings of 22~(nd) Annual Meeting of the Reinforced Plastics Division of the Society of the Plastics Industry, 1967, 20.A-I-20.A-10
    32 赵升龙.RTM用环氧树脂体系的探索研究[D]. 北京航空材料研院,1999.6.
    33 卢红斌,周江,何天白.聚合物反应加工中的化学流变学模拟[J]. 高分子材料科学与工程,2001;17(4):7
    34 路遥,段跃新,梁志勇,张佐光.钡酚醛树脂体系化学流变特性研究[J]. 复合材料学报,2002;19(5):10
    35 段跃新,张宗科,梁志勇,林云,赵渠森,孙冬生,谢富元.BMI树脂化学流变模型及RTM工艺窗口预报研究[J]. 复合材料学报,2001;18(3):8
    36 梁志勇,段跃新,林云,范欣愉,张佐光.EPON862 环氧树脂体系化学流变特性研究[J]. 复合材料学报,2001;8(1):2
    37 梁志勇,段跃新,林云,肇研,路遥,张佐光.乙烯基酯树脂体系流变特性及RTM工艺窗口预报研究[J]. 材料工程,2001,8
    38 魏浩,姜志国等.交联/多相聚氨酯体系化学流变性的研究[J]. 北京化工大学学报,2002;29(3):36—40
    39 姜志国,潘碧莲,周享近.聚醚多元醇/液化MDI反应的化学流变性研究[J]. 聚氨酯工业,1997:12(1):23—26
    40 赵广杰.木材的化学流变学——基础构筑及研究现状[J]. 北京林业大学学报,2001:23(5):9
    41 T.G Gutowski. Advanced Composites Manufacturing[M]. John Wiley & Sons, Inc, 1997:393—456
    42 R.W.Hertzberg著,王克仁等译,工程材料的变形与断裂力学,机械工业出版社,1982
    43 N. Sela and O. Ishai, Interlaminar fracture toughness and toughening of laminated composite materials: a review, Composites, Vol.20(1989), No.5,423-435
    44 B. D. Davidson, et al., Accuracy assessment of the singular-field-based mode-mix decomposition procedure for the prediction of delamination, Composite materials: testing and design, 13~(th) volume, ASTM STP 1242, ASTM, 1997, 109-128
    
    
    45 M. Knig, et al., Characterizing static and fatigue interlaminar fracture behavior of a first generation graphite/epoxy composite, idem, 60-81
    46 H. G. Reeker, et al., Toughened thermosets for damage tolerant carbon fiber reinforced composites, SAMPE Journal, 1990 (26), №2
    47 G. A. Bibo, et al., Review: The role of reinforcement architecture on impact damage mechanisms and post-impact compression behavior, Journal of Materials Science, 1996 (31): 1115-1137
    48 陈平等,热固性树脂的增韧方法及其增韧机理,复合材料学报,16(1999),№3
    49 陈祥宝等,高性能树脂基体,化学工业出版社,1999
    50 张宝艳等,碳纤维增强树脂基复合材料抗冲击性能的改进
    51 PR 500 epoxy resin-3M technical bulletin,3M industrial tape and specialties division 1994
    52 Hoisington MA, Seferis JC. Model multilayer structured composites SAMPE Quarterly 1993; 24(2): 10
    53 Chan AW, Hwang ST. Modeling resin transfer molding of axi-symmetric composite parts. Journal of Materials Processing and Manufacturing Science 1992; 1: 105
    54 Kamal MR, sorour S. Kinetics and thermal characterization of thermoset resin. Polymer Engineering and Science 1973; 13:59
    55 Coulter JP, Smith BF, Guceri SI. Experimental and numerical analysis of resin impregnation during the manufacturing of composite materials. Proc Amer Soc Comp, Second Tech Conf, 1988:209-217
    56 Li S, Gauvin R. Numerical analysis of the resin flow in resin transfer molding. Journal of Reinforced Plastics and Composites 1991; 10: 314-327.
    57 Ayogi H, Uenoyama M, Guceri SI. Analysis and simulation of structural reaction injection moulding (SRIM). International Polymer Processing 1992; 7: 71-83.
    58 Bruno A, Molina G, Betracchi G, Moroni A. Flow behavior in RTM: numerical simulation. Advanced Composite Materials: New Developments and Applications Conference Proceedings, 1991: 217-223.
    
    
    59 Fracchia CA, Castro J, Tucker CL. A finite element/control volume simulation of resin transfer mould filling. Proceedings of the American Society for Composites, Fourth Technical Conference, Novel Processing Techniques—Ⅱ, 1989: 157-166.
    60 Lin R, Lee LJ, Liou M. Non-isothermal mould filling and curing simulation in thin cavities with preplaced fiber mats. International Polymer Processing 1991; 4(4): 356-369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700