两亲性线形嵌段共聚物的合成及溶液自组装研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,嵌段共聚物自组装方面的研究成果十分丰富,对于嵌段共聚物溶液中的胶束化行为的研究也较为深入。然而,找出三嵌段共聚物自组装行为中的普遍性规律则是目前该领域中尚未得到完全解决的颇具挑战性的问题之一。对于线形三嵌段共聚物的溶液自组装行为的研究更是已有研究中涉及不深的一个方向。本文采用ATRP法和RAFT法合成一系列两嵌段及三嵌段共聚物。通过对其中的几组线形ABC三嵌段共聚物进行溶液分级自组装行为研究,得到了一系列结构新颖且可控的自组装聚集体。同时,在由这些共聚物自组装形成的有序结构制备功能性模板以及利用相应模板构筑导电聚合物纳米结构方面做了初步尝试。具体研究内容包括以下几点:
     1)通过ATRP法合成了两组两亲性两嵌段共聚物PEO45-b-PtBAx(x=28,35,53)及PEO113-b-PSx(x=72,82,100).成功制得了转化率较高,分子量分布窄的PEO45-b-PtBAx(x=28,35,53)(Mw/Mn≤1.07)。在tBA相对于PEO-Br的投料比较小时实现了对嵌段共聚物结构及分子量的精确调控。发现tBA投入量的增大会因引发体系粘度增大而导致分子量分布的变宽。相比之下,所得PEO113-b-PSx(x=72,82,100)的分子量分布略宽(Mw/Mn≤1.17)且通过改变反应时间对产物结构进行调控的效果不是十分理想。
     2)通过RAFT法合成了两组两亲性两嵌段共聚物PtBA145-b-PSx(x=270,200)及PnBA28-b-PSx(x=21,37,51,75),得到了分子量分布较窄(Mw/Mn≤1.22)的目标产物。扩第二单体St以制得两嵌段共聚物阶段,大分子链转移剂(带有RAFT端基的PtBA或PnBA)与第二单体投入质量越小,St投料比越大,反应时间越长,越有利于PS嵌段聚合度的增大。
     3)通过ATRP法合成了一组ABC三嵌段共聚物PEO45-b-PtBA53-b-PSx(x=42、84、102、165)。仅通过改变成核段(PS段)长度,在溶液分级自组装过程中成功实现了共聚物自组装形貌从颗粒状渐变为柱状,最终缠结成树莓状。分级组装过程中,胶束直径较为均匀,除PEO45-b-PtBA53-b-PS165,各样品粒径分布较窄;将各样品1mg/mL THF溶液透析到水中的一步透析过程中,得到了预期的囊泡结构,囊泡壁清晰可辨,壁厚基本均匀,团聚现象不是十分明显。PEO45-b-PS270-b-P2VPx出现了一层套一层的形貌。
     4)通过RAFT法成功合成了一组线形ABC三嵌段共聚物PtBA145-b-PS270-b-P2VPx(x=215,70)。采用两步分级组装方法对嵌段共聚物进行了自组装行为研究。PtBA145-b-PS270-b-P2VP215的一级组装过程中采用不同方法直接导致溶剂状况的差异,使嵌段共聚物聚集形态也相应地出现了明显差异。随体系中甲醇含量的增大分别得到了分散性较强的球形核分段胶束,分布较为密集的球形核分段胶束以及带有“小补丁”的复合胶束。在对应的二级组装过程中分别得到了复合胶束相互粘连而形成的密集度各异的胶束串和相互缠连的柱状复合胶束。PtBA145-b-PS270-b-P2VP70的分级组装结果证实成壳段长度的减小不仅使一级组装过程中复合胶束分布的更加密集,而且在某些区域内使复合胶束间发生了轻度粘连。在二级组装过程中所得到的柱状胶束长度与PtBA145-b-PS270-b-P2VP215的二级组装样品相比有所增长。
     5)通过RAFT法成功合成了PnBA28-b-PS37-b-P2VP73,采用两步分级组装方法对所得样品溶液自组装行为进行了研究。通过一级组装过程中选用PnBA和PS两个嵌段的不良溶剂,在分级组装第一步就得到了以这两段为复合胶束核,P2VP段为壳的补丁胶束。在分级组装第二步所实施的透析操作中,在对应于不同的一级组装浓度下,得到了一级组装过程中形成的补丁胶束进一步聚集而成的MCMs。当一级组装液浓度为2mg/mL时,因透析液中PnBA28-b-PS37-b-P2VP73的浓度高出了其cmc值,借助于相近或相连的补丁胶束及MCMs所引起的胶束核段的“有效碰撞”,得到了具有清晰分相结构的多分段柱状胶束。通过聚合物、选择性溶剂和浓度的选择,简单实现了多相多组分聚合物柱状胶束的形成。
     6)①对PEO45-b-PtBA35和PEO45-b-PtBA53-b-PS165进行水解制得了嵌段共聚物模板。选用其中PEO45-b-PtBA35的水解产物PEO45-b-PAA35为功能性模板合成了微/纳米结构导电聚合物材料一聚苯胺(PAni)。考察了模板剂含量恒定时单体加入量对嵌段共聚物模板中制得的PAni颗粒形貌及尺寸的影响。证实了以PEO45-b-PAA35为模板制备PAni的过程中,单体Ani的加入量不宜过低或过高;②尝试以V205片层为模板的常规硬模板法制备了PBZ微米棒/纤维。随V205掺杂量的增大PBZ/V2O5复合材料的形貌由较短的微米棒,变为较长的微米级纤维状结构。V205的掺入有利于聚联苯胺的结晶性、热稳定性及电化学活性的提高。
There are great amount of research achievements about block copolymer self-assembly have been obtained for the past years. However establish a general concept to investigate the self-assembly process of triblock copolymers still remained as a challenging problem. Particularly, the self-assembly of linear triblock copolymer in solution has not been involved in deep. In this work we have synthesized a series of diblock and triblock copolymers by using ATRP and RAFT. Novel and controllable aggregation structure of several group of linear tribolock copolymers were prepared during hierarchical self-assembly process in solution. Meanwhile the preparation of functional templates based on these ordered self-assembly structure and building the nanostructure of conducting polymers in these templates were preliminarily attempted. The concrete research content of this paper lies in the following aspects:
     1) Two group of amphiphilic diblock copolymers PEO45-b-PtBAx(x=28,35,53) and PEO113-b-PSx(x=72,82,100) were synthesized by ATRP.PEO45-b-PtBAx(x=28,35,53) had a narrow molecular weight distributions (Mw/Mn≤1.07). Influence of feed ratio to the control of the structure, molecular weight and molecular weight distributions were discussed. When the feed ratio of tBA to PEO-Br was low, the structure and the molecular weight of copolymers could be controlled accurately. By contrast, the molecular weight distribution of PEO113-6-PSx(x=72,82,100), by contrast, were slightly wider (Mw/Mn≤1.17). And the results of regulate the structure of products were not satisfactory.
     2) Two group of amphiphilic diblock copolymers PtBA145-b-PSx(x=270,200) and PnBA28-b-PSx(xc=21,37,51,75) were synthesized by RAFT. Products with relatively narrow molecular weight distributions (Mw/Mn≤1.22) were obtained. The lower molar ratio of macro chain transfer agent to second monomer (PS), the bigger amount of St in feed and the longer reaction time were beneficial to enlarge the polymerization degree of St block.
     3) A group of ABC triblock terpolymers PEO45-b-PtBA53-b-PSx (x=42,84,102,165) were synthesized by ATRP. In two-step hierarchical self-assembly, control of secondary self-assembly structure of triblock terpolymer PEO45-6-PtBA53-b-PSx was realized easily just by changing the length of core forming PS block. During the process the micelle structure of PEO45-b-PtBA53-b-PSx changed from spherical to cylindrical and finally entangled to raspberry like structure. Micelles with uniform diameter were obtained. Size distributions of samples after self-assembly were narrow, except PEO45-b-PtBA53-b-PS165; in the self-assembly process of one-step dialysis, we obtained vesicular micelles with distinct vesicle walls had uniform thickness.
     4) A group of ABC triblock terpolymers PtBA145-b-PS270-b-P2VPx(x=215,70) were synthesized by RAFT. The two-step hierarchical self-assembly was carried out to investigate the self-assembly behaviors of block copolymers in solution. For PtBA145-b-PS27o-b-P2VP215, the different methods were used in the first step of self-assembly. This caused the difference of solution condition and give rise to the discrepancy of aggregation morphology of samples. With the increase of methanol in solution the well dispersed spherical micelles, densely dispersed core-compartmentalized spherical micelles and "patchy" MCMs were obtained respectively. In the corresponding second self-assembly process, there appeared the micellar strings or cylindrical micelles formed by the adherence of the micelles mentioned above. The results of the hierarchical self-assembly of PtBA145-b-PS270-b-P2VP70showed that, the shorter length of shell forming block caused the dispersity of micelles increased and slight adherence between the micelles. The length of cylindrical micelles obtained in second self-assembly process of PtBA145-b-PS270-b-P2VP70were increased in comparison with PtBA145-b-PS270-b-P2VP215.
     5) PnBA28-b-PS37-b-P2VP73was synthesized successfully by RAFT. Its self-assembly behaviors of in solution was investigated by two-step hierarchical self-assembly. By choosing the non solvent of PnBA and PS in the first step, the patchy micelles with the compound core of this two blocks and the shell of P2VP were obtained. In the second step, the MCMs formed by futhur aggregation of these patchy micelles were prepared. When the concentration of fist self-assembly solution was2mg/mL, the segmented cylindrical MCMs with distinguished phase separation structure were obtained by means of "effective collision" between cores of neighboring or linked micelles for the reason that the concentration of PnBA28-b-PS37-b-P2VP73exceeded its cmc value. The multiphased and multicomponent cylindrical polymer micelles were formed by a simple way.
     6)①Block copolymer templates were prepared by hydrolysis of PEO45-b-PtBA35and PEO45-b-PtBA53-b-PS165. PEO45-b-PAA35, the hydrolyzed PEO45-b-PrBA35, was used to Psynthesize the micro/nano conducting polymer PAni. The influence of the adding amount of monomer at constant template content to the morphology and size of PAni grown in block copolymer templates was observed and verified that the adding amount of monomers should not be so high to obtain fibrous PAni.
     ②Cylindrical and Fibrous PBZ were prepared in the templates of V2O5lamella. The results showed that the composite materials of PBZ/V2O5were synthesized by using emulsion polymerization at different molar ratio of PBZ to V2O5. The morphology of PBZ/V2O5composite materials changed from short micro-rods to long and thin micro fibers. Adding V2O5was useful to increasing the crystalinity, thermal stability and electrochemical activity of PBZ.
引文
[1]Whitesides G, Mathias J., Seto C. Molecular Self-Assembly and Nanochemistry:a Chemical Strategy for the Synthesis of Nanostructures [J]. Science,1991,2 54:1312.
    [2]Whitesides G M., Boncheva M. Beyond Molecules:Self-assembly of Mesoscopic and Macroscopic Components [J]. Pnas,2002,99(8):4769-4774.
    [3]江明,A艾森伯格,刘国军,等.大分子自组装[M].北京:科学出版社,2006,P15.
    [4]Chen Y. M. Shaped Hairy Polymer Nano Objects [J]. Macromolecules,2012,45: 2619-2631.
    [5]Ian. W., Liu G. J. Micellar Structures of Linear Triblock Terpolymers:Three Blocks but Many Possiblities [J]. Polymer,2013,54(8):1950-1978.
    [6]Nandan B., Kuila B. K., Stamm M. Supermolecular Assemlies of Block Cpolymers:as Templates for Fabrication of Nanomaterials [J]. Polymer,2013,54(8):1950-1978.
    [7]Kim J. K., Yang S. Y, Lee Y. M., et al. Functional Nanomaterials Based on Block Copolymers Self-assembly[J]. Progress in Polymer Science,2011,35:1325-1349.
    [8]Sun H. L., Guo B. N., Li X. Q., et al. Shell-Sheddable Micelles Based on Dextran-SS-Poly(epsilon-caprolactone) Diblock Copolymer for Efficient Intracellular Release of Doxorubicin. [J]. Biomacromolecules,2010 (11):848-854.
    [9]Sun H. L., Guo B. N., Cheng R., et al. Biodegradable Micelles with Sheddable Poly(ethylene glycol) Shells for Triggered Intracellular Release of Doxorubicin. [J]. Biomaterials,2009 (30):6358-6366.
    [10]Li Z. Q., Qian J., Cao X. L., et al. pH-Sensitive Vesicles Prepared from Supramolecular Graft Copolymers and the Application in the Controlled Release of Drug. [J]. Acta Chim. Sinica,2010(68):181-186.108
    [11]Chen W., Meng F. H., Cheng R., et al. pH-Sensitive Degradable Polymersomes for Triggered Release of Anticancer Drugs:A Comparative Study with Micelles. [J]. J. Control. Release,2010 (142):40-46.
    [12]Zhu W., Li Y, Liu L., et al. Biamphiphilic Triblock Copolymer Micelles as a Multifunctional Platform for Anticancer Drug Delivery [J]. J. Biomed. Mater. Res.,2011 (96A):330-340.
    [13]Lan Y, Yang L., Zhang M. C. et al. Microreactor of Pd Nanoparticles Immobilized Hollow Microspheres for Catalytic Hydrodechlorination of Chlorophenols in Water. [J]. ACS Appl. Mater. Interfaces,2009 (2):127-133.
    [14]Vriezema D. M., Garcia P. M. L., Oltra N. S., et al. Positional Assembly of Enzymes in Polymersome Nanoreactors for Cascade Reactions. [J]. Angew. Chem. Int. Ed.,2007 (46): 7378-7382.
    [15]Broz P., Driamov S., Ziegler J., et al. Toward Intelligent Nanosize Bioreactors:A pH-Switchable, Channel-Equipped, Functional Polymer Nanocontainer. [J]. Nano Lett., 2006 (6):2349-2353.
    [16]Misra A. C., Bhaskar S., Clay N., et al. Multicompartmental Particles for Combined Imaging and siRNA Delivery. [J]. Adv. Mater.,2012 (24):3850-3856.
    [17]Sun Q. Q., Cheng D., Yu X. S., et al. A pH-Sensitive Polymeric Nanovesicle Based on Biodegradable Poly(ethylene glycol)-b-Poly(2-(diisopropylamino)ethyl aspartate) as a MRI-Visible Drug Delivery System. [J]. J. Mater. Chem.,2011 (21):15316-15326.
    [18]Yang X. Q., Grailer J. J., Rowland I. J., et al. Multifunctional SPIO/DOX-Loaded Wormlike Polymer Vesicles for Cancer Therapy and MR Imaging [J]. Biomaterials,2010 (31):9065-9073.
    [19]Matsen M. W., Schick M. Stable and Unstable Phases of a Diblock Copolymer Melt [J]. Phys. Rew. Lett.,1994,72:2660-2663.
    [20]Matsen M. W., Schick M. Microphases of a Diblock Copolymer with Conformational Asymmetry [J]. Macromolecules,1994,27:4014-4015.
    [21]Matsen M. W. Comparison of A-Block Polydispersity Effects on BAB Triblock and AB Diblock Copolymer Melts [J]. Eur. Phys J. E,2013,36:44.
    [22]Tang P., Qiu F., Zhang H. D., et al. Morphology and phase diagram of complex block copolymers:ABC linear triblock copolymers [J]. Physical Review E 2004,69(3): 031803.
    [23]Phan S., Fredrickson G. H. Morphology of Symmetric ABC Triblock Copolymers in the Strong Segregation Limit [J]. Macromolecules 1998,31(1),59-63.
    [24]Lyatskaya Y. V., Birshtein T. M. Triblock copolymers:the role of interfacial tension coefficients at two interfaces. Polymer 1995,36(5),975-980.
    [25]Dotera T. Tricontinuous Cubic Structures in ABC/A/C Copolymer and Homopolymer Blends [J]. Physical Review Letters 2002,89(20):205502.
    [26]Cochran E. W., Morse D. C., Bates F. S. Design of ABC Triblock Copolymers near the ODT with the Random Phase Approximation [J]. Macromolecules 2003,36(3),782-792.
    [27]Zheng W., Wang Z. G. Morphology of ABC Triblock Copolymers [J]. Macromolecules 1995,28(21):7215-7223.
    [28]Park C. M., Yoon J. S., Thomas L. E. Enabling Nanotechnology with Selfassembled Block Copolymer Patterns [J]. Polymer,2003 (44):6725-6760.
    [29]唐林,宋颖,李冬梅,等.嵌段共聚物自组装的研究进展[J].高分子通报,2011,3:36-44.
    [30]Zhang L., Eisenberg A. Multiple Morphologies of "Crew-Cut" Aggregates of Polystyrene-b-Poly(acrylic acid) Block Copolymers [J]. Science,1995,268:1728-1731.
    [31]Yu K., Eisenberg A. Multiple Morphologies in Aqueous Solutions of Aggregates of Polystyrene-block-Poly(ethylene oxide) Diblock Copolymers [J]. Macromolecules,1996 (29):6359-6361.
    [32]Huang H., Chung B., Jung J., et al. Toroidal Micelles of Uniform Size from Diblock Copolymers [J]. Angew. Chem. Int. Ed.,2009 (48):4594-4597.
    [33]Choucair A., Eisenberg A. Control of Amphiphilic Block Copolymer Morphologies Using Solution Conditions [J]. Eur. Phys. J. E,2003 (10):37-44.
    [34]Hayward R. C., Pochan D. J. Tailored Assemblies of Block Copolymers in Solution:It Is All about the Process [J]. Macromolecules,2010 (43):3577-3584.
    [35]Yu Y, Eisenberg A. Control of Morphology through Polymer-Solvent Interactions in Crew-Cut Aggregates of Amphiphilic Block Copolymers [J]. J. Am. Chem. Soc.1997, 119,8383-8384.
    [36]Zhang L., Eisenberg A. Multiple Morphologies and Characteristics of "Crew-Cut" Micelle-like Aggregates of Polystyrene-b-poly (acrylic acid) Diblock Copolymers in Aqueous Solutions [J]. J. Am. Chem. Soc.1997,118,3168-3181.
    [37]Zhang L., Eisenberg A. Morphogenic Effect of Added Ions on Crew-Cut Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers in Solutions [J]. Macromolecules 1996,29,8805-8815.
    [38]Terreau O., Luo L., Eisenberg A. Effect of Poly(acrylic acid) Block Length Distribution on Polystyrene-b-Poly(acrylic acid) Aggregates in Solution.1. Vesicles [J]. Langmuir 2003,19,5601-5607.
    [39]Zhang L., Eisenberg A. Thermodynamic vs Kinetic Aspects in the Formation and Morphological Transitions of Crew-Cut Aggregates Produced by Self-Assembly of Polystyrene-b-poly(acrylic acid) Block Copolymers in Dilute Solution [J]. Macromolecules 1999,32,2239-2249.
    [40]Zhang L., Eisenberg A. Crew-cut aggregates from self-assembly of blends of polystyrene-b-poly(acrylic acid) block copolymers and homopolystyrene in solution [J]. J. Polymer Sci. Part B:Polymer Physics,1999,37,1469-1484.
    [41]Gao Z., Varshney S. K., Wong S., et al. Block Copolymer "Crew-Cut" Micelles in Water [J]. Macromolecules 1994,27,7923-7927.
    [42]Zhang L., Shen H., Eisenberg A. Phase Separation Behavior and Crew-Cut Micelle Formation of Polystyrene-b-poly(acrylic acid) Copolymers in Solutions [J]. Macromolecules 1997,30,1001-1011.
    [43]Terreau O., Bartels C., Eisenberg A. Effect of Poly(acrylic acid) Block Length Distribution on Polystyrene-b-poly(acrylic acid) Block Copolymer Aggregates in Solution.2. A Partial Phase Diagram [J]. Langmuir 2004,20,37-45.
    [44]Yu K., Eisenberg A. Bilayer Morphologies of Self-Assembled Crew-Cut Aggregates of Amphiphilic PS-b-PEO Diblock Copolymers in Solution [J]. Macromolecules 1998,31, 3509-3518.
    [45]Zhang L., Eisenberg A. Formation of Crew-Cut Aggregates of Various Morphologies from Amphiphilic Block Copolymers in Solution [J]. Polym. Adv. Technol.,1998, 9(10-11):677-699.
    [46]Guo A., Liu G., Tao J. Star Polymers and Nanospheres from Cross-Linkable Diblock Copolymers [J]. Macromolecules 1996,29,2487-2493.
    [47]Tao J., Stewart S., Liu G et al. Star and Cylindrical Micelles of Polystyrene-block-poly(2-cinnamoylethyl methacrylate) in Cyclopentane [J]. Macromolecules 1997,30,2738-2745.
    [48]Ian W., Liu G J. Self-assembly and Chemical pProcessing of Block Copolymers:a Roadmap towards a Diverse Array of Block Copolymer Nanostructures [J]. Science China Chemistry,2013,56(8):1040-1066.
    [49]Yan X. H., Liu F. T., Liu Z. et al., Poly(acrylic acid)-Lined Nanotubes of Poly(butyl methacrylate)-block-Poly(2-cinnamoyloxyethl methacrylate) [J]. Macromolecules 2001, 34,9112-9116.
    [50]Ding J, Liu G Polyisoprene-block-poly(2-cinnamoylethyl methacrylate) Vesicles and Their Aggregates. [J]. Macromolecules 1997,30,655-657.
    [51]Ding J., Liu G. Hairy, Semi-shaved, and Fully Shaved Hollow Nano-Spheres from Polyisoprene-block-Poly(2-cinnamoylethyl methacrylate) [J]. Chem Mater,1998,10(2): 537-542.
    [52]Liu G, Ding J. Diblock Thin Films with Densely Hexagonally Packed Nanochannels [J].Adv Mater,1998,10(1):69-71.
    [53]Biitun V., Billingham N. C, Armes S. P. Unusual Aggregation Behavior of a Novel Tertiary Amine Methacrylate-Based Diblock Copolymer:Formation of Micelles and Reverse Micelles in Aqueous Solution [J]. J. Am. Chem. Soc.,1998,120(45): 11818-11819.
    [54]Liu S. Y., Armes S. P. Polymeric Surfactants for the New Millennium:A pH-Responsive, Zwitterionic, Schizophrenic Diblock Copolymer [J]. Angew. Chemie.,2002,41(8): 1413-1416.
    [55]Weaver J. V. M., Armes S. P., V Butun. Synthesis and Aqueous Solution Properties of a Well-Defined Thermo-Responsive Schizophrenic Diblock Copolymer [J]. Chem. Commun,2002,18:2122-2123.
    [56]Lomas H., Du J. Z., Canton I., et al. Efficient Encapsulation of Plasmid DNA in pH-Sensitive PMPC-PDPA Polymersomes:Study of the Effect of PDPA Block Length on Copolymer-DNA Binding Affinity [J]. Macromolecular Bioscience,2010,10(5): 513-530.
    [57]Licciardi M., Tang Y., Billingham N. C, et al. Synthesis of Novel Folic Acid-Functionalized Biocompatible Block Copolymers by Atom Transfer Radical Polymerization for Gene Delivery and Encapsulation of Hydrophobic Drugs [J]. Biomacromolecules,2005,6(2):1085-1096.
    [58]Sugihara S., Blanazs A., Armes S. P., et al. Aqueous Dispersion Polymerization:A New Paradigm for in Situ Block Copolymer Self-Assembly in Concentrated Solution [J]. J. Am. Chem. Soc.,2011,133(39):15707-15713.
    [59]Blanazs A., Madsen J., Battaglia G, et al. Mechanistic Insights for Block Copolymer Morphologies:How Do Worms Form Vesicles? [J]. J. Am. Chem. Soc.,2011,133(41): 16581-16587.
    [60]Li Y. T., Armes S. P. RAFT Synthesis of Sterically Stabilized Methacrylic Nanolatexes and Vesicles by Aqueous Dispersion Polymerization [J]. Angew. Chemie.,2010,49(24): 4042-4046.
    [61]Thurmond K. B. I., Kowalewski T., Wooley K. L. Water-Soluble Knedel-Like Structures: The preparation of shell-crosslinked small particles, [J]. J. Am. Chem. Soc.,1996,118(30), 7239-7240.
    [62]Huang H., Kowalewski T., Remsen E. E., et al. Hydrogel-Coated Glassy Nanospheres:A Novel Method for the Synthesis of Shell Cross-Linked Knedels [J]. J. Am. Chem. Soc.,1997,119(48),11653-11659.
    [63]Harrisson S., Wooley K. L. Shell-crosslinked Nanostructures from Amphiphilic AB and ABA Block Copolymers of Styrene-alt-(maleic anhydride) and Styrene:Polymerization, Assembly and Stabilization in One Pot [J]. Chem. Commun.,2005,26:3259-3261.
    [64]Ober C. K., Cheng S. Z. D., Hammond P. T., et al. Research in Macromolecular Science: Challenges and Opportunities [J]. Macromolecules,2009,42(2):465-471.
    [65]Hadjichristidis N., Iatrou H., Pitsikalis M.5 et al. Linear and Non-linear Triblock Terpolymers:Synthesis, Self-assembly in Selective Solvents and in Bulk [J]. Progress in Polymer Science,2005,30:725-782.
    [66]Dou H. J., Liu G. J., Dupont J., et al. Triblock Terpolymer Helices Self-assembled under Special Solvation Conditions [J]. Soft Matter,2010,6:4214-4222.
    [67]Fustin C. A., Abetz V., Gohy J. F. Triblock Terpolymer Micelles:A Personal Outlook [J]. Eur. Phys. J. E,2005,16:291-302.
    [68]Moughton A. O., Hillmyer M. A., Lodge T. P. Multicompartment Block Polymer Micelles [J]. Macromolecules,2012,45:2-19.
    [69]Patrickios C. S., Hertler W. R., Abbott N. L., et al. Diblock, ABC Triblock, and Random Methacrylic Polyampholytes:Synthesis by Group Transfer Polymerization and Solution Behavior. [J]. Macromolecules,1994,27:930-936.
    [70]Patrickios C. S., Forder C, Armes S. P. Water-Soluble ABC Triblock Copolymers based on Vinyl Ethers:Synthesis by Living Cationic Polymerization and Solution Characterization. [J]. Journal of Polymer Science Part A:Polymer Chemistry,1997, 35(7):1181-1195.
    [71]Kriz J., Masar B., Plestil J., et al. Three-Layer Micelles of an ABC Block Copolymer: NMR, SANS, and LS Study of a Poly (2-ethylhexyl acrylate)-block-poly (methyl methacrylate)-block-poly (acrylic acid) Copolymer in D2O. [J]. Macromolecules,1998, 31:41-51.
    [72]Gohy J. F., Willetl N., Varshney S. K., et al. Core-Shell-Corona Micelles with a Responsive Shell [J]. Angew. Chem.,2001,113:3314-3319.
    [73]CaiY., Armes S. P. A Zwitterionic ABC Triblockcopolymer that forms a "trinity" of micellar aggregates in aqueous solution [J]. Macromolecules,2004,37:7116-7122.
    [74]Hu J. W., Njikang G, Liu G. J. Twisted ABC Triblock Copolymer Cylinders with Segregated A and C Coronal Chains [J]. Macromolecules,2008,41:7993-7999.
    [75]HanD. H., Li X. Y., Hong S., et al. Morphological Transition of Triblock Copolymer Cylindrical Micelles Responding to Solvent Change [J]. Soft Matter,2012,8(7): 2144-2151.
    [76]Yu S., Azzam T., Roullier I., et al [J]. J. Am. Chem. Soc.,2009,131(30):10557-10566.
    [77]Kempe K., Hoogenboon R., Fustin C. A. et al [J]. Discovering new block terpolymer micellar morphologies [J]. Chem Commun 2010;46(35):6455-6457.
    [78]Pochan D. J., Cui H. G, Hales K., et al. Toroidal Triblock Copolymer Assemblies [J]. Science,2004,306:94-97.
    [79]Walther A., Barner-Kowollik C., Muller A. H. E. Mixed, Multicompatment, or Janus Micelles? A Systemetic Study of Thermoresponsive Bis-Hydrophilic Block Terpolymers [J]. Langmuir,2010,26(14):12237-12246.
    [80]Erhardt R., Zettl A. B. H., Kaya H., et al. Janus Micelles [J]. Macromolecules,2001,34: 1069-1075.
    [81]Erhardt R., Zhang M. F., Boker A., et al. Amphiphilic Janus Micelles with Polystyrene and Poly(methacrylic acid) Hemispheres [J]. J. Am. Chem. Soc.,2003,125:3260-3267.
    [82]Groschel A. H., Walther A., Tian I., et al. Facial, Solution-Based Synthesis of Soft, Nanoscale Janus Particles with Tunable Janus Balance [J]. J. Am. Chem. Soc,2012,134: 13850-13860.
    [83]Wolf A., Walther A., Miiller A. H. E. Janus Triad:Three Types of Nonspherical, Nanoscale Janus Particles from One Single Triblock Terpolymer [J]. Macromolecules, 2011,44:9221-9229.
    [84]Schacher F., Walther A., Miiller A. H. E. Dynamic Multicompartment-Core Micelles in Aqueous Media [J]. Langmuir,2009,25(18):10962-10969.
    [85]Schacher F., Walther A., Ruppel M., et al. Multicompartment Core Micelles of Triblock Terpolymers in Organic Media [J]. Macromolecules,2009,42:3540-3548.
    [86]Schacher F., Betthausen E., Walther A., et al. Interpolyelectrolyte Complexes of Dynamic Multicompartment Micelles[J]. ACS Nano,2009,3(8):2095-2012.
    [87]Groschel A. H., Schacher F. H., Schmalz H., et al. Precise Hierachical Self-assembly of Multicompartment Micelles [J]. Nature Communications,2012,3:710.
    [88]Jiang T., Wang L. Q., Lin S. L., et al. Structural Evolution of Multicompartment Micelles Self-Assembled from Linear ABC Triblock Copolymer in Selective Solvents [J]. Langmuir,2011,27:6440-6448.
    [89]Hanisch A., Groschel A. H., Fortsch M., et al. Counterion-Mediated Hierarchical Self-Assembly of an ABC Miktoarm Star Terpolymer [J]. ACS Nano,2013,7(5): 4030-4041.
    [90]Zhou Z. L., Li Z. B., Ren Y., et al. Micellar Shape Change and Internal Segregation Induced by Chemical Modification of a Tryptych Block Copolymer Surfactant [J]. J. Am. Chem. Soc,2003,125(34):10182-10183.
    [91]Skrabania K., Laschewsky A., Berlepsch H., et al. Synthesis and Micellar Self-Assembly of Ternary Hydrophilic-Lipophilic-Fluorophilic Block Copolymers with a Linear PEO Chain [J]. Langmuir,2009,25 (13):7594-7601.
    [92]Kubowicz S., Baussard J. F., Lutz J. F., et al. Multicompartment Micelles Formed by Self-Assembly of Linear ABC Triblock Copolymers in Aqueous Medium [J]. Angw. Chem. Int. Ed.,2005,44 (33):5262-5265.
    [93]Berlepsch H., Bottcher C., Skrabania K., et al. Complex Domain Architecture of Multicompartment Micelles from a Linear ABC Triblock Copolymer Revealed by Cryogenic Electron Tomography [J]. Chem. Commun.,2009,17:2290-2292.
    [94]Skrabania K., Berlepsch H., Bottcher C., et al. Synthesis of Ternary, Hydrophilic-Lipophilic-Fluorophilic Block Copolymers by Consecutive RAFT Polymerizations and Their Self-Assembly into Multicompartment Micelles. [J]. Macromolecules,2010,43(1):271-281.
    [95]Tsitsilianis C., Skifa V. Heteroarm star-like micelles formed from polystyrene-block-poly(2-vinylpyridine)-block-poly(methylmethacrylate) ABC copolymers in toluene. [J]. Macromol. Rapid. Commun.,2001,22:647-651.
    [96]Wang X., Winnik M., Manners I. Synthesis and solution self-assembly of coil-crystalline-coil polyferrocenylphosphin-b-polyferrocenylsilane-b-polysiloxane triblock copolymers [J]. Macromolecules,2002,35:9146-9150.
    [97]Njikang G, Han D., Wang J., et al. ABC Triblock Copolymer Micelle-Like Aggregates in Selective Solvents for A and C [J]. Macromolecules,2008,41:9727-9735.
    [98]Fang B., Walther A., Wolf A., et al. Undulated Multicompartment Cylinders by the Controlled and Directed Stacking of Polymer Micelles with a Compartmentalized Corona [J]. Angew Chem Int Ed,2009,48(16):2877-2880.
    [99]Webster O. W. Living Polymerization Methods [J]. Science,1991,251,887-893.
    [100]Kato M., Kamigaito M., Sawamoto M., et al. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris-(triphenylphosphine) ruthenium(II)/ Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System:Possibility of Living Radical Polymerization [J]. Macromolecules 1995,28,1721-1723.
    [101]Percec V., Barboiu B. "Living" Radical Polymerization of Styrene Initiated by Arenesulfonyl Chlorides and CuI(bpy)nCl [J]. Macromolecules,1995,28,7970-7972.
    [102]Wang J. S., Matyjaszewski K. Controlled/"living" radical polymerization, atom transfer radical polymerization in the presence of transition-metal complexes [J]. J. Am. Chem. Soc.1995,117,5614-5615.
    [103]Herndon J. W. The Chemistry of the Carbon-Transition Metal Double and Triple Bond: Annual Covering the Year 1999 [J]. Coordination Chemistry Reviews 2001,24,215-285.
    [104]Goto A., Fukuda T. Determination of the activation rate constants of alkyl halide initiators for atom transfer radical polymerization [J]. Macromol. Rapid Commun.1999, 20,633-636.
    [105]Matyjaszewski K., Goebelt B., Paik H., et al. Tridentate Nitrogen-Based Ligands in Cu-Based ATRP:A Structure-Activity Study [J]. Macromolecules 2001,34,430-440..
    [106]Matyjaszewski K., Paik H., Zhou P., et al. Determination of Activation and Deactivation Rate Constants of Model Compounds in Atom Transfer Radical Polymerization [J]. Macromolecules 2001,34,5125-5131.
    [107]Tong J. D., Moineau G., Leclere P., et al. Synthesis, Morphology, and Mechanical Properties of Poly(methyl methacrylate)-b-poly(n-butyl acrylate)-b-poly(methyl methacrylate) Triblocks. Ligated Anionic Polymerization vs Atom Transfer Radical Polymerization [J]. Macromolecules 2000,33,470-479.
    [108]Moineau G, Minet M., Teyssie P., et al. Synthesis of fully acrylic thermoplastic elastomers by atom transfer radical polymerization (ATRP),2. Effect of the Catalyst on the Molecular Control and the Rheological Properties of the Triblock Copolymers [J]. Macromol. Chem. Phys.2000,201,1108-1114.
    [109]Moineau G, Granel C., Dubois P., et al. Controlled Radical Polymerization of Methyl Methacrylate Initiated by an Alkyl Halide in the Presence of the Wilkinson Catalyst [J]. Macromolecules 1998,31,542-544.
    [110]Ando T., Kamigaito M., Sawamoto M. Iron(Ⅱ) Chloride Complex for Living Radical Polymerization of Methyl Methacrylate [J]. Macromolecules 1997,30,4507-4510.
    [111]Zhu S. M., Yan D. Y. Atom Transfer Radical Polymerization of Methyl Methacrylate Catalyzed by IronⅡ Chloride/Isophthalic Acid System [J]. Macromolecules 2000,33, 8233-8238.
    [112]Kotani Y., Kato M., Kamigaito M., et al. Living Radical Polymerization of Alkyl Methacrylates with Ruthenium Complex and Synthesis of Their Block Copolymers [J]. Macromolecules 1996,29,6979-6982.
    [113]Senoo M., Kotani Y, Kamigaito M., et al. Living Radical Polymerization of N,N-Dimethylacrylamide with RuCl2(PPh3)3-Based Initiating Systems [J]. Macromolecules 1999,32,8005.
    [114]Uegaki H., Kamigaito M., Sawamoto M. Living radical polymerization of methyl methacrylate with a zerovalent nickel complex, Ni(PPh3)J. Polym. Sci.:Polym. Chem. 1999,37,3003-3009.
    [115]Granel C., Dubois P., Jerome R., et al. Controlled Radical Polymerization of Methacrylic Monomers in the Presence of a Bis(ortho-chelated) Arylnickel(Ⅱ) Complex and Different Activated Alkyl Halides [J]. Macromolecules 1996,29,8576-8582.
    [116]Wu X. F., Fraser C. L. Architectural Diversity via Metal Template-Assisted Polymer Synthesis:A Macroligand Chelation Approach to Linear and Star-Shaped Polymeric Ruthenium Tris(bipyridine) Complexes [J]. Macromolecules 2000,33,4053-4060.
    [117]Xia J. H., Gaynor S G, Matyjaszewski K. Controlled/"Living" Radical Polymerization. Atom Transfer Radical Polymerization of Acrylates at Ambient Temperature [J]. Macromolecules 1998,31,5958-5959.
    [118]Ziegler M. J., Matyjaszewski K. Atom Transfer Radical Copolymerization of Methyl Methacrylate and n-Butyl Acrylate [J]. Macromolecules 2001,34,415-424.
    [119]Singha N. K., Klumperman B. Atom-transfer radical polymerization of methyl methacrylate (MMA) using CuSCN as the catalyst [J]. Macromol. Rapid Commun,2000, 21,1116-1120.
    [120]Percec V., Popov A. V., Ramirez-Castillo E., et al. Aqueous Room Temperature Metal-Catalyzed Living Radical Polymerization of Vinyl Chloride [J]. J. Am. Chem. Soc., 2002,124,4940-4941.
    [121]Wakioka M., Baek K. Y., Ando T, et al. Possibility of Living Radical Polymerization of Vinyl Acetate Catalyzed by Iron(I) Complex [J]. Macromolecules,2002,35,330-333.
    [122]Tsuji M., Sakai R., Satoh T., et al. Enantiomer-Selective Radical Cyclopolymerization of rac-2,4-Pentanediyl Dimethacrylate Using ATRP Initiating System with Chiral Amine Ligand [J]. Macromolecules,2002,35,8255-8257.
    [123]Chung I. S., Matyjaszewski K. New Seven-and Eight-Membered Cyclic Alkoxyamines for the Living Free Radical Polymerization [J]. Macromolecules,2003,36,3078-3084.
    [124]Matyjaszewski K., Jo S. M., Paik H. J., et al. An Investigation into the CuX/2,2'-Bipyridine (X= Br or Cl) Mediated Atom Transfer Radical Polymerization of Acrylonitrile [J]. Macromolecules,1999,32,6431-6438.
    [125]Matyjaszewski K., Jo S. M., Paik H. J., et al. Synthesis of Well-Defined Polyacrylonitrile by Atom Transfer Radical Polymerization [J]. Macromolecules,1997, 30,6398-6400.
    [126]王晓松,罗宁,应圣康CuX/bpy催化体系中甲基丙烯酸甲酯的原子转移自由基聚合[J].功能高分子学报,1998,11(1):1-8.
    [127]Wang X. S., Jackson R. A., Armes S P. Facile Synthesis of Acidic Copolymers via Atom Transfer Radical Polymerization in Aqueous Media at Ambient Temperature [J]. Macromolecules,2000,33,255-257.
    [128]Xia J. H., Johnson T, Gaynor S. G., et al. Atom Transfer Radical Polymerization in Supercritical Carbon Dioxide Macromolecules,1999,32,4802-4805.
    [129]Haddleton D. M., Jackson S. G., Bon S. A. F. Copper(I)-Mediated Living Radical Polymerization under Fluorous Biphasic Conditions [J]. J. Am. Chem. Soc.,2000,122, 1542-1543.
    [130]Wang W., Yin Z., Detrembleur C., et al. The Use of ε-Caprolactone as a Polymerizable Solvent for the Atom Transfer Radical Polymerization of MMA at Low Temperature [J]. Macromol. Rapid Commun.,2002,203,968-974.
    [131]Chiefari J., Chong Y. K., Ercole F., et al. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer:The RAFT Process [J]. Macromolecules 1998,31:5559-5562.
    [132]董建华.高分子科学前沿与进展[M]科学出版社,2006.
    [133]Yoo S. I., Sohn B. H., Zin W. C, et al. Localized synthesis of polypyrrole in the nanopattern of monolayer films of diblock copolymer micelles [J]. Langmuir,2004,20: 10734-10736.
    [134]Bucholz T, Sun Y., Loo Y. L. Near-monodispersed polyaniline particles through template synthesis and simultaneous doping with diblock copolymers of PMA and PAAMPSA[J]. J. Mater. Chem.,2008,18:5835-5842.
    [135]Nandan B., Kuila B. K., Stamm M. Superamolecular assemblies of block copolymers as templates for fabrication of nanomaterials [J]. European Polymer Journal,2011,47:584-599.
    [136]Kim J. K., Yang S. Y, Lee Y M., et al. Functional nanomaterials based on block copolymers self-assembly [J]. Progress in Polymer Science,2011,35:1325-1349.
    [137]Broz P., Diramo S., Ziglar J., et al. Toward Intelligent Nanosize Bioreactors:A pH-Switchable, Channel-Equipped, Functional Polymer Nanocontainer [J]. Nano Lett, 2006,6:2349-2353.
    [138]Nash M. A., Lai J. J., Hoffman A. S., et al. "Smart" Diblock Copolymers as Templates for Magnetic-Core Gold-Shell Nanoparticle Synthesis [J]. Nano Lett,2010,10:85-91.
    [139]Discher D. E., Ahmed F. Polymersomes [J]. Annu. Rev. Biomed. Eng.,2010,10:85-91.
    [140]Phabaharan M., Grailer J. J., Pila S., et al. Amphiphilic Multi-Arm-Block Copolymer Conjugated with Doxorubicin via pH-Sensitive Hydrazone Bond for Tumor-Targeted Drug Delivery [J]. Biomaterials,2009,30:5757-5766.
    [141]袁建军,程时远,封麟先.嵌段共聚物自组装及其在纳米材料制备中的应用(下)[J].高分子通报,2002,2:9-17,28.
    [142]Nikolic M. S., Olsson C., Salcher A., et al. Micelle and Vesicle Formation of Amphiphilic Nano Particles [J]. Angew. Chem. Int. Ed.,2009,48:2752-2754.
    [1]秦江雷,陈永明.由嵌段共聚物制备有形状的核壳结构聚合物纳米颗粒[J].高分子学报,2011,(6):572-585.
    [2]Ian W., Liu G. J. Micellar Structures of Linear Triblock Terpolymers:Three Blocks but Many Possiblities [J]. Polymer,2013,54(8):1950-1978.
    [3]Bartels J. F., Cauet S. I., Billings P. L., et al. Evaluation of Isoprene Chain Extension from PEO Macromolecular Chain Transfer Agents for the Preparation of Dual, Invertible Block Copolymer Nanoassemblies [J]. Macromolecules,2010,43:7128-7138.
    [4]栗志广,马晓燕,常海等.含聚乙二醇的嵌段共聚物的合成及自组装研究进展[J].化工 进展,2013,32(2):381-387,413.
    [5]李光华,杨苹苹,赵治巨等.自由基调聚法合成聚丙烯酸叔丁酯调聚物[J].化工学报,2011,62(7):2061-2066.
    [6]Mori H., Miiller A. H. E. New Polymeric Architectures with (Meth)acrylicacid Segments [J]. Prog. Polym. Sci.2003,28:1403-1439。
    [7]Xing Y. H., Lin S. L., Lin J. P. Synthesis, Self-assembly and Responsive Properties of PEG-b-PDMAEMA-b-PMMAzo Triblockcopolymers [J]. Chinese Journal of Polymer Science,2013,31(5):833-840.
    [8]董建华.高分子科学前沿与进展[M]科学出版社,2006.
    [9]Long Y. Z., Li M. M., Gu C. Z., et al. Recent advances in synthesis, physical properties and applicantions of conducting polymer nanotubes and nanofibers[J]. Prog. Polym. Sci., 2011,36:1415-1442.
    [10]Park M., Harrison C., Chaikin P. M., et al. Block Copolymer Lithography:Periodic Arrays of~1011 Holes in 1 Square Centimeter [J]. Science 1997,276:1401-1404.
    [11]Krishnamoorthy S., Hinderling C.,Heinzelmann H. Nanoscale Patterning with Blockcopolymers [J]. Materials Today 2006,9(9):40-47.
    [12]Wolf A., Walther A., Muller A. H. E. Janus Triad:Three Types of Nonspherical, Nanoscale Janus Particles from One Single Triblock Terpolymer [J]. Macromolecules,2011,44: 9221-9229.
    [13]Qin J. L., Chen Y. M., Yan D. D. et al. Dispersible Shaped Nanoobjects from Bulk Microphase Separation High Tg of Block Copolymers without Chemical Cross-linking [J]. Macromolecules,2010,43:10652-10658.
    [14]Du J. Z., Chen Y. M. Atom-Transfer Radical Polymerization of a Reactive Monomer: 3-(Trimethoxysilyl)propyl Methacrylate [J]. Macromolecules,2004,37:6322-6328.
    [15]章莉娟,陈锐毫,蓝荣肇等.ATRP法合成两亲性聚乙二醇-聚丙烯酸叔丁酯嵌段共聚物[J].高校化学工程学报,2011,25(5):781-786.
    [1]Ian W. W., Liu G. J. Micellar Structures of Linear Triblock Terpolymers:Three Blocks but Many Possiblities [J]. Polymer,2013,54(8):1950-1978.
    [2]江明,A艾森伯格,刘国军,等.大分子自组装[M].北京:科学出版社,2006.
    [3]Petrov P. D., Drechsler M, Miiller A. H. E. Self-Assembly of Asymmetric Poly(ethylene oxide)-block-Poly(n-butyl acrylate) Diblock Copolymers in Aqueous Media to Unexpected Morphologies[J]. J. Phys. Chem. B,2009,113:4218-4225.
    [4]陈圣典,胡方振,盛瑞隆,等.可逆-加成断裂转移方法合成两亲液晶嵌段功能大分子及其自组装的研究[J].高分子学报,2013,(1):102-111.
    [5]Eghbali E., Colombani O., Drechsler M., et al. Rheology and Phase Behavior of Poly(n-butyl acrylate)-block-poly(acrylic acid) in Aqueous Solution [J]. Langmuir,2006, 22:4766-4776.
    [6]Qin J. L., Chen Y. M., Yan D. D., et al. Dispersible Shaped Nanoobjects from Bulk Microphase Separation High Tg of Block Copolymers without Chemical Cross-linking [J]. Macromolecules,2010,43:10652-10658.
    [7]Walther A., Barner-Kowollik C., Miiller A. H. E. Mixed, Multicompatment, or Janus Micelles? A Systemetic Study of Thermoresponsive Bis-Hydrophilic Block Terpolymers [J]. Langmuir,2010,26(14):12237-12246.
    [8]李光华,杨苹苹,赵治巨,等.自由基调聚法合成聚丙烯酸叔丁酯调聚物[J].化工学报,2011,62(7):2061-2066.
    [6]Qin J. L., Jiang X. B., Chen Y. M., et al. Functional Polymeric Nanoobjects by Cross-Linking bulk Self-Assemblies of Poly(ter-butyl acrylate)-block-poly(glycidyl methacrylate) [J]. Macromolecules,2010,43:8094-8100.
    [10]Mori H., Muller A. H. E. New Polymeric Architectures with (Meth)acrylicacid Segments [J]. Prog. Polym. Sci.2003,28:1403-1439。
    [11]Xing Y. H., Lin S. L., Lin J. P. Synthesis, Self-assembly and Responsive Properties of PEG-b-PDMAEMA-b-PMMAzo Triblockcopolymers [J]. Chinese Journal of Polymer Science,2013,31(5):833-840.
    [12]董建华.高分子科学前沿与进展[M]科学出版社,2006.
    [13]Long Y. Z., Li M. M., Gu C. Z., et al. Recent advances in synthesis, physical properties and applicantions of conducting polymer nanotubes and nanofibers[J]. Prog. Polym. Sci., 2011,36:1415-1442.
    [14]Park M., Harrison C., Chaikin P. M., et al. Block Copolymer Lithography:Periodic Arrays of-1011 Holes in 1 Square Centimeter [J]. Science 1997,276:1401-1404.
    [15]Krishnamoorthy S., Hinderling C., Heinzelmann H. Nanoscale Patterning with Blockcopolymers [J]. Materials Today 2006,9(9):40-47.
    [16]Convertine A. J., Lokitz B. S., Vasileva Y., et al. Direct Synthesis of Thermally Responsive DMA/NIPAM Diblock and DMA/NIPAM/DMA Triblock Copolymers via Aqueous, Room Temperature RAFT Polymerization [J]. Macromolecules,2006,39:1724-1730.
    [17]杨润苗,王延梅.PS-b-P4VP两嵌段共聚物的合成及其自组装研究[J].高分子学报,2004,(3):401-405.
    [18]潘景云,何军坡,姜洪进,等.基于RAFT过程的MMA可控自由基聚合及嵌段共聚物的合成[J].高等学校化学学报,2004,25(9):1759-1764.
    [1]Cui H. G, Chen Z. Y., Zhong S., et al. Block Copolymer Assembly via Kinetic Controll [J]. Science,2007,37:647-650.
    [2]Chen Y. M. Shaped Hairy Polymer Nano Objects[J]. Macromolecules,2012,45: 2619-2631.
    [3]Ian W. W., Liu G J. Micellar Structures of Linear Triblock Terpolymers:Three Blocks but Many Possiblities [J]. Polymer,2013,54(8):1950-1978.
    [4]Hadjichristidis N., Iatrou H., Pitsikalis M. et al. Linear and Non-linear Triblock Terpolymers:Synthesis, Self-assembly in Selective Solvents and in Bulk [J]. Progress in Polymer Science,2005,30:725-782.
    [5]Dou H. J., Liu G. J., Dupont J., et al. Triblock Terpolymer Helices Self-assembled under Special Solvation Conditions[J]. Soft Matter,2010,6:4214-4222.
    [6]Fustin C. A., Abetz V., Gohy J. F.. Triblock Terpolymer Micelles:A Personal Outlook [J]. Eur. Phys. J. E,2005,16:291-302.
    [7]Moughton A. O., Hillmyer M. A., Timothy P. Lodge. Multicompartment Block Polymer Micelles [J]. Macromolecules,2012,45:2-19.
    [8]Gao L., Zhang K., Chen Y. M. Dumpling-Like Nanocomplexes of Foldable Janus Polymer Sheets and Spheres[J]. ACS Macro Letters,2012,1:1143-1145.
    [9]Erhardt R., Boker A., Zettl H., et al. Janus Micelles[J]. Macromolecules,2001,34: 1069-1075.
    [10]Erhardt R., Zhang M. F., Boker A., et al. Amphiphilic Janus Micelles with Polystyrene and Poly(methacrylic acid) Hemispheres [J]. J. Am. Chem. Soc,2003,125:3260-3267.
    [11]Groschel A. H., Walther A., Tian I. et al. Facial, Solution-Based Synthesis of Soft, Nanoscale Janus Particles with Tunable Janus Balance [J]. J. Am. Chem. Soc,2012,134: 13850-13860.
    [12]Wolf A., Walther A., Muller A. H. E. Janus Triad:Three Types of Nonspherical, Nanoscale Janus Particles from One Single Triblock Terpolymer [J]. Macromolecules, 2011,44:9221-9229.
    [13]Walther A., Barner-Kowollik C., Muller A. H. E. Mixed, Multicompatment, or Janus Micelles? A Systemetic Study of Thermoresponsive Bis-Hydrophilic Block Terpolymers [J]. Langmuir,2010,26(14):12237-12246.
    [14]Schacher F., Walther A., Muller A. H. E. Dynamic Multicompartment-Core Micelles in Aqueous Media [J]. Langmuir,2009,25(18):10962-10969.
    [15]Schacher F., Walther A., Ruppel M., et al. Multicompartment Core Micelles of Triblock Terpolymers in Organic Media [J]. Macromolecules,2009,42:3540-3548.
    [16]Schacher F., Betthausen E., Walther A., et al. Interpolyelectrolyte Complexes of Dynamic Multicompartment Micelles [J]. ACS Nano,2009,3(8):2095-2012.
    [17]Groschel A. H., Schacher F. H., Schmalz H., et al. Precise Hierachical Self-assembly of Multicompartment Micelles [J]. Nature Communications,2012,3:710.
    [18]Du J. Z., Chen Y. M. Atom-Transfer Radical Polymerization of a Reactive Monomer: 3-(Trimethoxysilyl)propyl Methacrylate [J]. Macromolecules,2004,37:6322-6328.
    [19]Njkang G., Han D., Wang J. ABC Triblock Copolymer Micelle Like Aggregates in Slective Solvent of A and C [J]. Macromolecules,2008,41:9727-9735.
    [1]Ian W. W., Liu G. J. Micellar Structures of Linear Triblock Terpolymers:Three Blocks but Many Possiblities [J]. Polymer,2013,54(8):1950-1978.
    [2]Schacher F., Walther A., Muller A. H. E. Dynamic Multicompartment-Core Micelles in Aqueous Media [J]. Langmuir,2009,25(18):10962-10969.
    [3]Hu J. W., Liu G. J., Gabriel Nijkang. Hierarchical Interfacial Assembly of ABC Triblock Copolymer [J]. J. Am. Chem. Soc,2008,130:3236-3237.
    [4]Park C. M., Yoon J. S., Thomas E. L. Enabling Nanotechnology with Self Assembled Block Copolymer Patterns [J]. Polymer,2003,44:6725-6760.
    [5]Hadjichristidis N., Iatrou H., Pitsikalis M., et al. Linear and Non-linear Triblock Terpolymers:Synthesis, Self-assembly in Selective Solvents and in Bulk [J]. Progress in Polymer Science,2005,30:725-782.
    [6]Erhardt R., Boker A., Zettl H., et al. Janus Micelles[J]. Macromolecules,2001,34: 1069-1075.
    [7]Erhardt R., Zhang M. F., Boker A., et al. Amphiphilic Janus Micelles with Polystyrene and Poly(methacrylic acid) Hemispheres [J]. J. Am. Chem. Soc,2003,125:3260-3267.
    [8]Groschel A. H., Walther A., Tian I., et al. Facial, Solution-Based Synthesis of Soft, Nanoscale Janus Particles with Tunable Janus Balance [J]. J. Am. Chem. Soc,2012,134: 13850-13860.
    [9]Wolf A., Walther A., Muller A. H. E. Janus Triad:Three Types of Nonspherical, Nanoscale Janus Particles from One Single Triblock Terpolymer [J]. Macromolecules, 2011,44:9221-9229.
    [10]Walther A., Barner-Kowollik C, Muller A. H. E. Mixed, Multicompatment, or Janus Micelles? A Systemetic Study of Thermoresponsive Bis-Hydrophilic Block Terpolymers [J]. Langmuir,2010,26(14):12237-12246.
    [11]Schacher F., Walther A., Miiller A. H. E. Dynamic Multicompartment-Core Micelles in Aqueous Media [J]. Langmuir,2009,25(18):10962-10969.
    [12]Schacher F., Walther A., Ruppel M., et al. Multicompartment Core Micelles of Triblock Terpolymers in Organic Media [J]. Macromolecules,2009,42:3540-3548.
    [13]Schacher F., Betthausen E., Walther A., et al. Interpolyelectrolyte Complexes of Dynamic Multicompartment Micelles[J]. ACS Nano,2009,3(8):2095-2012.
    [14]Groschel A. H., Schacher F. H., Schmalz H., et al. Precise Hierachical Self-assembly of Multicompartment Micelles [J]. Nature Communications,2012,3:710.
    [15]李光华,杨苹苹,赵治巨,等.自由基调聚法合成聚丙烯酸叔丁酯调聚物[J].化工学报,2011,62(7):2061-2066.
    [16]Xing Y. H., Lin S. L., Lin J. P. Synthesis, Self-assembly and Responsive Properties of PEG-b-PDMAEMA-b-PMMAzo Triblockcopolymers [J]. Chinese Journal of Polymer Science,2013,31(5):833-840.
    [17]Qin J. L., Chen Y. M., Yan D. D., et al. Dispersible Shaped Nanoobjects from Bulk Microphase Separation High Tg of Block Copolymers without Chemical Cross-linking [J]. Macromolecules,2010,43:10652-10658.
    [18]Moughton A. O., Hillmyer M. A., Lodge T. P. Multicompartment Block Polymer Micelles [J]. Macromolecules,2012,45:2-19.
    [19]Walther A., Yuan J. Y, Abetz V., et al. Structure-Tunable Bidirectional Hybrid Nanowires via Multicompartment Cylinders [J]. Nano Letters,2009,9(5):2026-2030.
    [20]Sart G. G., Rachmawati R., Voet V., et al. Poly (tert-butylmethacrylate-b-styrene-b-4-vinylpyridine) Triblock Copolymers:Synthesis, Interactions, and Self-Assembly [J]. Macromolecules,2008,41:6393-6399.
    [21]Convertine A. J., Lokitz B. S., Vasileva Y et al. Direct Synthesis of Thermally Responsive DMA/NIPAM Diblock and DMA/NIPAM/DMA Triblock Copolymers via Aqueous, Room Temperature RAFT Polymerization [J]. Macromolecules,2006,39: 1724-1730.
    [22]Jiang Z. B., Wang R., Xue G. Self Assembly of ABC Triblock Copolymer Thin Films on a Brush-Coated Substrate [J]. Chinese Journal of Polymer Science,2009,27 (4):583-592.
    [23]Yuan J. J., Li Y S., Li X. Q., et al. Self-Assembly of Polystyrene-b-Poly(ethylene oxide)-b-Polystyrene Triblock Copolymers [J]. Chemical Journal of Chinese Universities,2003, 24(2):371-373.
    [24]江明,A艾森伯格,刘国军,等.大分子自组装[M].北京:科学出版社,2006,P15.
    [1]Ian W. W., Liu G J. Micellar Structures of Linear Triblock Terpolymers:Three Blocks but Many Possiblities [J]. Polymer,2013,54(8):1950-1978.
    [2]Schacher F., Walther A., Muller A. H. E.. Dynamic Multicompartment-Core Micelles in Aqueous Media [J]. Langmuir,2009,25(18):10962-10969.
    [3]Hu J. W., Liu G. J., Nijkang G Hierarchical Interfacial Assembly of ABC Triblock Copolymer [J]. J. Am. Chem. Soc,2008,130:3236-3237.
    [4]Park C. M., Yoon J. S., Thomas E. L. Enabling Nanotechnology with Self Assembled Block Copolymer Patterns [J]. Polymer,2003,44:6725-6760.
    [5]Hadjichristidis N., Iatrou H., Pitsikalis M., et al. Linear and Non-linear Triblock Terpolymers:Synthesis, Self-assembly in Selective Solvents and in Bulk [J]. Progress in Polymer Science,2005,30:725-782.
    [6]Dou H. J., Liu G J., Dupont J., et al. Triblock Terpolymer Helices Self-assembled under Special Solvation Conditions[J]. Soft Matter,2010,6:4214-4222.
    [7]Fustin C. A., Abetz V., Gohy J. F. Triblock Terpolymer Micelles:A Personal Outlook [J]. Eur. Phys. J. E,2005,16:291-302.
    [8]Moughton A. O., Hillmyer M. A., Lodge T. P. Multicompartment Block Polymer Micelles [J]. Macromolecules,2012,45:2-19.
    [9]Jiang T., Wang L. Q., Lin S. L., et al. Structural Evolution of Multicompartment Micelles Self-Assembled from Linear ABC Triblock Copolymer in Selective Solvents [J]. Langmuir,2011,27:6440-6448.
    [10]Hanisch A., Groschel A. H., Fortsch M., et al. Counterion-Mediated Hierarchical Self-Assembly of an ABC Miktoarm Star Terpolymer [J]. ACS Nano,2013,7(5): 4030-4041.
    [11]Zhu J. T., Hayward R. C. Wormlike Micelles with Microphase-Separated Cores from Blends of Amphiphilic AB and Hydrophobic BC Diblock Copolymers [J]. Macromolecules,2008,41 (21):7794-7797.
    [12]Price E. W., Guo Y. Y., Wang C. W., et al. Block Copolymer Strands with Internal Microphase Separation Structure via Self-Assembly at the Air-Water Interface [J]. Langmuir,2009,25 (11):6398-6406.
    [13]Yu G., Eisenberg A. Multiple Morphologies Formed from an Amphiphilic ABC Triblock Copolymer in Solution [J]. Macromolecules,1998,31 (16):5546-5549.
    [14]Gohy J. F., Willet N., Varshney S., et al. Core-Shell-Corona Micelles with a Responsive Shell [J]. Angw. Chem. Int. Ed.,2001,40 (17):3214-3216.
    [15]Jiang X. Z., Zhang G. Y, Ravin N., et al. Fabrication of Two Types of Shell-Cross-Linked Micelles with "Inverted" Structures in Aqueous Solution from Schizophrenic Water-Soluble ABC Triblock Copolymer via Click Chemistry [J]. Langmuir,2009,25 (4):2046-2054.
    [16]Skrabania K., Laschewsky A., Berlepsch H., et al. Synthesis and Micellar Self-Assembly of Ternary Hydrophilic-Lipophilic-Fluorophilic Block Copolymers with a Linear PEO Chain [J]. Langmuir,2009,25 (13):7594-7601.
    [17]Schacher F., Walther A., Ruppel M., et al. Multicompartment Core Micelles of Triblock Terpolymers in Organic Media [J]. Macromolecules,2009,42:3540-3548.
    [18]Wolf A., Walther A., Muller A. H. E. Janus Triad:Three Types of Nonspherical, Nanoscale Janus Particles from One Single Triblock Terpolymer [J]. Macromolecules, 2011,44:9221-9229.
    [19]Kubowicz S., Baussard J. F., Lutz J. F., et al. Multicompartment Micelles Formed by Self-Assembly of Linear ABC Triblock Copolymers in Aqueous Medium [J]. Angw. Chem. Int. Ed.,2005,44 (33):5262-5265.
    [20]Berlepsch H., Bottcher C, Skrabania K., et al. Complex Domain Architecture of Multicompartment Micelles from a Linear ABC Triblock Copolymer Revealed by Cryogenic Electron Tomography [J]. Chem. Commun.,2009,17:2290-2292.
    [21]Skrabania K., Berlepsch H., Bottcher C., et al. Synthesis of Ternary, Hydrophilic-Lipophilic-Fluorophilic Block Copolymers by Consecutive RAFT Polymerizations and Their Self-Assembly into Multicompartment Micelles. [J]. Macromolecules,2010,43(1):271-281.
    [22]Walther A., Barner-Kowollik C, Muller A. H. E. Mixed, Multicompatment, or Janus Micelles? A Systemetic Study of Thermoresponsive Bis-Hydrophilic Block Terpolymers [J]. Langmuir,2010,26(14):12237-.2246.
    [23]Chen Z. Y., Cui H. G., Hales K., et al. Unique Toroidal Morphology from Composition and Sequence Control of Triblock Copolymers [J]. J. Am. Chem. Soc,2005,127(24): 8592-8593.
    [24]Li Z. B., Chen Z. Y., Cui H. G., et al. Disk Morphology and Disk-to-Cylinder Tunability of Poly(Acrylic Acid)-b-Poly(Methyl Acrylate)-b-Polystyrene Triblock Copolymer Solution-State Assemblies [J]. Langmuir,2005,21(16):7533-7539.
    [25]Cui H. G, Chen Z. Y., Wooley K. L., et al. Controlling Micellar Structure of Amphiphilic Charged Triblock Copolymers in Dilute Solution via Coassembly with Organic Counterions of Different Spacer Lengths. [J]. Macromolecules,2006,39(19):6599-6607.
    [26]Uchman M., Stepanek M., Prochazka K. Multicompartment Nanoparticles Formed by a Heparin-Mimicking Block Terpolymer in Aqueous Solutions [J]. Macromolecules,2009, 42(15):5605-5613.
    [27]Fang B., Walther A., Wolf A., et al. Undulated Multicompartment Cylinders by the Controlled and Directed Stacking of Polymer Micelles with a Compartmentalized Corona [J]. Angw. Chem. Int. Ed.,2009,48 (16):2877-2880.
    [28]Kotzev A., Laschewsky A., Rakotoaly R. H. Polymerizable Surfactants and Micellar Polymers Bearing Fluorocarbon Hydrophobic Chains Based on Styrene [J]. Macroml. Chem. Phys.,2001,202(17):3257-3267.
    [29]Ritzenthaler S., Court F., David L., et al. ABC Triblock Copolymers/Epoxy-Diamine Blends.1. Keys To Achieve Nanostructured Thermosets [J]. Macromolecules,2002,35 (16):6245-6254.
    [30]Ritzenthaler S., Court F., David L., et al. ABC Triblock Copolymers/Epoxy-Diamine Blends.2. Parameters Controlling the Morphologies and Properties [J]. Macromolecules, 2003,36(1):118-126.
    [31]Ma Z. W., Yu H. Z., Jiang W. Bump-Surface Multicompartment Micelles from a Linear ABC Triblock Copolymer:A Combination Study by Experiment and Computer Simulation [J]. J. Phys. Chem.,2009,113 (11):3333-3338.
    [32]Gohy J. F., Khousakoun E., Willetl N., et al. Segregation of Coronal Chains in Micelles Formed by Supramolecular Interactions [J]. Macroml.Rapid Commun.,2004,25 (17): 1536-1539.
    [33]Brannan A. K., Bates F. S. ABCA Tetrablock Copolymer Vesicles [J]. Macromolecules, 2004,37 (24):8816-8819.
    [34]Thunemann A. F, Kubowicz S., Berlepsch H., et al. Two-Compartment Micellar Assemblies Obtained via Aqueous Self-Organization of Synthetic Polymer Building Blocks [J]. Langmuir,2006,22 (6):2506-2510.
    [35]Hoogenboom R., Wiesbrock F., Leenen M. A. M., et al. Synthesis and Aqueous Micellization of Amphiphilic Tetrablock Ter-and Quarterpoly(2-oxazoline)s [J]. Macromolecules,2007,40 (8):2837-2843.
    [36]Lutz J. F., Laschewsky A. Multicompartment Micelles:Has the Long-Standing Dream Become a Reality? [J]. Macroml. Chem. Phys.,2001,206(8):813-817.
    [37]Li Z. B., Hillmyer M. A., Lodge T. P. Control of Structure in Multicompartment Micelles by Blending u-ABC Star Terpolymers with AB Diblock Copolymers [J]. Macromolecules,2006,39 (2):765-771.
    [38]Zhong S., Cui H. G, Chen Z. Y, et al. Helix Self-Assembly through the Coiling of Cylindrical Micelle s [J]. Soft Matter,2008,4:90-93.
    [39]Zhou Z. L., Li Z. B., Ren Y., et al. Micellar Shape Change and Internal Segregation Induced by Chemical Modification of a Tryptych Block Copolymer Surfactant [J]. J. Am. Chem. Soc,2003,125(34):10182-10183.
    [40]Schacher F., Betthausen E., Walther A., et al. Interpolyelectrolyte Complexes of Dynamic Multicompartment Micelles[J]. ACS Nano,2009,3(8):2095-2102.
    [41]Groschel A. H., Schacher F. H., Schmalz H., et al. Precise Hierachical Self-assembly of Multicompartment Micelles [J]. Nature Communications,2012,3:710.
    [42]Convertine A. J., Lokitz B. S., Vasileva Y, et al. Direct Synthesis of Thermally Responsive DMA/NIPAM Diblock and DMA/NIPAM/DMA Triblock Copolymers via Aqueous, Room Temperature RAFT Polymerization [J]. Macromolecules,2006,39: 1724-1730.
    [43]Qin J. L., Chen Y M., Yan D. D., et al. Dispersible Shaped Nanoobjects from Bulk Microphase Separation High Tg of Block Copolymers without Chemical Cross-linking [J]. Macromolecules,2010,43:10652-10658.
    [1]Ian W. W., Liu G. J. Micellar Structures of Linear Triblock Terpolymers:Three Blocks but Many Possiblities [J]. Polymer,2013,54(8):1950-1978.
    [2]董建华.高分子科学前沿与进展[M]科学出版社,2006.
    [3]Yoo S. I., Sohn B. H., Zin W. C., et al. Localized Synthesis of Polypyrrole in the Nanopattern of Monolayer Films of Diblock Ccopolymer Micelles [J]. Langmuir,2004, 20:10734-10736.
    [4]Bucholz T., Sun Y. M., Loo Y. L. Near-Monodispersed Polyaniline Particles through Template Synthesis and Simultaneous Doping with Diblock Copolymers of PMA and PAAMPSA[J]. J. Mater. Chem.,2008,18:5835-5842.
    [5]Nandan B., Kuila B. K, Stamm M. Superamolecular Assemblies of Block Copolymers as Templates for Fabrication of Nanomaterials [J]. European Polymer Journal,2011,47: 584-599.
    [6]Kim J. K., Yang S. Y., Lee Y. M., et al. Functional Nanomaterials based on Block Copolymers Self-Assembly [J]. Progress in Polymer Science,2011,35:1325-1349.
    [7]Cui J., Li W., Jiang W. Stimulation Study of Co-Assembly of ABC Triblock Copolymer/Nanoparticle into Multicompartment Hybirds in Slective Solvent [J]. Chinese Journal of Polymer Science,2013,31(9):1225-1232.
    [8]Rajesh, Ahuja T, Kumar D. Recent Progress in the Development of Nano-Structured Conducting Polymers/Nanocomposites for Sensor Applications [J]. Sensors and Actuators B:Chemical,2009,136:275-286.
    [9]Goren M., Lennox R. B. Nanoscale Polypyrrole Patterns Using Block Copolymer Surface Micelles as Templates [J]. Nano letters,2001,1(12):735-738.
    [10]van Zoelen W., Bondzic S., Landaluce T. F., et al. Nano structured Polystyrene-block-Poly(4-Vinyl Pyridine)(Pentadecylphenol) Thin Film as Templates for Polypyrrole Synthesis [J]. Polymer,2009,50:3617-3625.
    [11]Long Y. Z., Li M. M., Gu C. Z., et al. Recent Advances in Synthesis, Physical Properties and Applicantions of Conducting Polymer Nanotubes and Nanofibers [J]. Progress in Polymer Science,2011,36:1415-1442.
    [12]董建华.高分子科学前沿与进展Ⅱ[M]科学出版社,2009.
    [13]Li X., Tian S. J., Ping Y., et al, Knoll Wolfgang. One-Step Route to the Fabrication of Highly Porous Polyaniline Nanofiber Films by using PS-b-PVP Diblock Copolymers as Templates [J]. Langmuir,2005,21:9393-9397.
    [14]de Jesus M. C., Weiss R. A. Synthesis of Conductive Nanocomposites by Selective in situ Polymerization of Pyrrole within the Lamellar Microdomains of a Block Copolymer [J]. Macromolecules,1998,31:2230-2235.
    [15]McCullough L. A., Dufour B., Tang C. B., et al. Templating Conducting Polymers via Self-Assembly of Block Copolymers and Supramolecular Recognition [J]. Macromolecules,2007,40:7745-7747.
    [16]McCullough L. A., Dufour B., Matyjaszewski K. Polyaniline and Polypyrrole Templated on Self-Assembled Acidic Block Copolymers [J]. Macromolecules,2009,42:8129-8137.
    [17]Cheng D. M., Ng S. C., Chan H. S. O. Morphology of Polyaniline Nanoparticles Synthesized in Triblock Copolymersmicelles [J]. Thin Solid Film,2005,477:19-23.
    [18]Han J., Song G. P., Guo R. Nanostructure-Based Leaf-Like Polyaniline in the Presence of an Amphiphilic Triblock Copolymer [J]. Adv. Mater.,2007,19:2993-2999.
    [19]Wang M. F., Kumar S., Lee A., et al. Scholes Mitchell A. Winnk. Nanoscale Co-Organization of Quantum Dots and Conjugated Polymers using Polymeric Micelles as Templates [J]. J. Am. Chem. Soc.,2008,130:9481-9491.
    [20]Goren M., Bruce L. R. Nanoscale Polypyrrole Patterns using Block Copolymer Surface Micelles as Templates [J]. Nano Letters,2001, 1(12):735-738.
    [21]Lee J. I., Cho S. H., Park S. M., et al. Highly Aligned Ultrahigh Density Arrays of Conducting Polymer Nanorods using Block Copolymer Templates [J]. Nano letters, 2008,8(8):2315-2320.
    [22]Ishizu K., Honda K., Kanbara T., et al. Oxidation Polymerization of Pyrrole on Microphase-Separated Block Copolymer Films as Template [J]. Polymer,1994,35: 4901-4906.
    [23]Luo J., Zhou Q., Sun J., et al. S Micelle-Assisted Synthesis of PANI Nanoparticles and Application as Particulate Emulsifier [J]. Colloid. Polym. Sci.,2013, DOI10.1007/s00396-013-3108-5
    [24]Lancaster J. R, Jehani J., Carroll G. T., et al. Toward a Universal Method To Pattern Metals on a Polymer [J]. Chem. Mater.,2008,20:6583-6585.
    [25]秦江雷.基于嵌段共聚物本体自组装制备可分散纳米颗粒和层间距可变的多孔纳米材料[D].中国科学院北京化学研究所,2011.
    [26]章莉娟,陈锐毫,蓝荣肇,等.ATRP法合成两亲性聚乙二醇-聚丙烯酸叔丁酯嵌段共聚物[J].高校化学工程学报,2011,25(5):781-786.
    [27]Qin J. L., Chen Y. M., Yan D. D., et al. Dispersible Shaped Nanoobjects from Bulk Microphase Separation.of High Tg Block Copolymers without Chemical Cross-linking [J]. Macromolecules,2010,43:10652-10658.
    [28]Qin J. L., Jiang X. B., Gao L., et al. Functional Polymeric Nanoobjects by Cross-Linking Bulk Self-Assemblies of Poly(tert-butyl acrylate)-block-Poly(glycidyl methacrylate) [J]. Macromolecules,2010,43:8094-8100.
    [29]孙春会,曹霞,付鹏,等.聚(ε-己内酯)-b-聚丙烯酸嵌段聚合物的合成[J].高分子材料科学与工程,2012,28(1):41-44.
    [30]朱蕙,刘世勇,潘全名,等.窄分布两亲性嵌段共聚物的合成及其胶束化行为研究[J].高等学校化学学报,2002,23(1):138-142.
    [31]岳玲,张晓宏,吴世康.两亲性嵌段共聚物PS-b-PAA合成及其在溶液中的形态和纳米聚集结构形成[J].高分子学报,2004,(2):236-239.
    [32]华曼,杨伟,薛乔,等.两亲性嵌段共聚物PS-b-PMAA合成与胶束化行为研究[J].化学学报,2005,63(7):631-636.
    [1]Huang J. X., Moore J. A., Acequaye J. H. Mechanochemical Route to the Conducting Polymer Polyaniline [J]. Macromolecules,2005,38:317-321.
    [2]Rajesh, Ahuja T., Kumar D. Recent Progress in the Development of Nano-Structured Conducting Polymers/Nanocomposites for Sensor Applications [J]. Sensors and ActuatorsB:Chemical,2009,136:275-286.
    [3]Li D., Huang J. X., Kaner R. B. Polyaniline Nanofibers:A Unique Polymer Nanostructure for Versatile Applications [J]. Accounts of Chemical Research,2009,42(1):135-145.
    [4]Goren M., Lennox R. B. Nanoscale Polypyrrole Patterns Using Block Copolymer Surface Micelles as Templates [J]. Nano letters,2001, 1(12):735-738.
    [5]van Zoelen W., Bondzic S., Landaluce T. F., et al. Nanostructured Polystyrene-block-Poly(4-Vinyl Pyridine)(Pentadecylphenol) Thin Film as Templates for Polypyrrole Synthesis [J]. Polymer,2009,50:3617-3625.
    [6]董建华.高分子科学前沿与进展[M]科学出版社,2006.
    [7]Long Y. Z., Li M. M., Gu C. Z., et al. Recent Advances in Synthesis, Physical Properties and Applicantions of Conducting Polymer Nanotubes and Nanofibers[J]. Progress in Polymer Science,2011,36:1415-1442.
    [8]Cui J., Li W., Jiang W. Stimulation Study of Co-Assembly of ABC Triblock Copolymer/Nanoparticle into Multicompartment Hybirds in Slective Solvent [J]. Chinese Journal of Polymer Science,2013,31(9):1225-1232.
    [9]Li X. G., Lu Q. F., Huang M. R. Self-Stablized Nanoparticles of Intrinsically Conducting Polymers from 5-Sulfonic-2-Anisidine [J]. Small,2008,14:1201-1209.
    [10]Li Z. F., Ruckenstein E. Intercalation of Conductive Polyaniline in the Mesostructured V2O5 [J]. Langmuir,2002,18:6956-6961.
    [11]Wang P., Zheng Y. Y., Li B. M. Preparation and Electrochemical Properties of Polypyrrole/Graphite Oxide Composites with Various Feed Ratios of Pyrrole to Graphite Oxide [J]. Synth Met,2013,166:33-39.
    [12]Han J., Li L. Y, Fang P., et al. Ultrathin MnO2 Nanorods on Conducting Polymer Nanofibers as a New Class of Hierarchical Nanostructures for High-Performance Supercapacitors [J]. J Phys Chem C,2012,116:15900-15907.
    [13]Kumar M. N., Nagabhooshanam M., Rao M. A., et al. Preparation and Characterization of Doped Polybenzidine [J].Cryst. Res. Technol.,2001,36(3):309-317.
    [14]Ekinic E., Ozden M., Turkdemir M. H., et al. Preparation and Properties of Polybenzidine Film-Coated Electrode as an H2O2 Selective Polymeric Materials [J].J. Appl. Polym.Sci.,1998,70:2227-2234.
    [15]D'Eramo F., Arevalo A. H., Silber J. J., et al. Preparation and Electrochemical Behavior of Conducting films Obtained by Electropolymerization of Benzidine in Aqueous Media [J] Journal of Electroanalytical Chemistry,1995,382:85-95.
    [16]D'Eramo F., Silber J. J., Arevalo A. H., et al. Electrochemical Detection of Silver Ions and the Study of Metal-Polymer Interactions on a Polybenzidine Film Electrode [J].Journal of Electroanalytical Chemistry,2000,494:60-68.
    [17]Posadas D., Rodrigoez Prese M. J., Florit M. I. Apparent Formal Redox Potential Distribution in Electroactive Arylamine-Derived Polymers [J].Electrochimica Acta,2001, 46:4075-4081.
    [18]Hmadeh M., Traboulsi H., Mourad Elhabiri. Synthesis, Characterization and Photophysical Properties of Benzidine-Based Compounds [J].Tetrahedro,2008,64: 6522-6529.
    [19]Nascimento G M. D., Constantino V. R. L., Temperini L. A. Spectroscopic Characterization of Doped Poly(benzidine) and Its Nanocomposite with Cationic Clay [J]. J.Phys.Chem.B,2004,108:5564-5571.
    [20]Park K. I., Song H. M., Kim Y, et al. Electrochemical Preparation and Characterization of V2O5/polyaniline Composite Film Cathodes for Li Battery [J]. Electrochimica Acta, 2010,55:8023-8029.
    [21]Posudievsky O. Y., Kozarenko O. A., Dyadyun V. S., et al. Characteristics of Mechanochemically Prepared Host-Guest Hybrid Nanocomposites of Vanadium Oxide and Conducting Polymers [J]. Journal of Power Source,2011,196:3331-3341.
    [22]Mohan V. M., Hu B., Qiu W. L., et al. Synthesis, Structural, and Electrochemical performance of V2O5 Nanotubes as Cathode Material for Lithium Battery [J]. J. Appl. Electrochem.,2009,39:2001-2006.
    [23]Guerra E. M., Ciuf K. J., Herenilton P. V2O5 Xerogel-Poly(ethyleneoxide) Hybrid Material:Synthesis, Characterization, and Electrochemical Properties [J]. Journal of Solid State Chemistry,2006,179:3814-3823.
    [24]刘恩辉,李新海,何则强等.制备纳米V2O5的新方法及其电化学性能研究[J].无机化学学报2003,19(10):1114-1117.
    [25]王庚超,苏静,张敏璐,等.聚苯胺/五氧化二钒插入型杂化纳米复合材料的合成与表征[J].高分子材料科学与工程2004,20(3):53-56.
    [26]阿孜古丽·木尔赛力木,吐尼莎古丽·阿吾提,如仙古丽·加马力,等.界面聚合法合成聚联苯胺及其衍生物[J].新疆大学学报(自然科学版),2005,22(4):383-388.
    [27]阿孜古丽·木尔赛力木,吐尼莎古丽·阿吾提,如仙古丽·加马力,等.不同酸对界面聚合法合成聚联苯胺性能的影响[J].功能材料,2006,37(10):1646-1649.
    [28]Heinze J., Dietrich M. Cyclic Voltammetry as a Tool for Characterizing Conducting Polymers [J]. Materials Science Forum,1989,42:63-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700