长白山典型树种径向生长与气候因子的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪以来,全球气候变化对生态系统产生了深远的影响。大量研究表明物种对气候变化的响应差异会影响植物的群落结构与组成,最终导致一个地区植被类型的改变。因此,利用树木年轮学方法研究不同物种生长及其与气候因子的关系有利于定量研究气候变化对植物群落结构及组成的影响。本文以长白山地带性植被阔叶红松林的建群树种红松(Pinus koraiensis)和先锋树种山杨(Populus davidiana)以及暗针叶林建群树种鱼鳞云杉(Picea jezoensis var. komarovii)作为研究对象。设立6个海拔梯度获取树轮资料,分别为海拔600米(红松分布的下限,下文简称DX和XF),海拔800米(红松分布的中海拔地区,简称GM和DZ),海拔1000米(红松分布的中海拔地区,简称CBM1),海拔1200米(红松分布上限,鱼鳞云杉分布的下限,简称CBM2),海拔1400米(红松分布的生理极限,鱼鳞云杉分布的中心地带,简称CBM3)海拔1600米(鱼鳞云杉分布上限,简称CBM4)。从海拔,物种特性,性别和火干扰等方面分析树种径向生长特征及其与气候因子(上年5月到当年9月的月平均、最高和最低温度以及月降水量)的关系,并尝试模拟自然条件下树木径向生长与气候因子的关系,以期探讨气候变化对长白山典型树种生长的影响。主要结果如下:
     (1)红松径级在海拔梯度上的分布存在差异,呈逐渐增加趋势,鱼鳞云杉径级则呈现递减趋势;各典型树种胸径与年龄的关系也有所不同,红松径级和年龄之间相关性较差,鱼鳞云杉和山杨的胸径则与年龄存在显著正相关关系(p<0.05)。在不同样地内的红松生长情况有差异,而鱼鳞云杉基本一致;同时相同采样点内不同树种径向生长量也存在一定差别,红松的生长量的年际变化均较大,山杨次之,鱼鳞云杉生长量变化幅度最小。由各典型树种宽度年表序列主分量的时间序列图可知共有的气候和环境条件及树种本身的特性对它们的径向生长年间变化具有一定影响,且主要集中在1971~1976年,1982~1994年和1999年~2006年间,但影响程度不同,因此有必要对典型树种与气候因子的响应关系进行系统研究。
     (2)不同海拔梯度上,红松树木生长与气候因子的关系存在一定差异性,而鱼鳞云杉则较为一致。在红松分布的低海拔地区,红松的径向生长主要受到降水因子的影响,与当年7月降水正相关;随着海拔高度上升,温度对红松径向生长的作用凸显,与降水的相关性也发生了改变,在中海拔林区,红松径向生长均与当年4月的月平均温度和月最低温度显著正相关, GM采样点红松径向生长与上年8月的降水显著负相关, CBM1采样点红松径向生长则与上年8月的降水显著正相关;高海拔地区红松径向生长主要受到生长季温度的制约,与当年7月的月平均温度和月平均最低温度以及8月的月平均温度呈正相关关系。在极端气候条件下,影响红松径向生长的主要气候因子与径向生长对逐月气候因子的响应结果相比有所不同。尤其是低海拔地区,春季降水成为主要制约因子。与红松不同,在各海拔梯度上,鱼鳞云杉径向生长均与上一年7月的温度和当年5月的降水显著负相关,而与当年5月的月平均温度和月平均最低温度呈显著正相关。在极端高温的基础条件下,鱼鳞云杉径向生长主要受春季温度的影响,且均成正比。
     (3)火干扰促进了红松的生长并使其对气候变化更为敏感。在火烧初期和1949-1981年间,火烧红松的径向生长量要显著高于未过火红松;火烧红松主要受到当年生长季温度和上一年生长季降水的影响,而未过火红松则主要受到上年生长季温度和当年降水的影响;同时在近5年内样地空间格局未发生变化的情况下,火烧红松更易受到相邻树木的影响。
     (4)相同立地条件下不同树种对气候因子的响应关系有差异。阔叶红松林内,红松径向生长与上年11月、当年4月的月平均最低温度以及当年7月的降水量显著正相关,而与上一年7月和8月的降水负相关。山杨与当年1月的月平均温度,上一年6月和当年9月的降水显著负相关。在阔叶红松林和暗针叶林过渡带内,红松径向生长与当年7月平均温度显著正相关。鱼鳞云杉则与当年5月份的月平均温度显著正相关,而与该月降水显著负相关。
     (5)不同性别间山杨植株生长量存在差异。近5年和10年内,山杨雄株的生长量显著高于雌株。山杨雌株与雄株的径向生长与降水因子的关系基本一致,均与生长季末(当年9月)的降水负相关;但与温度因子的关系则有所不同,山杨雌株分别受到冬季(上年10月和当年2月)的温度和春季降水(当年3月)的负而影响,而春季(当年3月)温度升高将促进雄株径向生长。
     (6)除鱼鳞云杉外,红松和山杨雌雄植株的径向生长与气候因子的关系均能够被很好地模拟,尤其是火烧红松。结合长白山地区温度上升和降水将少的变化格局,可以预测出处于低海拔和火烧后遗留的红松生长将受到抑制;中海拔和高海拔的红松径向生长将得到促进;山杨雌株生长将降低,而山杨雄株生长在一定程度上将提高。
Since the 20th century, the effect of global climate change on ecological system had been more profound. Much research indicated that different response of plant to climate factor would influence the structure and composition of community and then lead the variation of vegetation pattern. Thus, study on radial growth dynamic of different plant and its' relationship with climate factors using dendroecological method will be in favor of quantitating the effect of climate change on the structure and composition of plant community. Pinus koraiensis, Populus davidiana and Picea jezoensis var. komarovii were selected in this paper as a typical species, pioneer tree in a zonal vegetation, broad-leaved Korean pine forest and a typical species in dark forest respectively. Tree-ring chronologies were developed at six altitudes:600 m (lower altitudinal border of Korean pine forest, later referred to as site DX and XF),800 m (middle altitudinal of Korean pine forest, site GM and DZ),1000 m (middle altitudinal of Korean pine forest, site CBM1),1200 m (high altitudinal border of Korean pine forest and lower altitudinal border of dard forest, site CBM2),1400m (ecological boundary of Pinus koraiensis and middle altitudinal border of Picea jezoensis var. komarovii, site CBM3), and 1600 m (high altitudinal border of Picea jezoensis var. komarovii, site CBM4). Radial growth dynamics of Pinus koraiensis, Populus davidiana and Picea jezoensis var. komarovii, and their relation with climate factors were analyzed from four aspects, elevation, fire disturbance species characteristics, and the gender. Climatic variables were monthly mean, maximum and minimum temperature and monthly total precipitation over the period from previous year May through current year September. We also try to establish the growth model in nature condition to discuss the effect of climate change on typical trees'growth. The main conclusions were as follows:
     (1) The distributions of diameter at breast height (dbh) of Pinus koraiensis were different along the gradient of elevation. The dbh size increased with the elevation. There was a poor relationship between the dbh and age for Pinus koraiensis. The dbh of Picea jezoensis var. komarovii decreased with the elevation. The relation between the dbh and age was different from each site. There were positive relations between the dbh and age of Picea jezoensis var. komarovii and Populous davidiana (p<0.05). Tendency of Pinus koraiensis's increment varied among different sites. The increments of Picea jezoensis var. komarovii were accord with each site. Under the same environment condition, interannual variation of increment was different among three typical species, with the sharpest one was Pinus koraiensis, then Populus davidiana and the slowest one was Picea jezoensis var. komarovii. Through time series analysis of principle component of different species, we also found the interannual variations were influenced by common signals (climate, environmental condition and species characteristics). Though the impact was different, it concentrated on the period of 1971-1976,1982-1994 and 1999-2006. Therefore, it was necessary to analyze the relationship between the typical species and climate factors systemly.
     (2) Along the altitudinal gradient, the relation between the trees'growth of Pinus koraiensis and climate factors was differential, but no difference happened for Picea jezoensis var. komarovii. At low altitude, Pinus koraiensis was positively controlled by precipitation, especially the precipitation in current July. Along the increasing of altitude, the importance of temperature increased and the correlation with precipitation changed. At middle altitude, Pinus koraiensis were positively driven by the mean and maximum temperature in current April. In other hand, the radial growth of Pinus koraiensis in GM site was negative related with the precipitation in previous August, but it turned into positive in CBM1 site. At high altitude, the radial growth of Pinus koraiensis were mainly positively influenced by growing season temperature, mean and minimum temperature in current July, mean temperature in current August. Different from above results, the analysis of climate characteristics in extreme years show that at low altitude, trees were strongly correlated with spring precipitation. Radial growth of Picea jezoensis van komarovii were in accord among different elevation, which negatively related with temperature in previous July and precipitation in current May, but positively significantly related with mean and minimum temperature in current May. Spring temperature had strong and positive impact on its growth in extreme year.
     (3) Fire disturbance improve the trees'growth of Pinus koraiensis and make it to be more sensitive with climate change. At the early year of fire occurred and the period between the year of 1949 and 1981, the increment of fire-damaged Pinus koraiensis was significantly higher than the undamaged one. The radial growths of fire-damaged trees were driven by the growing season temperature and precipitation in previous growing season. Oppositely, the undamaged trees were mainly influenced by previous growing season temperature and current growing season precipitation. In addition, the fire-damaged trees were also significantly related with the neighbor competition under the assumption that the spatial pattern didn't changed in the lasted five years.
     (4) Different response of differential species to climate factors occurred in the same environmental condition. It also added evidence that growth-climate relationship was species-characteristic. In broad-leaved Koran pine forest, the radial growth of Pinus koraiensis was positively controlled by minimum temperature in previous November and current April, and precipitation in current July, but negatively related with the precipitation in previous July and August. Whereas, Populus davidiana was significantly negative with mean temperature in current January, and precipitation in previous June and current September. In the transition zone of broad-leaved Korean pine forest and dark forest, the radial growth of Pinus koraiensis was significantly and positively related with mean temperature in current July, but Picea jezoensis var. komarovii was significantly positive with the mean temperature in current May, but negative with the precipitation in this month.
     (5) Growth of the males of Populus davidiana was significantly higher than that of the females in the lasted 5 and 10 years. The females and males were significantly negative with the precipitation at the end of current growing season (current September). The females showed more sensitive with the climate change. The females were mainly negatively controlled by temperature in previous winter (previous October and current February) and spring precipitation (current March). The males were significantly positive with the spring temperature (current March).
     (6) Except for Picea jezoensis var. komarovii, the relationship between the radial growth of Pinus koraiensis and Populus davidiana, and weather variables could be simulated, especially for fire-damaged Pinus koraiensis. Combining the climate variation pattern in Changbai Mountain with temperature increasing and precipitation decreasing, growth of Pinus koraiensis growing at low altitude and disturbed by fire would be inhibited. Growth of Pinus koraiensis at middle and high altitude would be benefit from the climate change. The growth of females of Populus davidiana would be decreased, but that of the males would be improved.
引文
1. 白人海,郭家林.厄尔尼诺现象及其与北半球大气环流和黑龙江省低温的关系[J].热带气象,1985,(1):264-268
    2. 曹伟,傅沛云,刘淑珍,等.东北平原植物区系亚地区种子植物区系研究[J].云南植物研究,1995,17(增刊7):22-31
    3. 陈大柯,冯宗炜.长白山系高山及亚高山植被[J].森林生态系统研究,1985,(5):49-56
    4. 陈隆勋,朱文琴.近45年我国气候变化的研究[J].气象学报,1998,56(3):257-271
    5. 陈效.逑论树木物候生长季节与气温生长季节的关系——以德国中部Taunus山区为例[J].气象学报,2000,58(6):721-737
    6. 陈振举,陈玮,何兴元,等.沈阳福陵油松年轮宽度年表的建立[J].北京林业大学学报,2007,9(4):100-108
    7. 程伯容等.长白山北坡自然保护区主要土壤类型及其基本特征[J].森林生态系统研究,1981,(2):196-204
    8. 迟振文等.长白山北坡森林生态系统水热状况初探[J].森林生态系统研究,1981,(2):167-177
    9. 崔海亭,刘鸿雁,戴君虎.山地生态学与高山林线研究[M].北京:科学出版社,2005
    10.范玮熠,王孝安.树木年轮宽度与气候因子的关系研究进展[J].西北植物学报,2004,24(2):345-351
    11.富德义,朱颜明,黄锡畴.长白山森林生态系统的化学环境背景研究[J].森林生态系统研究,1984,(4):25-84
    12.高学杰,赵宗慈,丁一汇等.温室效应引起的中国区域气候变化的数值模拟Ⅱ:中国区域气候的可能变化[J].气象学报,2003,61(1):30-38
    13.勾晓华,陈发虎,王亚军等.利用树轮宽度重建近280年来祁连山东部地区的春季降水[J].冰川冻土,2001,23(3):292-296
    14.韩其蕴.东亚夏季风强度指数及其变化的分析[J].地理学报,1983,38(3):207-217
    15.韩士杰,廖利平,姜风岐.关于森林界面生态学的思考[J].应用生态学报,1998,9(5):538-542
    16.郝占庆,代力民,贺红士.气候变暖对长白山主要树种的潜在影响[J].应用生态学报,2001, 12(5):653-658
    17.侯爱敏,彭少麟,周国逸.树木年轮对气候变化的响应研究及应用[J].生态科学,1999,18(3):16-23
    18.金昌杰,朱延曜,杨思河.长白山阔叶红松林生产潜力评价研究[J].生态学报,1995,15(增刊B辑):86-92
    19.康兴成,Graumlich L J, Sheppard P R.青海都兰地区1835a年轮序列的建立和初步分析.科学通报,1997,42(10):1089-1091
    20.兰涛,夏冰,贺善安.马尾松的生长与气候关系的年轮分析[J].应用生态学报,1994,5(4):422-424
    21.李景文.红松混交林生态与经营[M].哈尔滨:东北林业大学出版社,1997
    22.李文华等.长白山主要生态系统生物生产量的研究[J].森林生态系统研究,1981,2:34-50.
    23.刘广深.长白山树轮稳定碳同位素序列与环境气候变迁[J].地质地球化学,1996,(6):94-96
    24.刘国华,傅伯杰.全球气候变化对森林生态系统的影响[J].自然资源学报,2001,16(1):71-78
    25.刘洪滨,吴祥定,邵雪梅.采用树轮图像分析方法研究历史时期气候变化的可行性[J].地理研究,1996,15(2):44-51
    26.刘鸿雁,谷洪涛,唐志尧等.中国东部暖温带高山林线乔木光合作用及其环境因子的关系[J].山地学报,2002,20(1):32-36
    27.刘慎谔.东北木本植物图志[M].北京:科学出版社,1955
    28.刘慎谔.动态地植物学——基本理论的探讨及其应用[M],刘慎谔文集,北京:科学出版社,1985
    29.刘实,王宁.前期ENSO事件对东北地区夏季气温的影响[J].热带气象学报,2001,17(3):314-319
    30.刘禹,史江峰,Shishov V等.利用树轮宽度重建贺兰山北部1726年以来5-7月降水量[J].科学通报,2004,49(3):265-269
    31.陆佩玲,于强,贺庆棠.植物物候对气候变化的响应[J],生态学报,2006,26(3):923-929
    32.钱宏.长白山高山冻原植被[M]//中国科学院长白山森林生态系统定位站.森林生态系统研究,1992,72-96
    33.秦宁生,邵雪梅,时兴合等.青南高原树轮年表的建立及与气候要素的关系[J].高原气象,2003,22(5):445-449
    34.桑卫国,王云霞,苏宏新等.天山云杉树轮宽度对梯度水分因子的响应[J].科学通报,2007,52(19):2292-2298
    35.沙万英,邵雪梅,黄玫.20世纪80年代以来中国的气候变暖及其对自然区域界线的影响[J].中国科学(D),2002,32(4):317-326
    36.邵雪梅.树木年代学的若干进展[J].第四纪研究,1997,(3):265-271
    37.邵雪梅,黄磊,刘洪滨等.树轮记录的青海德令哈地区千年降水变化[J].中国科学(D辑),2004,34(2):145-153
    38.邵雪梅,吴祥定.华山松横向生长与气候要素之间的关系,中国博士后首届学术会议论文集(下册),北京国防工业出版社,1993,1841-1844
    39.邵雪梅,吴祥定,华山树木年轮年表的建立[J].地理学报,1994,49(2):174-180
    40.盛浩,杨玉盛,陈光水,高人,曾宏达,钟羡芳.植物根呼吸对升温的响应[J].生态学报,2007,27(04):1596-1605
    41.孙睿,朱启疆.气候变化对中国陆地植被净第一性生产力影响的初步研究[J],遥感学报,2001,5(1):58-61
    42.田晓瑞,舒立服,王明玉.林火动态变化对我国东北地区森林生态系统的影响[J].林火研究,2005,(1):21-25
    43.王冀,江志红,丁裕国等.21世纪中国极端气温指数变化情况预估[J].资源科学,2008,30
    44.王淼,白淑菊,陶大立等.大气增温对长白山林木直径生长的影响[J].应用生态学报,1995,6(2):128-132
    45.王婷,于丹,李江风等.树木年轮宽度与气候变化关系研究进展[J].植物生态学报,2003,27(1):23-33
    46.王献溥.全球气候变暖对生态系统和生物多样性的影响及主要对策(一)[J].农村生态环境,1992b,(3):1-5
    47.工旭,周广胜,蒋延玲,贾丙瑞,王风玉,周莉.山杨白桦混交次生林与原始阔叶红松林土壤呼吸作用比较[J].植物生态学报,2007,31(3):348-354
    48.王绪高,李秀珍,孔繁花等.大兴安岭北坡火烧迹地自然与人工干预下的植被恢复模式初探[J].生态学杂志,2003,22(5):30-34
    49.王亚军,陈发虎,勾晓华等.祁连山中部树木年轮宽度与气候因子的响应关系与气候重建[J].中国沙漠,2001a,21(2):135-140
    50.王亚军,陈发虎,勾晓华.利用树木年轮资料重建祁连山中段春季降水的变化[J].地理科学,2001b,21(4):373-377
    51.王玉涛,阚振国,陈圆等.川西高山松林火烧迹地植被生物量与生产力恢复动态[J]林业科技,2007,32(1):82-94
    52.吴普,王丽丽,黄磊.五个中国特有针叶树种树轮宽度对气候变化的敏感性[J].地理研究,2006,25(1):43-52
    53.吴祥定,邵雪梅.采用树轮宽度资料分析气候变化对树本生长量影响的尝试[J].地理学报,1996,51(S1):92-100
    54.吴祥定,邵雪梅.利用树轮资料重建长白山地区过去气候变化[J].第四纪研究,1997,(1):76-85
    55.吴祥定.树木年轮与气候变化[M].北京:气象出版社,1990,34-60
    56.吴泽民,黄成林,马青山.黄山松年轮生长和气候的关系.应用生态学报,1999,10(2):147-150
    57.奚为民,钟章成,毕润成.林窗植被研究进展[J].西南师范大学学报(自然科学版),1992,17(2):268-274
    58.徐岩,邵雪梅.柴达木盆地东缘祁连圆柏轮宽序列标准化的方法研究[J].地理学报,2006,61(9):919-927
    59.延晓冬,赵士洞,于振良.中国东北森林生长演替模拟模型及其在全球变化研究中的应用[J].植物生态学报,2000,24(1):1-8
    60.阳含熙,谢海生.长白山红松混交林干扰历史的重构研究[J],植物生态学报,1994,(3):201-208
    61.杨树春,刘新田,曹海波等.大兴安岭林区火烧迹地植被变化研究[J].东北林业大学学报,1998,26(1):19-23
    62.杨素英,王谦谦.近50a东北地区夏季气温异常的时空变化特征[J].南京气象学院学报,2003,26(5):653-660
    63.于大炮,周莉,董百丽,代力民,王庆礼.长白山北坡岳桦种群结构及动态分析[J].生态学杂志,2004,23(5):30-34
    64.于大炮,王顺忠,唐立娜,代力民,王庆礼,王绍先.长白山北坡落叶松年轮年表及其与气候变化的关系[J].应用生态学报,2005,16(1):14-20
    65.袁玉江,李江风.天山西部树轮年表的响应函数[J].冰川东士,1995,17(2):170-177
    66.张春雨,高露双,赵亚洲,贾玉珍,李金鑫,赵秀海.东北红豆杉雌雄植株径向生长对邻体竞争和气候因子的响应[J].植物生态学报,2009,33(6):1177-1183
    67.张寒松,韩十杰,李玉文等.利用树木年轮宽度资料重建长白山地区240年来降水量的变化[J].生态学杂志,2007,26(12):1924-1929
    68.张军辉,张寒松,韩士杰,李玉文.利用树木年轮宽度资料重建长白山地区240年来降水量的变化[J].生态学杂志,2007,26(12):1924-1929
    69.张娜,于贵瑞,赵士洞,等.长白山自然保护区生态系统碳平衡研究[J].环境科学,2003,24(1):24-32
    70.张志华,吴祥定.利用树本年轮资料重建新疆东天山300多年来干早日数的变化[J].应用气象学报,1996,7(1):53-60
    71.张志华,吴详定.利用树木年轮资料恢复祁连山地区近700年来气候变化[J].科学通报,1997,42(8):849-951
    72.赵宗慈,王绍武,罗勇.IPCC)戊立以来对温度升高的评估与预估[J].气候变化研究进展,2007,3(3):183-184
    73.周道玮,张保田,李建东.松嫩羊草草原火烧后地上生产力的变化[J].草业学报,1995,4(4):23-28
    74.周道玮,张保田,张宏一等.松嫩平原不同时间火烧后群落特征的变化[J].应用生态学报,1996,7(1):39-43
    75.周廷儒等.中国北方农牧交错带全新世环境演变及预测[M].地质出版社,1992,45-55
    76.周园,邹春静,徐文铎.全球气候变暖与东北植被分布关系的研究[J].安徽农业科学,2009,37(11):5229-5231
    77. Agren J. Sexual diffenrences in biomass and nutrient allocation in the diocecious Rubus chamaemorus[J]. Ecology,1988,69,962-973
    78. Allen G A, Antos J A. Sex ratio variation in the dioecious shrub Oemleria cerasiformis [J]. American Naturalist,1993,141(25):537-553
    79. Ammer, Ch.,Ko lling, Ch.WaldbauimKlimawandel Strategien fur den Umgangmit dem Unvermeidlichen[J]. Unser Wald,2007, (4):12-14
    80. Armstrong, W., Jackson, M.B., and Brandle, R. Mechanism of flood tolerance in plants[J]. Acta Botanica Neerlandica,1994, (43):307-358
    81. Attiwill, P.M. The disturbance of forest ecosystems:the ecological basis for conservation management[J]. Forest Ecololgy and Management,1994, (63):247-300
    82. Banuelos MJ, Obeso JR. Resource allocation in the dioecious shrub Rhamnus alpinus:the hidden costs of reproduction[J]. Evolutionary Ecology Research,2004,(6):397-413
    83. Barrett, S.W., Arno, S.F. Increment borer methods for determining fire history in coniferous forests. USDA Forest Service General Technical Report INT-244[M] Ogden:Intermountain Forest and Range experiment Station,1988
    84. Baumhaser, R. Accelerated de sertification. In:Lozan, J., Grassel, H., Hupfer,P.,Menzel,L., Schonwiese, C.-D. (Eds.). Global Change:Enough Water for All? Wissenschaftliche Auswertungen[J]. Hamburg,2007, (1):220-224
    85. Bazzaz FA,Bassow SL,Berntson SL et al. Elevated CO2 and terrestrial vegetation implications for and beyond the global carbon budget. In:Walker B and Steffen W eds[M] Global Change and Terrestrial Ecosystems. Cambridge:Cambridge University Press,1996
    86. Beaty RM, Taylor AH. Fire history and the structure and dynamics of a mixed conifer forest landscape in the northern Sierra Nevada, Lake Tahoe Basin, California,USA[J]. Forest Ecology and Management,2008,255:707-719
    87. Benestad, R.E. Solar activity and global sea-surface temperature[J]. Astronomy and Geophysics,1999, (40):14-17
    88. Bergeron, Y. Species and stand dynamics in the mixed woods of Quebec's southern boreal forest[J]. Ecology,2000, (81):1500-1516
    89. Bergeron, Y., and Archambault, S. Decreasing frequency of forest fires in the southern boreal zone of Quebec and its relation to global warming since the end of the'Little Ice Age'[J]. Holocene,1993,(3):255-259
    90. Bergeron, Y., and Dubuc, M. Succession in the southern part of the Canadian boreal forest[J]. Vegetatio,1989,79,51-63
    91. Bergeron, Y., and Harvey, B. Basing silviculture on natural ecosystem dynamics:an approach applied to the southern boreal mixedwood forest of Quebec[J]. Forest Ecology and Management,1997, (92):235-242
    92. Bergeron, Y., Gauthier, S., Kafka, V., Lefort, P., and Lesieur, D. Natural fire frequency for the eastern Canadian boreal forest:consequences for sustainable forestry[J]. Canadian Journal of Forest Research,2001,(31):384-391
    93. Bergeron, Y., Harvey, B., Leduc, A., and Gauthier, S. Forest management guidelines based on natural disturbance dynamics:stand-and forest-level considerations[J]. Forest Chronicle. 1999a, (75):49-54
    94. Bergeron, Y., Richard, P.J.H., Carcailler, C., Gauthier, S., Flannigan, M., and Prairie, Y. Variability in fire frequency and forest composition in Canada's southeastern boreal forest:a challenge for sustainable forest managemen[J]. Conserv. Ecology,1999b,(12). Article 6. Available from http://www.consecol.org/vol2/iss2/art6
    95. Bergeron, Y., S. Gauthier, V. Kafka, P. Lefort, and D. Lesieur. Natural fire frequency for the eastern Canadian Boreal forest:consequences for sustainable forestry[J]. Canadian Journal of Forestry Research,2001, (31):384-391
    96. Bergeron, Yves., The influence of island and mainland lakeshore landscapes on boreal forest fire regimes[J]. Ecology,1991,72,1980-1992
    97. Berninger, F. Effects of drought and phenology on GPP in Pinus sylvestris:a simulation study along a geographical gradient[J]. Functional Ecology,1997,11,33-42
    98. Bertrand, A.& Y. Castonguay. "Plant adaptation to overwintering stresses and implications of climate change"[J]. Canadian Journal of Botany,2003,81 (12):1145-1152
    99. Biondi F. and Waikul K. DENDROCLIM2002:A C++ program for statistical calibration of climate signals in tree-ring chronologies[J]. Computer Geosciences,2004, (30):303-311
    100. Black BA, Abrams MD. Influences of Native Americans and surveyor biases on metes and bounds witness tree distribution[J]. Ecology 2001, (82):2574-2586
    101. Bonan GB and Sirois L. Air temperature, tree growth, and the northern and southern range limits of Picea mariana [J]. Journal of Vegetation Science,1992,(3):495-506
    102. Bonan, G.B., and S. Levis, Evaluating aspects of the Community Land and Atmosphere Models (CLM3 and CAM3) using a dynamic global vegetation model[J]. Journal of Climate, 2006,19:2290-2301
    103. Bonan, G.B., Levis, S., Kergoat, L., and Oleson, K.W. Landscapes as patches of plant functional types:An integrating concept for climate and ecosystem models[J]. Global Biogeochem. Cycles,2002,16, doi:10.1029/2000GB001360
    104. Botkin DB, Janak JF, Wallis JR. Some ecological consequences of a computer model of forest growth[J]. Journal of Ecology,1972, (60):849-872
    105. Briffa K R, Schweingruber P D,Shlyatov S G,et al. Unusual twentieth century summer warmth in a 1000-year temperature record from Siberia[J].Nature,1995, (376):156-159
    106. Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG, Vaganov EA. Tree-ring width and density data around the Northern Hemisphere:Part 1, local and regional climate signals[J]; The Holocene,2002a,12(6):737-757
    107. Briffa, K.R., F.H. Schweingruber, P.D. Jones, Reduced sensitivity of recent tree-growth to temperature at high northern latitudes[J]. Nature,1998,391(68):678-682
    108. Brown PM. Climate effects on fire regimes and tree recruitment in black hills ponderosa pine forests[J]. Ecology,2006,(87):2500-2510
    109. Buckley, B.M., Cook, E.R., Peterson, M.J., Barbetti, M. A changing temperature response with elevation for Lagarostrobus franklinli in Tasmania, Australia[J]. Climatic Change, 1997,36,477-498
    110. Bullock S H Effects of sex, size and substrate on growth and mortality of trees in tropical wet forest[J]. Oecologia,1992,9(1):52-55
    111. Biintgen U, Frank D C, Schmidhalter M. Growth climate response shift in a long subalpine spruce chronology[J].Trees-Structure and Function,2006,(20):99-110
    112. Cienciala E., Kucera J., Ryan M. G.& Lindrotha. Water flux in boreal forest during two hydrologically contrasting years; species specific regulation of canopy conductance and transpiration[J]. Annales des Sciences Forestieres,1998,55,47-61
    113. Cipollini ML, Whigham DF. Sexual dimorphism and cost of reproduction in the dioecious shrub Lindera benzoin(Lauraceae) [J]. American Midland Naturalst,1994,(115):397-406
    114. Clark, J. S. Effect of climate change on fire regimes in northwestern Minnesota[J]. Nature, 1988,334,33-235.
    115. Cogbill, C.V. Dynamics of the boreal forests of the Laurentian Highlands, Canada[J]. Canadian Journal of Forest Research,1985,15,252-261.
    116. Collins BM, Omi PN, Chapman PL. Regional relationships between climate and wildfire-burn area in the Interior West, USA [J]. Canadian Journal of Forest Research,2006 (36):699-709. doi:10.1139/X05-264
    117. Cook E R, Cole J. On predicting t he response of forest s in eastern North America to future climate change[J]. Climatic Change,1991, (19):271-283
    118. Cook, E.R. and L.A. Kairiukstis, Methods of Dendrochronology:Applications in the Environmental Sciences [D].:Kluwer, Dordrecht.1990
    119. Correira O, Diaz Barradas MC. Ecophysiological differences between male and female plants of Pistacia lentiscus L [J]. Plant Ecology,2000, (149):131-142
    120. Crimmins M A. Synoptic climatology of extreme fire-weather conditions across the southwest United States[J]. International Journal of Climatology,2006,26(8):1001-1016 doi:10.1002/JOC.1300
    121. Cullen L E, Palmer J G, Duncan R P, et al. Climate change and tree-ring relationships of Nothofagus menziesii tree-line forest [J]. Canadian Journal of Forest Research,2001,31:1981 1991
    122. Curtis, P.S. A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide [J]. Plant, Cell and Environment,1996, (19):127-137
    123. D'Arrigo, R.D., Jacoby, G.C. Secular trends in high northern latitude temperature reconstructions based on tree rings [J]. Climate Change,1993,25:163-177
    124. D'Arrigo, R.D., W.S.F. Schuster, D.M. Lawrence, E.R. Cook, M. Wiljanen and R.D. Thetford:Climate-growth relationships of eastern hemlock and chestnut oak from black rock forest in the highlands of southeastern New York [J]. Tree-Ring Research, 2001,(57):183-190
    125. D'Arrigo, R. D., R. K. Kaufmann, N. Davi, G. C. Jacoby, C. Laskowski, R. B. Myneni, and P. Cherubim, Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada, Global,2004
    126. D'Arrigo, R., R. Wilson, B. Liepert, and P. Cherubini. On the'Divergence Problem'in northern forests:A review of the tree-ring evidence and possible causes, Global Planet. Change,2007
    127. Dale VH and Franklin J F. Potential effects of climate change on stand development in the Pacific Northwest [J]. Canadian Journal of Forest Research,1989,(19):1581-1590
    128. Davi, H., Dufre ne, E., Francois, C., Le Maire, G., Loustau, D., Bosc, A., Rambal, S., Granier, A. and Moors, E Sensitivity of water and carbon fluxes to climate changes from 1960 to 2100 in European forest ecosystems[J]. Agricultural and Forest Meteorology,2006,141, 35-56
    129. Dawson TE, Ehleringer JR. Gender-specific physiology, carbon isotope discrimination, and habitat distribution in boxelder, Acer negundo[J]. Ecology,1993,(74):798-815
    130. Day, R.J. Stand structure succession, and use of southern Alberta's Rocky Mountain forest[J]. Ecology,1972,(53):472-478
    131. De Kroon H.Schieving F. Resource allocation patterns as a function of clonal morphology A general model applied to a foraging clonal plant[J]. Ecology,1991,(9):519-530
    132. DeGrandpre, L., Gagnon, D., and Bergeron, Y. Changes in the understory of Canadian southern boreal forest after fire [J]. Journal of Vegetation Science,1993, (4):803-810
    133. Delph LF. Sex-differential resource allocation patterns in the subdioecious shrub. Hebe Subalpina[J]. Ecology,1990,(71):1342-1351
    134. Delph LF, Meagher TR. Sexual dimorphism masks life history trade-offs in the dioecious plant Silene latifolia[J]. Ecology,1995, (76):775-785
    135. Delph LF. Sexual dimorphism in life history//Geber MA, Dawson TE, Delph LF. ed. Gender and Sexual Dimorphism in Flowering Plants[M]. Berlin:Springer-Verlag, 1999:149-173
    136. Di Castri, Hansen AJ. The environment and development crises as determinants of landscape dynamics. In In Hansen AJ,Francesco di Castri (edts) [M]. New York:Landscape boundaries. Spinger-Verlag,1992:3-18.
    137. Diaz H F, Geosjean M, Graumlich L. Climate variability and change in high elevation regions:past, recent and future[J].Climate Change,2003,(59):1-4
    138. Diaz HF, Bradley RS.Temperature variation during the last century at high elevation sites[J]. Climatic Change,1997,(36):253-279
    139. Dix, R.L., and Swan, J.M.A. The roles of disturbance and succession in upland forest at Candle Lake, Saskatchewan [J]. Canadian Journal of Botony,1971,(49):657-676
    140. Dobbertin K, Grissino-Mayer H D. Bibliografie und glossar zur dendrochronologie:zwei neue informationsquellen fur die jahrringforschung[J]. Schweizerische Zeit schrift fur Forstwesen,2006,155(6):238-240
    141. Douglass A.E. Evidence of climatic effects in the annual rings of trees[J]. Ecology,1920, (1):24-32
    142. Douglass A.E. A method for estimating rainfall by the growth of trees. In The Climatic Factor as Illustrated in Arid America.(Huntington E, Ed)[M]. Washington:Carnegie Institute of Washington,1914:101-121
    143. Drake, B.G., Gonzales-Meler, M., and Long, S.P. More efficient plants:a consequence of rising atmospheric CO2?[J] Annual Reversion. Plant Physiol. Plant Molecular Biol.,1997,(48) 609-639
    144. Duncan R. An evaluation of errors in tree age estimates based on increment cores in kahikatea (Dacrycarpus dacrydioides)[J]. New Zealand Natural Sciences,1989,(16):31-37
    145. Eastering DR, Horton B, Jones PD, Peterson TC, Karl TR, Parker DE, Salinger MJ. Razuvayev V, Plummer N, Jamerson P, Folland C,Maximum and minimum temperature trends for the globe[J]. Science,1997,(277):364-367
    146. Efron B. and Tibshirani R.J., An Introduction to the bootstrap[M]. Chapman & Hall.1994.
    147. Eilmann, B., Weber, P., Rigling, A. and Eckstein, D The influence of drought on the wood structure of Pinus sylvestris L. and Quercus pubescens Willd. in Valais, Switzerland[J]. Dendrochronologia,2006,(23):121-132
    148. Esper J. Long term tree-ring variations in junipers at the upper timberline in the Karakorum (Pakistan)[J]. The Holocene,2000, (10):253-260
    149. Esper J, Cook E R, Schweingruber F H. Low-frequency signals in long tree-ring chronologies and the reconstruction of past temperature variability[J]. Science,2002a,(295):2250-2253
    150. Esper J, Schweingruber F H, Winiger M.1,300 years of climate history for Western Central Asia inferred from tree-rings[J]. The Holocene, 2002b, (12):267-277
    151. Esper J, Shiyatov S G, Mazepa V S, Wilson RJS, Graybill D A, Funkhouser G. Temperature-sensitive Tien Shan tree ring chronologies show multi-centennial growth trends[J]. Climate Dynamics,2003,(8):699-706
    152. Falk, Donald; Corey Cox; Deborah Hill; Taylor McKinnon; Erica Rosenberg; Karl Siderits; and Thomas Swetnam. Fire on the Landscape:Planning for Communities, Fire, and Forest Health. Report of the Arizona Forest Health Council to the Office of the Governor. 2008,Tucson, AZ.29 pages+vii.
    153. Farquhar, G.D., Ehleringer, J.R., and Hubick, K.T. Carbon isotope discrimination and photosynthesis. Ann. Rev. Plant Physiol[J]. Plant Molecular Biology,1989,(40):503-537
    154. Fastie CL, Lloyd AH, and Doak P. Fire history and postfire forest development in an upland watershed of interior Alaska[J]. Journal of Geophysical Research,2003, (108):81-90
    155. Field, C.B., Jackson, R.B., and Mooney, H.A. Stomatal responses to increased CO2: implications from the plants to the global scale[J]. Plant, Cell and Environment,1995,18, 1214-1225
    156. Flannigan, M. D., and B. M. Wotton. A study of interpolation methods for forest fire danger rating in Canada[J].Canadian Journal of Forest Research,1989,(19):1059-1066
    157. Flannigan, M. D., and B. M. Wotton. Climate, weather and area burned, in E. A. Johnson and K. Miyanishi, editors. Forest fires:behavior and ecological effects [M]. New York:Academic Press,2001:335-357
    158. Foley J A, Kutzbach J E, Coe MT and Levis S. Feedbacks between climate and boreal forests during the Holocene epoch[J]. Nature,1994, (371):52-54
    159. Frank D, Esper J. Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps[J]. Dendrochronologia,2005, (22):107-121
    160. Frelich, L.E., and Reich, P.B. Spatial pattern and succession in a Minnesota southern-boreal forest[J]. Ecological monographs,1995, (65):325-346
    161. Fritts H C. Tree Ring and Climate [M]. London:Academic Press,1976:1-54
    162. Fritts HC. Relationships of ring-widths in arid site conifers to variations in monthly temperature and precipitation[J]. Ecology Monographs,1974,44 (4):411-440
    163. Fritts.H.C., Smith. D. G., Cardis. J. W & Budelsky, C.A. Tree-ring characteristics along a vegetation gradient in northern Arizona[J]. Ecology,1965,(46):393-401
    164. Fule, P.Z., Covington, W.W and Moore, M.M. Determining reference conditions for ecosystem management of southwestern ponderosa pine forests[J]. Ecology Application, 1997,7:895-908
    165. Gagnon, R. Maintien apres feu de la limite abruptes entre des peuplements d'epinettes noires (Picea mariana) et des formations de feuillus intolerants (Populus tremuloides et Betula papyrifera) dans 1a region du Saguenay-Lac Saint-Jean (Quebec) [J].Natural jornal of Canadian,1989,(116):117-124
    166. Garren KH. Effects of fire on vegetation of the Southeastern United States[J]. Botany Review, 1943,9(3):733-736
    167. Gates DM. Climate change and forests[J]. Tree Physiology,1990, (7):1-5
    168. Gauthier, S., De Grandpre, L., and Bergeron, Y. Differences in forest composition in two boreal forest ecoregions of Quebec[J]. Journal of Vegetation Science,2000, (11):781-790
    169. Gauthier, S., Leduc, A., and Bergeron, Y. Forest dynamics modelling under natural fire cycles:a tool to define natural mosaic diversity for forest management[J]. Environmental Monitoring and Assessement,1996,(39):417-439
    170. Gehring J L, Monson R K. Sexual diferences in gas exchange and response to environmental stress in dioecious Silene latifolia(Caryophyllaceae) [J]. American Journal of Botany, 1994,(81):166-174
    171. Gervais B R, Macdonald G M. A 4032year record of July temperatures and treeline dynamics of Pinus sylvest ris from the Kola Peninsula, northwestern Russia[J]. Arctic, Antarctic and Alpine Research,2000,(32):295-302
    172. Goldblum D, Rigg L S. Tree growth response to climate change at the deciduous-boreal forest ecotone, Ontario,Canada[J]. Canadian Journal of Forest research,2005, (35):2709-2718
    173. Gosz J. R. Ecological functions in a biome transition zone; translating local responses to broad-scale dynamics.In:Hansen.A J. di castri F(eds) Landscape Boundaries, New York[M].Spring Verlag,1992,56-74
    174. Gou, X.H., Chen, F.H., Yang, M.X., Jacoby, G.C., Peng, J.F., Zhang, Y. A comparison of tree-ring records and glacier variations over the past 700 years, northeastern Tibetan Plateau[J]. Annals of Glaciology,2006,43:86-90
    175. Grant M C, Mitton J B. Elevational gradients in adult sex ratios and sexual differentiation in vegetative growth rates in Populus tremuloides Michx [J]. Evolution,1979,(33):914-918
    176. Grau H R. Easdale T A, Paolini L. Subtropical dendroecology-dating disturbances and forest dynamics in northwestern Argentina montane ecosystems [J]. Forest Ecology and Management,2003,(177):131-143
    177. Grissino-Mayer, H.D. Tree-ring reconstructions of climate and fire history at El Malpais National Monument, New Mexico. Dissertation, University of Arizona.1995
    178. Grissino-Mayer, H.D. and T.W. Swetnam. Century-scale climate forcing of fire regimes in the American Southwest[J]. Holocene,2000, (10):207-214
    179. Grissino-Mayer, H.D., W.H. Romme, M.L. Floyd, and D. Hanna. Climatic and human influences on fire regimes in the southern San Juan Mountains, Colorado, USA[J]. Ecology, 2004,(85):1708-1724
    180. Gross K L, Soule J D. Differences in biomass allocation to reproductive and vegetative structures of male and females plants of a dioecious, perennial herb, Silene alba (Miller) Krause[J].American Journey of Botany,1981,(68):801-807
    181. Guetter P J, Kutzbach JE. A modified Koppen classification applied to model simulations of glacial and interglacial climates[J]. Climate Change,1990,(16):193-215
    182. H. F. Zhu H. F. Zhu,, X. Q. Fang, X. M. Shao, and Z. Y. Yin. Tree ring-based temperature reconstruction for Changbai Mountain in Northeast China and its implication for East Asian winter monsoon Climate[J]. Past,2009,(5):661-666
    183. Hamrick, J.L. Response of forest trees to global environmental changes[J]. Forest Ecology and Management,2004, (197):323-335
    184. Hanninen, H., Beuker, E., Johnsen,0., Leinonen, I., Murray, M., Sheppard, L., Skrφppa, T. Impacts of climate change on cold hardiness of conifers. In:Bigras, F.J., Colombo, S.J. (Eds.), Conifer Cold Hardiness[M]. Kluwer Academic Publishers, Dordrecht, Netherlands.2001
    185. Hansen AJ, Paul G, Risser, Francesco di Castri. Epilogue:Biodiversity and ecological flows across ecotones. In Hansen AJ,Francesco di Castri (edts)[M]. New York:Landscape boundaries. Spinger-Verlag,1992b:424-438
    186. Hasenaur H, Nemani R R, Schadauer K et al. Forest growth response to changing climate between 1961 and 1990 in Austria[J]. Forest Ecology and Management,1999,(122):209-219
    187. Havranek, W. M.& Benecke, V. The influence of soil moisture on water potential, transpiration and photosynthesis of conifer seedlings[J]. Plant and Soil,1978,(49):91-103
    188. He, JS, Zhang Q B., Bazzaz, F.A. Differential drought responses between saplings and adult trees in four co-occurring species of New England[J]. Trees,2005, (19):442-450
    189. Heyerdahl EK, Morgan P, Riser JP. Multi-season climate synchronized historical fires in dry forests (1650-1900), northern Rockies, USA [J]. Ecology,2008b,(89):705-716
    190. Hofgaard, A., Tardif, J., Bergeron, Y. Dendroclimatic response of Picea mariana and Pinus banksiana along a latitudinal gradient in the eastern Canadian boreal forest[J]. Canadian Journal of Forest Research,1999,(29):1333-1346
    191. Holden ZA, Morgan P, Crimmins MA, Steinhorst RK, Smith AMS. Fire season precipitation variability influences fire extent and severity in a large southwestern wilderness area, United States[J]. Geophysical Research Letters,2007,34(16):1-5 doi:10.1029/2007GL030804
    192. Holmes R.L. Dendrochronological Program Library (DPL). Users Manual, Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona, USA.1999
    193. Huang J-G, Bergeron Y, Denneler B, Berninger F, Tardif J. Response of forest trees to increased atmospheric CO2[J]. Critical Reviews in Plant Sciences,2007, (26):265-283
    194. Hughes M K, Funkhouser G. Frequency dependent climate signal in upper and lower forest border tree rings in the mountains of the great basin [J]. Climate Change,2003,(59):233-244
    195. Hunt E R J, Martin F, Running S. Simulating the effects of climatic variation on stem carbon accumulation of a Pinus ponderosa stand:Comparison with annual growth increment data[J]. Tree Physiology,1991,(9):161-171
    196. Iglesias M C, Bell G. The small-scale spatial distribution of male and female plants[J].Oecologia,1989,(80):229-235
    197. IPCC (Intergovernmental Panel on Climate Change). Climatic Change 2001:the scientific bases. Cambridge University Press, Cambridge.2001
    198. IPCC (Intergovernmental Panel on Climate Change). Climatic Change 2007:the Physical Science Basis. In:Proceedings of the 10th Session of Working Group Ⅰ of the IPCC, Paris, Feburary 2007
    199. Jacoby, G C, D'Arrigo, R.D, Davaajamts T. Mongolian tree rings and 20th century warming[J]. Science,1996, (273):771-773
    200. Jacoby G C, D'Arrigo, R.D. Tree rings, carbon dioxide and climatic change[J]. Proceedings of the National Academy of Sciences USA,1997, (94):8350-8353
    201. Jacoby, G.C, and D'Arrigo, R.D. Tree ring width and density evidence of climatic and potential forest change in Alaska[J]. Global Biogeochem Cycles,1995,(9):227-234
    202. Jacoby, G.C., D'Arrigo, R.D. Reconstructed northern hemisphere annual temperature since 1671 based on high-latitude tree-ring data from North America[J]. Climate Change, 1989,(14):39-59
    203. Jenssen, M.,Hofmannn,G.,Pommer,U.Die naturlichen Vegetation spotenziale Brandenburgs als Grundlage klimaplastischer Zukunftswalder[J]. Beitrage zur Geholzkunde,200,(9):17-29
    204. Jing S W, Coley P D. Dioecy and herbivory:the effect of growth rate on plant defense in Acer negundo[J]. Oikos,1990),(58):369-377
    205. Johnson, E. A., and G. I. Fryer. Population dynamics in lodgepole pine-Engelmann spruce forests[J]. Ecology,1989, (70):1335-1345
    206. Johnson, E.A. Fire and vegetation dynamics:studies from the North American boreal forests[M]. U.K:Cambridge University Press,1992
    207. Karl, T.R., Jones, P.D., Knight, R.W., Kukla, G., Plummer, N., Razuva yev, V., Gallo, K.P., Lindseay, J., Charlson, R.J. and Peterson, T.C. "A new perspective on recent global warming: Asymmetric trends of daily ma ximum and minimum temperatures." [J].Bulletin of the American Meteorological Society,1993,74(6):1007-1023
    208. Kasang, D.,Kaspar,F.Change of regional extremes. In:Lozan, J., Grassel,H., Hupfer,P.,Menzel,L., Schonwiese, C.-D.(Eds.). Global Change:Enough Water for All?[M]. Hamburg:Wissenschaftliche Auswertungen,2007:206-211
    209. Kendall M G. Rank Correlation Methods[M]. London:Griffin.1970:125-130
    210. Kerr R A. Greenhouse skeptic out in the cold[J]. Science,1989,246),1118-1119
    211. Kienast F, Schweingruber F H, Braker O U, Schar E. Tree-ring studies on conifers along ecological gradients and the potential of single-year analysis[J]. Canadian Journal of Forest Research,1987,(17):683-696
    212. Kipfmueller KF, Swetnam TW. Fire-climate interactions in the Selway-Bitterroot wilderness area. In:Cole DN, McCool S, Borrie WT, O'Laughlin J eds. Wilderness Science in a Time of Change Conference-Volume5:Wilderness Ecosystems, Threats, and Management; 1999 May 23-27. Missoula, MT. Proceedings RMRS-P-15-VOL5[M]. Ogden, UT:USDA, Forest Service, Rocky Mountain Research Station,2000:270-275
    213. Kolling, C.,Zimmermann,L.,Walentowski,H., Klimawandel:was geschieht mit Buche und Fichte?[J]. Allgemeine Forstzeitschrift/Der Wald,2007, (11):584-588
    214. Koch, G.W., and Mooney, H.A. Response of terrestrial ecosystems to elevated CO2:a synthesis and summary. In:Carbon Dioxide and Terrestrial Ecosystems.Koch, G.W., and Mooney, H.A., Eds.[M] San Diego:Academic Press,1996:415-429
    215. Kohler MA. On the use of double-mass analysis for testing the consistency of meteorological records and for making required adjustments [J]. Bull American Meteorology Society, 1949,82,96-97
    216. Korner C. Plant CO2 responses:an issue of definition, time and resource supply[J]. New Phytologist,2006,172,393-411
    217. Korner, C. Biosphere responses to CO2 enrichment[J]. Ecological Applications,2000,(10), 1590-1619
    218. Kozlowski T T, Pallardy SG. Growth control in woody plants[M]. San Diego:Academic Press,1997
    219. Kozlowski, T.T. Acclimation and adaptive responses of woody plants to environmental stresses[J]. Botonical Review,2002,(68):270-334
    220. Krakauer N Y, Randerson J T. Do volcanic eruptions enhance or diminish net primary production? Evidence from tree rings[J]. Global Biogeochemical Cycles,2003,(17):11-18
    221. Kramer, K., Leinonen, I., Loustau, D. The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems:an overview[J]. International Journal of Biometeorology,2000,(44):67-75
    222. Kullman, L. Late Holocene reproductional patterns of Pinus sylvestris and Picea abies at the forest limit in central Sweden[J]. Canadian. Journal of Botony,1986,(64):1682-1690
    223. Kullman, L. Pine (Pinus sylvestris) treeline dynamics during the past millennium-a population study in west-central Sweden[J]. Annual Botanici Fennici,2005, (42):95-106
    224. Kullman, L., Engelmark, O. Neoglacial climate control of subarctic Picea abies stand dynamics and range limit in northern Sweden[J]. Arctic Alpine Research,1997,(29): 315-326
    225. Kumar N., Gupta S., Tripathi A.N. Gender-specific responses of Piper betle L. to low temperature stress:changes in chlorophyllase activity [J]. Biologia Plantarum,2006,50 (4): 705-708
    226. Kurt F. Kipfmueller, William L. Baker. A comparison of three techniques to date stand-replacing fires in lodgepole pine forests[J]. Forest Ecology and Management,1998,(104):171-177
    227. La Marche,V.C. Frost rings in trees as records of Major volcanic eruptions[J]. Nature, 1987,307(5946),121-126
    228. LaMarche V C. Frequency-dependent relationships between tree-ring series along an ecological gradient and some dendroclimatic implications[J]. Tree-ring Bulletin,1974, (34):1-20
    229. Larsen, C. P. S., and G. M. MacDonald. An 840-year record of fire and vegetation in a boreal white spruce forest[J]. Ecology,1998, (79):106-118
    230. Larsen, C.P.S. Spatial and temporal variations in boreal forest fire frequency in northern Alberta[J]. Journal of Biogeography,1997, (24):663-673
    231. Lavoie D, Payette S. Recent fluctuations of t he lichen spruce forest limit in subarctic Quebec[J]. Journal of Ecology,1994, (82):725-734
    232. Lebourgeois, F., Rathgeber, C.B.K., Ulrich, E. Sensitivity of French temperate coniferous forests to climate variability and extreme events (Abies alba, Picea abies and Pinus sylvestris) [J]. Journal of Vegetation Science,2010,21 (2):364-376
    233. Leduc, A., Gauthier, S., and Bergeron, Y. Prevision de la composition d'une mosaique forestiere naturelle soumise a un regime de feu:proposition d'un modele empirique pour le nord-ouest du Quebec. In Methodes et realisation de l'ecologie du paysage pour l'amenagement du territoire. Edited by G. Domon and J. Falardeau. Polyscience, Morin Heights, Que.1995:197-205
    234. Li C, Yan g Y, Junttila O, Palva ET. Sexual diferences in cold acclimation and freezing tolerance development in sea buckthorn (Hippophae rhamnoides L.)ecotypes[J]. Plant Science,2005,(168):1365-1370
    235. Linderholm, H.W. Climatic influence on scots pine growth on dry and wet soils in the central Scandinavian mountains, interpreted from tree-ring widths[J]. Silva Fennica,2001,(35): 415-424
    236. Liu, Q. J. Structure and dynamics of the subalpine coniferous forest on Changbai Mountain, China[J]. Plant Ecology,1997,(132):97-105
    237. Ljoyd, A, Graunlich, L.J. Holocene dynamics of tree line forests in the Sierra Nevada[J]. Ecology,1997,78(4):1199-1210
    238. Lloyd D, Webb CJ. Secondary sex characteristics in plants[J]. Botanical Review, 1977,(43):177-216
    239. Luckman B H, Kavanagh T A. Documenting t he effect of recent climate change at treeline in the Canadian Rockies [C]//Beniston and Innes J L. The Impact s of Climate Variability on Forest s. New York:Springer-Verlag,1998,121-144
    240. Makinen, H., Nojd, P., Kahle, H.P., Neumann, U., Tveite, B., Mielikainen, K., Rohle, H., Spiecker, H. Radial growth variation of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe[J]. Forest Ecology and Management,2002,(171):243-259
    241. Malmstrom C M, Thompson M V, Juday G et al. Interannual variation in global-scale net primary production:Testing model estimates[J]. Global Biogeochemical Cycles, 1997,(11):367-392
    242. Mann, M.E., Bradley, R.S.,& Hughes, M.K. Northern hemisphere temperatures during the past millennium:inferences, uncertainties, and limitations[J]. Geophysical Research Letters, 1999, (26):759-762
    243. May, R.M. On the theory of niche overlap[J]. Theoretical Population Biology,1974,(5): 297-332
    244. McBride, J. R. Analysis of tree rings and fire scars to establish fire history[J]. Tree-ring Bulletin,1983,(43):51-66
    245. Mervi Tuovinen. Response of tree-ring width and density of Pinus sylvestris to climate beyond the continuous northern forest line in Finland[J]. Dendrochronologia,2005, (22): 83-91
    246. Moiseev, P.A., Van der Meer, M., Rigling, A., Shevchenko, I.G. Effect of climatic changes on the formation of Siberian spruce generations in subglotsy tree stands of the southern Urals[J]. Russian Journal of Ecology,2004,35 (3),135-143
    247. Montesinos D, De Luis M, Verdu M, et al. When, how and how much:Gender-specific resource-use strategies in the dioecious tree Juniperus thurifera[J]. Annals of Botany, 2006,(98):885-889
    248. Mouillot F, Rambal S, Joffre R. Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem[J]. Global Change Biology,2002,(8): 423-437
    249. Mutch, L. and Swetnam, T.W. Effects of fire severity and climate on ring-width growth of giant sequoia after burning. In Fire in Wilderness and Park Management[M]. USDA Forest Service General Technical Report INT-320, Fort Collins, CO, USA.1995:241-246
    250. Neilson, R.P. Regional and local vegetation patterns:The responses of vegetation diversity to sub continental air mass. In:Hansen, A.J. di castri F(eds)[M] New York; Spring Verlag, Landscape Boundaries,1992:129-149
    251. Nemani R R, Keeling C D, Hashimoto H, et al. Climate driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science,2003,300,1560-1563
    252. Nicholls, N., G.V., Gruza, J. Jouzel, T.R. Karl, L.A. Ogallo and Parker, D.E. Observed climate variability and change. In:Climate Change 1995, The Science of Climatic Change. Houghton, J.T., L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg and K. Maskell (eds)[M]. Cambridge, U.K.:Cambridge University Press,1996:132-192
    253. Nicotra A B. Sexually dimorphic growth in the dioecious tropical shrub, Siparuna grandiflora[J]. Functional Ecology,1999, (13),322-331
    254. Nojd, P.& Hari, P. The effect of temperature on the radial growth of Scots pine in northernmost Fennoscandia[J]. Forest Ecology and Management,2001,142(1-3):65-77
    255. Norby, R.J., Wullschleger, S.D., Gunderson, C.A., Johnson, D.W., and Ceulemans, R. Tree responses to rising CO2 in field experiments:implications for the future forest[J]. Plant, Cell and Environment,1999,(22):683-714
    256. Norton D.A., Palmer J.G.& Ogden J. Dendroecological studies in New Zealand 1.An evaluation of tree age estimates based on increment cores[J].New Zealand Journal of Botany, 1987,(25):373-383
    257. Norton, D.A. Tree-growth-climate relationships in subalpine Nothofagus forests, South Island, New Zealand[J]. New Zealand Journal of Botany,1984, (22):471-481
    258. Oberhuber W, Kofler W. Topographic influences on radial growth of Scot s pine (Pinus sylvestris L.) at small spatial scales[J]. Plant Ecology,2000,(146):231-240
    259. Obeso J R, Alvarez-Santullano M, Retuerto R. Sex ratios, size distributions, and sexual dimorphism in the dioecious tree Ilex aquifolium (Aquifoliaceae) [J]. American Journal of Botany,1998,85,1602-1608
    260. Obeso J R. Costs of reproduction in Ilex aquifolium:effects at tree,1-year shoot and leaf levels[J]. Journey of Ecology,1997, (85):159-166
    261. Pastor J and Mladenoff DJ. The southern boreal2northern hard wood forest border. In: Shugart RL and Bonan GB eds. A systems Analysis of the Global Boreal Forest[M]. Cambridge:Cambridge University Press,1992:216-240
    262. Pastor J and Post WM. Response of northern forests to CO2-induced climate change[J]. Nature,1988, (333):55-58
    263. Pederson, N., Cook, E.R., Jacoby, G.C., Peteer, D.M., Griffin, K.L. The influence of winter temperatures on the annual radial growth of six northern range margin tree species[J]. Dendrochronologia,2004,(22):7-29
    264. Peng C H, Apps M J. Contribution of China to the global carbon cycle since the last glacial maximum:reconstruction from palaeovegetation maps and an empirical biosphere model[J]. Tellus,1997,49(B):393-408
    265. Peng C H, Guiot J, Van Campo E. Past and future carbon balance of European ecosystems from pollen data and climatic models simulations[J]. Global and Planetary Change,1998,(18): 189-200
    266. Piovesan G, Biondi F, Barnabei M, Di Filippo A, Schirone B. Spatial and altitudinal bioclimatic zones of the Italian peninsula identified from a beech (L.) tree-ring network[J]. Acta Oecologia,2005, (27):197-210
    267. Platt, W.J. Southeastern pine savannas-In The Savanna, Barren, and Rock Outcrop Communities of North America.pp.. Edited by R.C. Anderson, J.S. Fralish and J. Baskin. [M]Cambridge University Press, Cambridge, UK.1997:23-51
    268. Prentice IC, GramerW, Harrison SP, et al. A global biome model based on plant physiology and dominance, soil properties and climate[J]. Journal of Biogeography,1992,(19):117-134
    269. Ramp P.F., and Stephenson S.N. Gender dimorphism in growth and mass partitioning by box-elder (Acer negundo L.)[J]. American Naturalist,1988, (119):420-430
    270. Renner S S, Ricklefs R E. Dioecy and its correlates in the flowering plants [J]. American Journal of Botany,1995,(82):596-606
    271. Rigling, A., Braker, O., Schneiter, G. and Schweingruber, F. Intra-annual tree-ring parameters indicating differences in drought stress of Pinus sylvestris forests within the Erico-Pinion in the Valais (Switzerland)[J]. Plant Ecology,2002,(163):105-121
    272. Robertson, E.O., Jozsa, L.A..Climatic reconstruction from tree rings at Banff [J]. Canadian Journal of Forest Research,1988,(18):888-900
    273. Rolland, C. Tree-ring and climate relationships for Abies alba in the internal Alps[J]. Tree-Ring Bulletin,1993,(53):1-11
    274. Romme, W.H., Despain, D.G. Historical perspective on the Yellowstone fires of 1988[J]. BioScience,1989, (39):695-699
    275. Rozas V, DeSoto L, Olano JM. Sex-specific, age-dependent sensitivity of tree-ring growth to climate in the dioecious tree Juniperus thurifera[J]. New Phytologist,2009,(182):687-697
    276. Sakulich J, Taylor A H. Fire regimes and forest structure in a sky island mixed conifer forest, Guadalupe Mountains National Park, Texas, USA[J]. Forest Ecology and Management, 2007,(241):62-73
    277. Schweingruber F H. Tree-rings and Environmental Dendroecology [M].Berne:Paul Haupt Published,1996:15-20
    278. Shao GF, Schall P, Weishampel JF. Dynamic simulation of mixed broadleaved Pinus koraiensis forests in the Changbaishan Biosphere Reserve of China[J]. Forest Ecology and Management,1994,(70):169-181
    279. Sheppard P.R., Graumlich L.J., Conkey L.E. Reflected-light image analysis of conifer tree rings for reconstructing climate[J].Holocene,1996,(6):62-68
    280. Shindell, D.T., Schmidt, G.A., Miller, R.L., and Rind, D. Northern Hemisphere winter climate response to greenhouse gas, ozone, solar, and volcanic forcing [J]. Journal of Geophysical Research,2001,(106):7193-7210
    281. Shugart HH, Smith TM, Post WM. The application for application of individual based simulation models for assessing the effects of global change[J]. Annual Reviews of Ecology and Systematics,1992, (23):15-38
    282. Shugart HH, Smith TM. A review of forest patch models and their application to global change research[J]. Climate Change,1996, (34):131-153
    283. Skinner WR, Gullett DW.Trends of daily maximum and minimum temperature in Canada during the past century[J]. Climatological Bulletin,1993,27(2):63-77
    284. Smith TM and Shugart HH. The application of patch models in global change research. In:Walker B and Steffen W eds. Global Change and Terrestrial Ecosystems[M]. Cambridge: Cambridge University Press,1996:127-148
    285. Solomon A M. Transient response of forest to CO2 induced climate change:Simulation modeling experiments in eastern North America[J]. Oecologia,1986a, (68):567-579
    286. Solomon A M. Transient response of terrestrial C storage to climate change:Modeling C dynamics at varying temporal and spatial scales[J]. Water, Air & Soil Pollution,1986b, (64):307-326
    287. Spittlehouse, D.L. Climate change impacts and adaptation in forestry. In:Climate Change and Forest Genetics, Proc.29th Meeting, Canadian Tree Improvement Assoc, part 2, Symposium, G.A. O'Neill and J.D. Simpson (eds.) 2005a:43-48
    288. Spittlehouse, D.L. Integrating climate change adaptation into forest management[J]. Forest Chronicle,2005b,(81):691-695
    289. Splechtna, B.E., Dobry, J., Klinka, K. Tree-ring characteristics of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in relation to elevation and climatic fluctuations[J]. Annual Forest Science,2000, (57):89-100
    290. Stephenson P.L.& Demetry A. Estimating ages of giant sequoias[J]. Canadian Journal of Forest Research,1995, (25):223-233
    291. Su H. and D. Lin. Influence of main site factors on Fraxinus mandshurica (Oleaceae) plantation[J]. Journal of Forest. Research,2003, (14):83-86
    292. Swetnam TW. Fire history and climate change in giant sequoia groves[J]. Science,1993, 262(5135):885-889
    293. Sykes MT and Prentice IC. Climate change, tree species distributions and forest dynamics:A case study in the mixed conifer/hardwoods zone of northern Europe[J]. Climatic Change, 1996, (34):161-177
    294. Szeicz J M. Growth t rends and climatic sensitivity of trees in t he North Patagonian rain forest of Chile[J]. Canadian Journal of Forest Research,1997,(27):1003-1014
    295. Takahshi K, Azuma H, Yasue K. Effect s of climate on the radial growth of tree species in the upper and lower distribution limits of an altitudinal ecotone on Mount Norikura, central Japan[J]. Ecological Research,2003, (18):549-558
    296. Thomas W, Swetnam. Fire history and climate change in Giant Sequoia Groves[J]. Science,1993,262(5135):885-889
    297. Tian H, Melillo J M, Kicklighter D W, et al. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States[J]. Tellus,1999,51(B): 414-452
    298. Urban D L, Acevedo MF and Garman SL. Scaling fine-scale processes to large scale patterns using models derived from models:metamodels. In:Mladenoff DJ and Baker WL eds. Advances in Spatial Modeling of Forest Landscape Change:Approaches and Applications[M]. Cambridge:Cambridge University Press.1999
    299. Vasiliauskas S A, Aarssen L W. Sex ratio and neighbor effects in monospecific stands of Juniperus virginiana[J]. Ecology,1992, (73):622-632
    300. Vassolo, S. Ground water and climate change. In:Loza'n,.,Grassel,H., Hupfer,P., Menzel,L.,Scho"nwiese,C.-D. (Eds.), Global Change:Enough Water for All? [M]. Wissenschaftliche Auswertungen, Hamburg,2007:174-178
    301. Vennetier, M., Vila, B., Liang, E.Y., Guibal, F., Ripert, C.& Chandioux, O. Impacts du changement climatique sur la productivite'forestie' re et le de'placement d'une limite bioclimatique en re'gionme'diterrane'enne franc, aise. Inge'nie'ries,2005,(44):49-61
    302. Vicente Rozas. Tree age estimates in fagus sylvatica and Quercus robur:testing previous and improved methods[J].Plant Ecology,2003,167:193-212
    303. Villalba, R., Boninsegna, J.A., Veblen, T.T., Schmelter, A., Rubulis, S. Recent trends in tree-ring records from high elevation sites in the Andes of northern Patagonia[J]. Climatic Change,1997,(36):425-454
    304. Walther GR. Plants in a warmer world[J]. Perspect Plant Ecology Evolution System,2003,(6): 169-185
    305. Wang X, Curtis PS. Gender-specific responses of Populus tremuloides to atmospheric CO2 enrichment[J]. New Phytologist,2001,150,675-684
    306. Wang, T., Ren, H.B., Ma, K.P. Climatic signals in tree ring of Picea schrenkiana along an altitudinal gradient in the central Tianshan Mountains, northwestern China[J].Trees,2005, (19):735-741.
    307. Ward JK, Dawson TE, Ehleringer JR. Responses of Acer negundo genders to interannual differences in water availability determined from carbon isotope ratios of tree ring cellulose[J]. Tree Physiology,2002,22,339-346
    308. Weaver,H.Fire as an ecological factor in the southwestern ponderosa pine forests[J]. Journal of Forest,1951, (49):93-98
    309. Weber, P., Bugmann, H. and Rigling, A. Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an inner-alpine dry valley [J]. Journal of Vegetation Science,2007, (18):777-792
    310. Weir, J. M. H., E. A. Johnson, and K. Myanishi. Fire frequency and spatial age mosaic of the mixed wood boreal forest in western Canada[J]. Ecological Applications, 2000,(10):1162-1177
    311. Weir, J.M.H., Johnson, E.A., and Myanishi, K. Fire frequency and spatial age mosaic of the mixedwood boreal forest of Saskatchewan. In Proceedings of the Sustainable Management Network Conference. Science and Practice:Sustaining the Boreal Forest. Edited by T.S. Veeman, D.W. Smith, B.G. Purdy, F.J. Salkie, and G.A. Larkin. Sustainable Forest Management Network, Edmonton, Alta.1999:81-86
    312. Westerling, A.L., H.G.Hidalgo, D.R.Cayan& T.W.Swetnam. Warming and earlier spring increase western US forest wildfire activity[J]. Science,2006, (313):940-943
    313. Wigley T.M.L., Briffa K.R. and P.D. Jones. On the average value of correlated time series with applications in dendroclimatology and hydrometeorology [J]. Journal of Climate and Applied Meteorology,1984,(23):201-213
    314. Willson MF. Plant Reproductive Ecology [M]. New York:Wiley Interscience,1983
    315. Woodward, F I, Cramer W. Plant functional types and climatic changes:introduction [J]. Journal of Vegetation Science,1996,(7):306-308
    316. Wu Z Y, Wu S G. A proposal for a new floristic kingdom (realm)-the Asiatic kingdom, its delineation and characteristics, ZHANGA L, WU S G. Floristic characteristics and diversity of east Asian plants[M]. Beijing:Higher Education Press,1998:32-42
    317. Xu X, Yang F, Xiao X, Zhang S, Korpelainen H, Li C. Sex-specific responses of Populus cathayana to drought and elevated temperatures [J]. Plant, Cell & Environment,2008,(31): 850-860
    318. Yasue, K., Funada, R., Kondo, T., Kobayashi, O., Fukazawa, K. The effect of climatic factors on the radial growth of Japanese ash in northern Hokkaido, Japan[J]. Canadian Journal of Forest Research,1996, (26):2052-2055
    319. Yu D P, Gu H Y, Wang J D, et al. Relationship of climate change and tree ring of Betula ermanii tree line forest in Changbai Mountain [J]. Journal of Forest Research,2005,16(3):187-192
    320. Yu D P, Zhai LJ, Dai LM, Wang QL. Dynamics of dominant tree species in a forest ecotone on the northern slop of Changbai Mountain[J]. Journal of Forestry Research, 2006,(17):216-220
    321. Yueh-Hsin Lo, Juan A. Blanco, Brad Seely, Clive Welham, J.P. (Hamish) Kimmins. Relationships between climate and tree radial growth in interior British Columbia[J]. Canadia Forest Ecology and Management,2010,259,932-942
    322. Yumiko Miyamoto, Hardy P. Griesbauer, D. Scott Green. Growth responses of three coexisting conifer species to climate across wide geographic and climate ranges in Yukon and British Columbia[J]. Forest Ecology and Management,2010,259,514-523
    323. Zhang, Q.B., Hebda, R.J. Variation in radial growth patterns of Pseudotsuga menziesii on the central coast of British Columbia Canada. [J]. Canadian Journal of Forest Research,2004, 34,1946-195

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700