中国东部亚热带地区树轮δ~(13)C年序列及方位变化的环境意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于树木年轮具有定年准确、连续性好、分辨率高、对环境变化敏感性强等优势,已在全球气候变化研究中被广泛应用。在我国西部及北部干旱地区,已有学者利用树木年轮对气候变化进行了较多研究,而东部地区,尤其是热带、亚热带暖湿地区的研究相对薄弱。本文以地处我国东部亚热带地区的浙江大目山、江西庐山和南京紫金山为研究区域,以树轮δ~(13)C作为研究手段,分析了树木年轮δ~(13)C年序列变化特点及其环境意义;论证了树轮δ~(13)C方位变化存在的普遍性与稳定性,分析了树轮δ~(13)C方位变化的特点、极值的时空迁移规律;探讨了树轮δ~(13)C随方位变化的机理。主要研究内容与结果为:
     1.对天目山三株柳杉树轮δ~(13)C年序列进行了相关分析,结果表明:三株树轮δ~(13)C序列含有相似的高频与低频变化,气候因素与大气因素对不同柳杉个体δ~(13)C年序列高、低频变化的影响是共同的。三个δ~(13)C序列间也存在差异,但其个性差异对其共性变化影响较小,个性差异并不影响树轮δ~(13)C作为气候变化研究代用资料的适宜性与重建历史气候结果的可靠性与一致性。
     2.在对树轮δ~(13)C序列的高频变化与气候要素相关检验的基础上,通过逐步回归法求得了树轮△δ~(13)C与气候要素间的最佳多元回归方程,回归方程的复相关系数0.703,方差解释量达到49.2%。回归结果表明,该区树轮δ~(13)C值受多个气候变量的综合影响。
     3.通过建立信息转换函数重建了天目山地区1685年以来3~9月降水量及年平均气温。分析与检验表明:重建结果较好地反映了该区300年的气候变化历史。300年的气候冷、暖变化与我国近500年的气候变化及我国东部地区其它地质记录所反映的区域气候变化有较好对应。重建结果证明了小冰期信息在天目山树轮δ~(13)C中存在的可信性。史料所记载的一些大寒年、大涝年及大旱年在重建序列中得到较好印证。重建序列中含有58.82a、21.28a、13.70a、3.23a、2.63a、2.33a和2.07a的准周期振荡。表明该区树轮δ~(13)C组成序列对太阳活动与ENSO事件等有较好记录。
     4.用三个树轮δ~(13)C序列重建了该区过去大气CO_2浓度变化,重建结果很好的反映了300年大气CO_2浓度的长期变化趋势,三个δ~(13)C序列重建大气CO_2浓度结果的一致性证明,用同一地区不同树木个体的δ~(13)C序列可以重建出基本一致的大气CO_2浓度的历史变化。
     5.利用三株树轮δ~(13)C序列研究了树木生长对水分状况的响应,结果表明三株树木所反映的水分利用率均是增加的,且增长变化趋势基本一致,1835年后均呈现出明显增长。
     6.进一步验证了树轮δ~(13)C方位变化存在的稳定性,分析了树轮δ~(13)C极值时空迁移变化,结果表明树轮δ~(13)C极值并不固定出现在某些方位,而是随树木生长坡向及时间发生方位转移及年际漂移。
     7.对树轮δ~(13)C年序列间的差异及方位变化机理进行了探讨。不同坡向上树木受光强度与温度差异以及树冠周围受光时间的差异是导致树轮δ~(13)C年序列差异及方位变化的主要因素。
     8.树轮不同方位的△δ~(13)序列对气候信息的记录能力及强度存在差异,采用同归分析法,对各个△δ~(13)C序列记录的气候信息进行较好的重建,且重建精度及效果较好。
The tree ring has been used widely in the field of global climate change due to its advantage of accurate for cross-dating, well continuity, high-resolution and high sensitivity to the environment. Some academicians have already studied the climate change in the dry area of west and north China by using tree rings. The similar study is relatively lacking in east China especially in the tropic and subtropics region with warm and wet character. Taking Tianmu Mountain, Lushan and Chongshan as the area of case study, we measure the tree ring annual series of δ~(13)C and azimuth distribution sampled from these areas by using the tree ring δ~(13)C as researching index. We analyze the character of the tree ring annual series of δ~(13)C and azimuth distribution and set forth its environmental significance. Moreover, we demonstrate the universality and stability of the existence of azimuth variation of tree ring δ~(13)C and analyze the azimuth variation character of δ~(13)C and the space and time transferring discipline of extremum, further, probe the mechanism of tree ring δ~(13)C changing along with azimuth. The main process and conclusions are as follows:
    We analyze the correlation of the δ~(13)C annual series of the Cryptomeria fortunei(CF) collecting from Tianmu Mountain. The result indicates that there is the similar variation of high frequency and low frequency among the three δ~(13)C series and both the factor of climate and factor of atmosphere have influenced together on this variation of CF individuals. There are some differences among the three δ~(13)C series, but the individual difference has little influence on the commonness. The individual difference does not make impact on the feasibility of using the δ~(13)C as substitutive index on studying climatic changes as well as the reliability and consistency of reconstructing result of historical climate.
    Based on the correlation test between high-frequency change and climate factor of the tree ring δ~(13)C series, we attain the best multivariate regression equation of the δ~(13)C and climate factor by using stepwise regression. The correlation coefficient is 0.703 and the explanation rate of variance is 49.4%. Generally, the result shows that the tree ring δ~(13)C is restricted by several climatic variable in this area.
    Through constructing transfer function of information, we reconstruct the history of precipitation from Mar to Sep and the annual mean temperature since 1685 of Tianmu Mountain. The analysis and test illustrate that the result of reconstructing reflects preferably the historical climate variation during the past 300 years in this area. The climatic variation during the 300 years in this area has close correspondence with the climatic variation during the past 500 years of our country and the territorial climate variation reflected by the other geological records in the east region of China. The result proves that the creditability of information of the Little Ice Age existing in the record of tree ring δ~(13)C series of Tianmu Mountain.
    Some important colder, wetter and drier periods recorded in historical materials were confirmed by the reconstructing series. The quasi-periodic oscillations of 58.82 a, 21.28 a, 13.70 a, 3.23 a, 2.63 a, 2.33 a and 2.07 a are involved in the reconstructing series, which show that it has a reasonable record for sunspot and ENSO in the tree ring δ~(13)C series of this area.
    The result reconstructing the change of atmospheric CO_2 concentration in virtue of the three δ~(13)C series reflects the long-time changing trend of atmospheric CO_2 concentration during the past 300 years favorably. The conclusion which is educed by the coherence of reconstructing atmospheric CO_2
引文
Anderson W T, Bernasconi S M, McKenzie J A. Oxygen and carbon isotopic record of climatic variability in tree ring cellulose (Picea abies): an example from central Switzerland (1913-1995). Journal of Geophysical Research, 1998, 103/D24: 31625-31636.
    Balesdent J. Site-related δ~(13)C of tree leaves and soil organic matter in a temperate forest. Ecology. 1993, 74(6): 1713-1721.
    Ballentine D C, Macko S A, Turekian V C. Variability of stable carbon from combustion of C_4 and C_3 plants: implications for biomass burning. Chemical Geology, 1998,152: 151-161.
    Barber V A, Juday G P & Finney B P. Reduced growth of Alasdan white spruce in the twentieth century from temperature induced drought stress. Nature, 2000, 405: 668-672.
    Barbour, M. M., Walcroft, A.S., Farquhar, G.D. Seasonal variation in δ~(13)C and δ~(13)O of cellulose from growth rings of Pinus radiata. Plant, Cell and Environment, 2002, 25: 1483-1499.
    Bartak M, Raschi A and Tognetti R. Photosynthetic characteristics of sun and shade leaves in the canopy of Arbutus unedo L. trees exposed to in situ long-term elevated CO_2. Photosynthetica, 1999, 37: 1-16.
    Beerling D J, McElwain J C and Osborne C P. Stomatal responses of the 'living fossil' Ginkgo biloba L. to changes in atmospheric CO-2 Concentrations. J. Experimental Botany, 1998, 49: 1603-1607.
    Beerling D J. Predicting leaf gas exchange and δ~(13)C responses to the past 30000 years of global environmental change. New Phytologist, 1994, 128: 425-433.
    Begin Y, Langlais D, Cournoyer L. Tree ring dating of shore erosion events (upper St. Laurence estuary, eastern Canada). Geogr. Ann. A, 1991, 73:81-88.
    Bhattacharya A, Yyadav R R, Borgaondhar H P, Pant G B. Growth analysis of Indian tropical tree: dendroclimatorlogical potential. Curr. Science. 1992, 62: 736-741.
    Biondi F. A 400-year tree-ring chronology from the tropical treeline of North America. Ambio, 2001 30:162-166.
    
    Boninsegna J A, Villalba R. Dendroclimatology in the Southern Hemisphere: review and prospects. In: Dean J S, Meko D M, Swetnam T W (Eds.) Tree Rings, Environment and Humanity. Radiocarbon. University of Arizona Press, Tucson, 1996, pp:127~141.
    Boninsegna, J.A. South American dendrociimatological records. In: Bradley, R. and Jones, P.D., editors, Climate since A. D.1500, London: Routledge, 1992, 446-462.
    
    Boutton T W, Wong W W, Hachey D L, Lee L S, Cabera M P, Klein P D. Comparison of quartz and Pyrex tubes for combustion of organic samples for stable carbon isotope analysis. Analytical Chemistry, 1985, 55:1832-1833.
    Brendel O, Iannetta PPM, Stewart D. A rapid and simple method to isolate pure alpha-cellulose. Phytochemical Analysis, 2000, 11:7-10.
    Brendel O, Pot D, Plomion C, Rozenberg P, Guehl J M. Genetic parameters and QTL analysis of and ring width in maritime pine. Plant, Cell and Environment, 2002, 25: 945-953.
    Brenna J T, Corso T N, Tobias H J and Caimi R J. High precision continuous flow isotope ratio mass spectrometry. Mass Spectrometry Review, 1998, 16: 227-258.
    
    Briffa K R, Bartholin T S, Eckstein D, et al, A 1400-year tree-ring record of summer temperatures in Fennoscandia. Nature, 1990, 346: 434-439.
    Briffa K R, Jones P D, Schweingruber F H. Summer temperature patterns over Europe: A reconstruction from 1750 A. D. based on maximum latewood density indices of conifers. Quaternary Research, 1988,30:36-52.
    Briffa K R, Jones P D, Schweingruber F H. Summer temperatures across northern North America; Regional reconstructions from 1760 using tree-ring densities. Journal of Geophysical Research, 1994, 99: 25835-25844.
    Briffa K R, Jones P D, Schweingruber F H. Tree ring density reconstructions of summer temperature patterns across western North America since 1600. Journal of Climate, 1992, 5: 735-754.
    Briffa K R, Schweingruber F H, Jones P D, Osborn T J, Shiyatov S G and Vaganov E A. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature, 1998, 391: 678-682.
    Briffa K R, Wigley T M L, Jones P D, et al. Patterns of tree-growth and related pressure variability in Europe. Dendrochronologia, 1987, 5: 35-58.
    Briffa K R. Annual climate variability in the Holocene: interpreting the message of ancient trees. Quaternary Science Reviews. 2000, 19: 87-105.
    Briffa, K. R., Jones, P. D., Schweingruber, F. H., Shiyatov, S. G., Cook, E. R., 1995. Unusual twentieth-century summer warmthin a 1,000-year temperature record from Siberia. Nature 376, 156-159.
    Brooks J R, Flanagan L B, et al. Responses of boreal conifers to climate fluctuations: indications from tree-ring width and carbon isotope analyses. Can. J. For. Res. 1998, 28: 524-533.
    Bruce R. Gervais and Glen M. MacDonald. Tree-ring and summer-temperature response to volcanic aerosol forcing at the northern tree-line, Kola Peninsula, Russia. The Holocene, 2001, 11 (4): 499-505.
    Brugnoli E, Laueri M. Effects of salinity on stomatal conductance, photosynthetic capacity and carbon isotope discrimination of salt-tolerant and salt-sensitive C3 non-halophytes. Plant Physiology, 1991, 95: 628-635.
    Buckley B M, Barbetti M, Watanasak M. On the prospect of large-scale spatial reconstruction of climate from Tropical-southeast Asian tree rings. In: Ohta S, Fujii T, Okada N et al.,eds. Tree Rings: From the Past to the Future. Tsukuba: Forestry and Forest Products Research Institute, 1995, 76-87.
    Bugler J W. The determination of hourly insolation on an inclined plane using a diffuse irradiance model based in hourly measured global horizontal insolation. Solar Energy, 1977, 19,477-491. Carlquist S. Wood anatomy of tremandraceae: Phylogentic and ecological implication. Amer. J. Bot, 1977, 64:704-713.
    Chen Guangmin. The reconstruction of climate in china for historical times. Beijing: Science Press. 1988. 40-55.
    Chen T, Qin D H, Liu X H, et al. Dynamics of atmospheric delta ~(13)C in the past 440 years in Aleitai, Xinjiang. Ying YongSheng TaiXue Bao. 2003, 14 (9): 1469-1472
    Cleaveland M.K. A 963-year reconstruction of summer (JJA) streamflow in the White River,Arkansas, USA, from tree-rings. The Holocene, 2000, 10(1): 33-41.
    Collins M, Osborn T J, Tett S F B, Briffa K R, Schweingruber F H. A comparison of the variability of a climate model with paleotemperature estimate from a network of tree ring densities. Journal of climate, 2002,15(13): 1497-1515.
    Conkey L E. Red Spruce tree-ring widths and densities in eastern North America as indicators of pastclimate. Quaternary Research, 1986, 26: 232-243.
    
    Cook E R and Kairiukstis L A. Method of dendrochronology. Kluwer Academic Publisher, Northland, 1990, 40-120.
    
    Cook E R, Meko D M, Stahle D W, et al. Tree ring reconstructions of past drought across the coterminous Unites States: Tests of a regression method and calibration/verification results. In: Dean J S, Meko D M, Swetnam T W eds. Tree Rings, Environment and Humanity. Tucson: Department of Geosciences, The University of Arizona, 1996, 155-169
    
    Cook E R, Trevor B, Mike P, Mike B, Buckley B, D'Arrigo R, Francey R, Tans P. Climatic change in Tasmmania inferred from a 1089 year tree ring chronologu of Huon Pine. Science, 1991, 253: 1266-1228.
    Cook, E. R., D'Arrigo, R. D. and Briffa, K. R. The North Atlantic Oscillation and its expression in circum-Atlantic tree-ring chronologies from North America and Europe. The Holocene, 1998, 8: 9-17.
    Cook, E.R., Meko, D.M. and Stahle, D.W., et al. Drought reconstructions for the continental United States. J. Climate, 1999, 12: 1,145-1,162.
    Corominas J, Moya J. Reconstrcting recent landslide activity in relation to rainfall in the Llobregat River basin. Eastern Pyrenees, Spain. Geomorphology, 1999, 30: 79-93.
    Craig H. Isotopic standards for carbon and oxygen and correction factors for Mass-Spectrometric Analysis of CO_2. Geochim. Cosmochim. Acta. 1957,12: 133-149.
    
    Cropper J P. Tree-ring skeleton plot dating computer. Tree-ring Bulletin. 1979, 39: 47-59.
    
    D'Arrigo R D & Jacoby G C. Northern North American tree-ring evidence for regional temperature changes after major volcanic eventsl. Climatic Change, 1999,41: 1-15.
    
    D'Arrigo R D, Cook E R, Jacoby G C and Buckley B M. Tree-ring records of subantarctic climate over recent centuries to millennia. In Dean, J.S., Helco, D.M. and Swetnam, T.W., editors, Tree rings, environment and humanity, Radiocarbon, 1996: 171-180.
    D'Arrigo R, Jacoby G, Krusic P. Progress in dendroclimatic studies in Indonesia. Terr., Atmos. And Oceanogr. Science, 2001, 5: 349-363.
    
    Davi N K, Jacoby G C and Wiles G C. Boreal temperature variability inferred from maximum latewood density and tree-ring width data, Wrangell Mountain region, Alaska. Quaternary Research. 2003, 60: 252-262.
    
     Dean J S. Dendrochronology and the study of human behavior. In: Dean J S, Meko D M, Swetnam T Weds. Tree Rings, Environment and Humanity. Tucson: Department of Geosciences, The University of Arizona, 1996,461-469.
    DeLucia E H and Thomas R B. Photosynthetic responses to CO_2 enrichment of four hardwood species in a forest understory. Oecologia, 2000,122:11-19.
    Detienne P. Appearance and periodicity of growth rings in some tropical woods. IAWA Bull. 1989, 10: 123-132.
    Dongarra G, Varrica D. 8 C variations in tree rings as an indication of severe changes in the urban air quality Atmospheric Environment, 2002, 36: 5887-5896
    Duncan R, Stewart G The temporal and spatial analysis of tree age distribution. Can. J. For. Res. 1991,21: 1703-1710.
    Dupouey J L, Leavitt S, et al. Modeling of carbon isotope fractionation in tree rings based in effectiveevapotranspiration and soil water status. Plant Cell Environment, 1993, 16: 939-947.
    Duquesnay A, Breda N, Stievenard M & Dupouey J L. Changes of tree-ring δ~(13)C and water-use efficiency of beech ( Fagus sylvaticaL.) in north-eastern France during the past century. Plant, Cell and Environment, 1998, 21: 565-572.
    Edwards T W D, Graf W, Trimborn P, et al. δ~(13)C response surface resolves humidity and temperature signals in trees. Geochimica et Cosmochimica Acta, 2000, 64(2): 161-167.
    Ehleringer J R, Carbon and water relations in desert plants: an isotopic perspective. In; Ehleringer, J R,. A. E. Hall & G D Farquhar eds. Stable isotopes and plant carbon water relations. San Diego; Academic Press.. 155-172.
    Esper J, Bosshard A, Schweingruber F H, Winiger M. Tree-rings from the upper timberline in the Karakorum as climatic indicators for the last 1000 years. Dendrochronologia, 1995, 13:79-88.
    Evans M N, Schrag D P. A stable isotope-based approach to tropoical dendroclimatology. Geochimica et Cosmochimica Acta., 2004, 68(16): 3295-3305.
    Fantucci R, MeCord A. Reconstruction of land slide dynamic with dendrochronological methods. Dendrochronologia. 1995, 13: 43-58.
    Farmer J G, Baxter M S. Atmospheric carbon dioxide levels as indicated by the carbon isotope record in wood. Nature. 1974,247: 273-274.
    Farmer J G, Mackenzie A B, Sugden C L, et al. A comparison of the historical lead pollution records in peat and freshwater lake sediments from central Scotland. Water air and Soil pollution, 1997, 100: 253-270.
    
    Farmer J G. Problems in interpreting tree-ring δ~(13)C records. Nature, 1979,279:229-231.
    Farquhar C D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis. Ann Rev Plant Physiology, 1989, 40: 503-537.
    Farquhar G D, O'leary M H, Berry J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves Aust J Plant Phisiol. 1982, 9:121-137.
    Farquhar G D, Wong S C. An empirical model of stomata conductance.. Australia Journal Plant Physiology. 1984,11:191-120.
    February E C and Stock W D. Declining trend in the ~(13)C/~(12)C ratio of atmospheric carbon dioxide from tree rings of South African Widdringtonia cedarbergensis. Quaternary Research, 1999, 52: 229-236.
    Feng X H, Epstein S. Climatic trends from isotopic records of tree rings: the past 100-200 years. Climate Change, 1996,33(4): 551-562.
    Feng X, Epstein S. Carbon isotopes of trees from arid environment and implications for reconstructing atmospheric CO_2 concentration. Geochim. Cosmoochim. Acta, 1995, 59(12): 2599-2609.
    Feng X. Long-term C_i/C_a responses of trees in Western North America to atmospheric CO_2 concentration derived from carbon isotope chronologies. Oecologia, 1998, 117(1): 19-25
    Feng X. Trends in intrinsic water-use efficiency of natural trees for the past 100-200 years: A response to atmospheric CO_2 concentration. Geochimica et Cosmochimica. Acta, 1999, 63:1,891-1,903.
    Francey R J, Allison C E. Etheridge D M, Trudinger C M, Enting I G,, Leuenberger m, langenfelds R L, Michel E, Steele L P. A 1000-year high precision record of δ~(13)C in atmospheric CO_2. Tellus, 1999,51B, 170-193..
    Francey R J, Gifford R M, Sharkey T D, et al. Physiological influences on carbon isotope discrimination inhuon pine. Oecologia, 1985, 44:241~247.
    Francey R J. Farquhar G D. An explanation of ~(13)C/~(12)C variations in tree rings. Nature. 1982, 297:28-31.
    Francey R J. Tasmanian tree rings belie suggested anthropogenic ~(13)C/~(12)C trends. Nature. 1981, 297: 232-235.
    Freyer H D, Belacy N. ~(13)C/~(12)C records in northern hemispheric trees during the superpositions past 500 years: An thropogenic impact and climatic. Journal of Geophysical Research. 1983, 88: 6844~6852.
    Freyer H D. On the ~(13)C record in tree rings. Part Ⅰ. ~(13)C variations in Northern Hemispheric trees during the last 150 years. Tellus, 1979, 31: 124~137.
    Friedli H, Lotscher H, Oeschger H, et al. Ice-core record of the ~(13)C/~(12)C ratio of atmospheric CO_2 in the past two centuries. Nature. 1986, 324 (20): 237~238
    Fritts H C and Lough J M. An estimate of average annual temperature variation for North America, 1602 to 1961. Climatic change, 1985, 7: 203~224.
    Fritts H C, et al. Past climate reconstructed from tree rings. Journal of Interdisciplinary History, 1980, 10(4): 773~793.
    Fritts H C, et al. Variations in climate since 1602 as reconstructed from tree rings. Quaternary Research, 1979, 12: 18~46.
    Fritts H C. Reconstructing large-scale climatic patterns from tree ring data. Tucson: The University of Arizona Press, 1991.46~51.
    Fritts H C. Tree rings and climate. London: Academic Press, 1976, 5~10, 376~412, 535.
    Garcia R L, Long S P and Wall G W et al. Photosynthesis and conductance of spring-wheat leaves: field response to continuous free-air atmospheric CO_2 enrichment. Plant, Cell and Environment, 1998, 21: 659~669.
    Gilboy W B, Tout R E, Spytou N M. Dendrochemistry: the study of trace elements in tree rings. In: proceedings of ERDA Symposium on X-Ray and Gamma-Ray Sources and Application. Ann Arbor, Michigan, 1976, 164~165.
    Gopinathan K K. Solar radiation on inclined surfaces. Solar Energy, 1990.45(1): 19~26.
    Grau H R, Easdale T A, Paolini L. Subtropical dendroecology-dating disturbances and forest dynamics in northwestern Argentina montane ecosystems. Forest Ecology and Management, 2003, 177:131~143.
    Grau H R. Regeneration patterns of Cedrela lilloi (Meliaceae) in northwestern Argentina subtropical montane forests, J. Trop. Ecol., 2000, 16: 227~242.
    Graumlich L J. A 1000-year record of temperature and precipitation in the Sierra Nevada. Quaternary Research, 1993, 39(2):249~255.
    Grimmond C S B, King T S, Cropley F D, Novak D J. Souch, C. Local-scale fluxes of carbon dioxide in urban environments: methodological challenges and results from Chicago. Environmental Pollution, 2002, 116(1): S243~S254.
    Gunderson C A, Wuilscbleger S D. Photosynthetic acclimation in trees to rising atmospheric CO_2. Plant Cell Environment. 1994, 15: 271~282.
    Hantemirov R M, Gorlanova L A, Shiyatov S G. Extreme temperature events in summer in northwest Siberia since AD 742 inferred from tree rings. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 209: 155~164.
    Jay J E. Calculation of monthly mean solar radiation for horizontal and inclined surfaces. Solar Energy,??1979, 23, 301-307.
    Hemming D L. Climate variation and the stable carbon istope composition of tree ring cellulose: an intercomparison of three tree species. (Quercus robur, Fagus sylvatica and Pinns silvestris), Tellus, 1998, 50B:25-33.
    Herrick J D and Thomas R B. Effects of CO_2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweetgum trees (Liquidambar styraciflua ) in a forest ecosystem. Tree Physiology, 1999, 19: 779-786.
    Holmes R L. Program ARSTAN(Version B. 1992). Laboratory of tree ring research. Tucson: University of Arizona, USA. 1992, 1-30.
    Hughes M K, Brown P M. Drought frenquency in central California since 101 BC recorded in Giant Sequoia tree rings. Climate Dynamics, 1991,6: 161-167.
    Hughes M K, et al., July-August temperature at Edinburgh between 1721 and 1975 from tree-ring density and width data. Nature, 1984, 308(5957): 341-344.
    Hughes M K, Wu X D, Shao X M, et al. A preliminary reconstruction of rainfall in north-central China since A. D. 1600 from tree-ring density and width. Quaternary Research, 1994, 42: 88-99.
    Israeli Y, Schwartz A, Plaut Z, Yakir D. Effects of light regime on δ~(13)C, photosynthesis and yield of field-grown banana (Musa sp. Muscaceae). Plant, Cell and Environment, 1996, 19:225-230.
    Jacoby G C and D' Arrigo R D. Tead (Tectona grandis I F), a tropical species of large scale dendroclimatic potential. Dendrocronologia, 1990, 8: 83-98.
    Jacoby G C, Bunker D E, Benson B E. Tree-ring evidence for an A D 1700 Cascadian earthquake in Washington and northern Oregon. Geology, 1997, 25: 999-1002.
    Jacoby G C, D'Arrigo R D, Davajamts T. Mongolian tree rings and 20th-century warming. Science, 1996, 273:771-773.
    Jacoby G C, Ivanciu I S and Ulan L D. A 263-year record of summer temperature for Northern Quebec reconstructed from tree-ring data and evidence of a major climatic shift in the early 1800s. Paleogeography, Paleoclimatology, Paleoecology, 1988 64: 69-78.
    Jacoby, G.C., Lovelius, N.V. and Shumilov, O.L., et al, Long-term temperature trends and tree growth in the Taymir region of northern Siberia. Quaternary Research, 2000, 53: 312-318.
    Jenkins M A, Pallardy S G. The influence of drought on red oak group species growth and mortality in the Missiuri Ozarks. Canadian Journal of Forest Research, 1995, 25: 1119-1127.
    Jones P D, Briffa K R and Barnett T P, et al. High-resolution paleoclimatic records for the last millennium. The Holocene, 1998, 8: 467-483.
    Kambezidis H D, Psiloglou B E.and Gueymard C. Measurements and models for total solar irradiance in inclined surface in Athens, Greece. Solar Energy, 1994, 53(2): 177-185.
    Ke S Z, Qian J L, Zhu Y X, et al., Study on model of correlation between chemical element contents in tree rings and soils near tree roots. Pedosphere, 1994,4(1): 19-26.
    Ke, X. K., Qian, J. L. and Ke, S. Z. Average values and angular distribution of element contents in tree rings. Pedosphere, 1998, 8(4): 377-380
    Keeling C D, Mook W G, Tans P P. Recent trends in the ~(13)C/~(12)C ratio of atmospheric carbon dioxide. Nature, 1979,277:121-123.
    Kirchhefer, A.J. Reconstruction of summer temperatures form tree-rings of Scots pine(Pinus sylvestris L.)in coastal northern Norway. The Holocene, 2001, 11: 41-52.
    Kitagawa H, Matsumoto E. Climate implications of δ~(13)C variations in a Japanese cedar (Cryptomeria japoneca) (luring the last two millennia. Geophys. Res. Letter. 1995, 22(16): 2155-2158.
    Ko'rner C H, Farquhar G D, Roksandic Z. A global survey of carbon isotope discrimination in plants from high altitude. Oecologia. 1988, 74: 623-632.
    KOrner C, Farquhar G D & Wong S C. Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia (Berl.), 1991, 88: 30-40.
    
    Kozlov V, Kisternaya M. Architectural wooden monuments as a source of information for past environmental changes in Northern Russia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 209:103-111.
    Krishnamurthy R V, Epstein S. Tree ring D/H ratio from Kenya, East Africa and its palaeoclimatic signifcance. Nature, 1985,317: 160-162.
    
    LaMarch V C, et al. Paleaoclimatic inferences from long tree-ring record. Science, 1974, 183: 1043-1048.
    LaMarche V C, Fritts H C. Anomaly patterns of climate over the western Unites States, 1700-1930 derived from principal component analysis of tree-ring data. Monthly Weather Review, 1971, 99(2): 138-142.
    Lara A, Villalba R. A 3620-year temperature record from Fitzroya cupressoides tree rings in southern South America. Science, 1993, 260: 1104-1106.
    Leavitt and Long, Evidence for ~(13)C/~(12)C fractionation between tree leaves and wood, Nature, 1982, 298,742-744.
    Leavitt S W & Long A. Samping strategy for stable carbon isotope analysis of tree rings in pine. Nature. 1984,311: 145-147.
    Leavitt S W and Long A. Drought indicated in carbon-13/carbon-12 ratio of southwestern tree rings. Water Resources Bulletin, 1989, 25: 341-347.
    
    Leavitt S W, Idso S B, Kimball B A, Burns J M, Sinha A, Stott L. The effect of long-term atmospheric CO_2 enrichment on the intrinsic water-use efficiency of sour orange trees. Chemosphere, 2003, 50: 217-222
    
    Leavitt S W, Lara A. South American tree rings show δ~(13)C declining trend. Tellus, 1994,46(B): 152-157.
    Leavitt S W, Long A. An atmospheric ~(13)C/~(12)C reconstruction generated through removal of climate effects from tree ring ~(13)C/~(12)C measurements. Tellus, 1983,35B: 92-102.
    Leavitt S W, Long A. Seasonal stable-carbon isotope variability in tree rings: possible paleoenvironmental signals. Chem. Geol. 1991, 87: 59-70.
    Leavitt S W, Long A. Stable carbon isotope chronologies from trees in the Southwestern United States. Global Biogeochemical Cycles, 1988,2: 189-198.
    Leavitt S W, Long. A. Stable-carbon isotope variability in tree foliage and wood. Ecology. 1986, 67 (4): 1002-1010.
    Leavitt S W, Newberry T. Systematics of stable-carbon isotopic differences between gymnosperm and angiosperm trees. Plant Physiology, 1992, 11: 257-262.
    Leavitt S W. Prospects for reconstruction of seasonal environment from tree ring δ~(13)C: baseline findings from the Great Lakes area, USA. Chemical Geology, 2002,192(1-2): 47-58.
    Leavitt S W. South American tree rings show declining trend. Tellus. 1994,46B: 152-157
    Leavitt, S.W. and Long, A. Sampling strategy for stable carbon isotope analysis of tree in pine. Nature,1984,311: 145-147.
    Leavitt, S.W. and Long, A. The atmospheric δ~(13)C record as derived form 56 pinyon trees at 14 sites in the Southwestern United States. Radiocarbon, 1989,31: 469-474.
    Lepp N W. The potential of tree-ring analysis for monitoring heavy metal pollution patterns. Pollution, 1974,9:49-61.
    Li Zheng-Hua, Leavitt S W, Mora C 1, Liu Rong-Mo. Influence of earlywood-latewood size and isotope differences on long-term tree-ring δ~(13)C trends. Chemical Geology, 2005, 216: 191-201.
    Lipp I, Trimborn P, Fritz P., et al. Stable isotopes in tree ring cellulose and climate change . Tellus. 1991,43 (B): 322-330.
    Lipp, J., Trimborn, P., Edwards, T., Waisel, Y., Yakir, D. Climatic effects on the δ~(18)O and δ~(13)C of cellulose in the desert tree Tamarix jordanis. Geochim. Cosmochim. Acta, 1996, 60: 3,305-3,309.
    Liu B Y H and Jordan R C.Daily insolation on surfaces tilted towards the equator. ASHRAE J. 1961, 3, 53.
    Liu B Y H.and Jordan R C. The interrelationship and characteristic distribution of direct,diffuse and total solar radiation. Solar Energy, 1960, 4, 1-19.
    Liu B Y H.and Jordan R C. Daily insolation on surfaces tilted toward the equator. Trans.ASHRAE. 1962, 526-541.
    
    Liu T K, Tsou P S, Lo H C. Suitability of Taiwan fir and red cypress for dendroclimatic analysis. In: Ohta S, Fujii T, Okada N et al.,eds. Tree Rings: From the Past to the Future. Tsukuba: Forestry and Forest Products Research Institute, 1995, 70-75.
    Liu Weiguo, Feng Xiahong, Liu Yu, Zhang Qingle, An Zhisheng. δ~(18)O values of tree rings as a proxy of monsoon precipitation in arid Northwest China. Chemical Geology, 2004, 206: 73-80.
    Liu Y, Ma L M, Leavitt S W, Cai Q F, Liu W G. A preliminary seasonal precipitation reconstruction from tree-ring stable carbon isotopes at Mt. Helan, China, since AD 1804. Global and Planetary Change, 2004,41:229-239.
    Liu, Y., Ma, L.M., Hughes, M. Seasonal temperature reconstruction from central China based on tree ring data. Palaeobotanist, 2001,50:89-94.
    Loader N J, Switsur V R, Field E M. High-resolution stable isotope analysis of tree-rings: implications of 'microdendroclimatology' for palaeoenvironmental research. The Holocene, 1995,5: 457-460.
    Loader, N.J., Robertson, I., McCarroll, D. Comparison of stable carbon isotope ratios in the whole wood cellulose and lignin of oak tree-rings. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 196: 395-407.
    Lockheart M J, Poole I, Van Bergen P F, et al. Leaf carbon isotope compositions and stomatal characters: important considerations for palaeoclimate reconstructions. Org. Geochem., 1998,29: 1003-1008.
    Lough J M and Fritts H C. The Southern Oscillation and tree-rings: 1600-1961. Journal of Climate and Applied Meteorology, 1985,24(9): 952-966.
    Luckman B H, Briffa K R, Jones P D. and Schweingruber F H. Tree-ring based reconstruction of summer temperatures at the Columbia Ice. eld, Alberta, Canada, ad 1073-1983. The Holocene, 1997,7: 375-89.
    Luo Y, Sima D A, Thomas R B, et al. Sensitivity of leaf photosynthesis to CO_2 concentration is an invariant function for C3 plants: a test with experimental data and global applications. Global Biogeochemic Cycles. 1996,10:209-222.
    Luterbacher, J., Schmutz, C. and Gyalistras, D., et al. Reconstruction of monthly NAO and EU indicesback to AD 1675. Geophys. Res. Lett., 1999, 26: 2,745-2,748.
    Macharlane, C, Warren, C.R. and white, D.A. et al. A repid and simple method for processing wood to crude cellulose for analysis of stable carbon istopes in tree rings. Tree Physiology, 1999, 19: 831-835.
    Mann M E, Bradliy R S and Hughes M K. Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 1998, 392:779-787.
    Mann, M.E., Bradley, R.S., and Hughes, M.K. Northern Hemisphere temperatures during the past millennium: Inferences, Uncertainties, and Limitations. Geophys. Res. Lett., 1999, 26(6): 759-762.
    Marino B D, McElroy M B. Isotopic composition of atmospheric CO_2 inferred from carbon in C_4 plant cellulose. Nature, 1991, 349: 127-131.
    Martin B, Thbrston Y R. Stable carbon isotope composition (δ~(13)C), water-use-efficiency and biomass productivity of Lycopersicon esculentum.L. pennellii and the F_1 hybird. Plant Physiology, 1988, 88: 213-217.
    
    Martinelli N. Climate from dendrochronology: latest developments and results. Global and Planetary Change, 2004, 40:129-139.
    
    Masahiro Sakata, Kiyoshi Suzuki, Tadashi Koshiji. Variations of wood δ~(13)C for the past 50 years in declining Siebold's beech (Fagus crenata) forests. Environmental and Experimental Botany, 2001, 45: 33-41
    
    Masson-Delmotte V, Raffalli-Delerce G, Danis P A, Yiou P,Stievenard M, Guibal F, Mestre O, Bernard V, Goosse H, Hoffmann G, Jouzel, J. Changes in European precipitation seasonality and in drought frequencies revealed by a four-century-long tree-ring isotopic record from Brittany, western France.. Climate Dynamics, 2005,24: 57-69.
    
    Maxim Ogurtsov, Samuli Helama, Matti Eronen, Markus Lindholm. Centennial-to-millennial fluctuations in July temperatures in North Finland as recorded by timberline tree rings of Scots pine. Quaternary Research, 2005, 63: 182-188
    
    Mayr C, Frenzel B, Friedrich M, Spurk M, Stichler W, Trimborn P. Stable carbon- and hydrogen-isotope ratios of subfossil oaks in southern Germany: methodology and application to a composite record for the Holocene. The Holocene, 2003, 13(3): 393-402.
    Mc Bride J, Laven R D. Scars as an indicator of fire frequency in the San Bernardino Mountains, California. J. Forest. 1976, 74: 439-442.
    Mc Bride J. Analysis of tree rings and fire scars to establish fire history. Tree Ring Bulloton, 1983, 43: 51-67.
    McCarroll D, Jalkanen R, Hicks S, Tuovinen M, et al. Multiproxy dendroclimatology: a pilot study in northern Finland. The Holocene, 2003, 13(6): 829-838.
    
    McCarroll D, Loader N J. Stable isotopes in tree rings. Quaternary Science Reviews, 2004, 23: 771-801.
    McCarroll D, Pawellek F. Stable isotope ratios of latewood cellulose in Pinus sylvestris from northern Finland: variability and signal-strength. Holocene. 1998, 8: 675-684.
    
    McCarroll, D., Pawellek, F. Stable carbon isotope ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies. The Holocene. 2001, 11: 517-526.
    
    Medina E, Minchin P. Stratification of δ~(13)C value of leaves in Amazonian rain forests. Oecologia, 1980,45: 377-378.
    Meko, D M. Applications of Box-Jenkins Methods of time series analysis to the reconstruction of Arizona, Tucson, AZ,USA. 1981.
    Naidu S L, Sullivan J H, Teramura A H, Delucia E H. The effects of UV-B radiation on photosynthesis of different ages needles in fiesd-grown loblolly pine (Pinus taeda). Tree physiology, 1993, 12 (2): 151-162.
    Nash T H, et al. A technique for examining non-climatic variation in width of tree rings with special reference to air pollution. Tree Ring Bulletin, 1975, 35: 15-24.
    Neftel A, Moor E, Oeschger H, et al. Evidence from polar ice cores for the increase in atmospheric CO_2 in the past two centuries. Nature. 1985, 315 (2): 45-47
    
    Nguyen-Queyrens, A., Ferhi, A.& Loustau, D., et al. Within-ring δ~(13)C spatial variability andnterannual variations in wood cellulose of two contrasting provenances of Pinus pinaster. Canada Journal of Forest Research, 1998, 28: 766-773.
    Nicoletta Martinelli. Climate from dendrochronology: latest developments and results. Global and Planetary Change. 2004,40: 129-139.
    
    Norris D J. Solar radiation on inclined surfaces. Solar Energy. 1977, 10: 72-77.
    O'Leary M H. Carbon fractionation in plants. Phytochemistry, 1981, 20: 553-567.
    O'Leary M H. Carbon isotopes in photosynthesis fraction techniques may reveal new aspects of carbon dynamics in plants. Bio-Science, 1998, 38: 328-336.
    
    Oeschger.H.,Siegenthaier.U.,Schotterer.A.&Gugelman.A. Tellus. 1975,27: 168-192.
    Ogden J. Dendrochronological studies and the determination of tree ages in the Auatralian tropics. J. Biogeogr. 1981, 8: 405-420.
    Ogle N, McCormac F.G. High resolution δ~(13)C measurements of oak show a previously unobserved spring depletion. Geophysical Research Letters, 1994. 21: 12373-12375.
    Orlandi M, Pelfini M, Pava M, et al. Heavy metals variations in some conifers in valle d'Aosta (Westen Italian Alps) from 1930 to 2000. Microchenical Journal, 2002, 73:237-244.
    Ormrod D P, Schmidt A M, Livingston N J. Effect of UV-B radiation on the shoot dry matter production of stable carbon isotope composition of two Arabidopsis thaliana genotypes. Physilogy plant, 1997, 101: 497-502.
    Otha S, Fujii T, Hughes M K, Eckstein D.(Eds.). Tree Rings: From the Past to the Future. (Proceedings of the International Workshop on Asian and Pacific Dendrochronology). FFPRI Scientific Report I. Tsukuba. 1996.
    Page J K. The estimation of monthly mean values of daily total short wave radiation on vertical and inclined surfaces from sunshine records for latitudes 40°N-40°S. Proc.UNConf. New Sources of Energy, 1961.35,95-98.
    Panek J A, Waring R H. Carbon isotope variation in Douglas-fir foliage: improving the climate relationship. Tree Physiology. 1995,15(10): 657-663.
    Parker M L & Henoch WES. The use of Engelman spruce latewood density for dendrochronological purposes. Canadian Journal of Forest Research, 1971, 1: 90-98.
    Pearman G. I, Francey R J, Fraser P J B. Climatic implication of stable carbon isotopes in tree rings. Nature, 1976,260: 771-772.
    Penninck V, Meerts P, Herbasuts J, et al. Ring width and element concentrations in beech (Fagus sylvaticaL.) from a periurban forest in central Belgium. Forest Ecology and Management, 1999, 113: 23-33.
    Pereira J S and Sardinha. R. Chemical composition of Eucalyptus globulus Lab. Appita, 1984, 37: 661-664.
    Perez R, Ineichen P. and Seals R. Modelling daylight availability and irradiance components from direct and global irradiance. Solar Energy, 1990,44, 271-289.
    Polley H W, Jonhson H B, Marino B D, et al. Increase in C_3 plant water use efficiency and biomass over Glacial to present CO_2 concentrations. Nature, 1993, 361: 61-64.
    Ponton S, Dupouey J.-L, Breda N, Dreyer E. Comparison of water-use efficiency of seedlings from two sympatric oak species: genotypexenvironment interactions. Tree Physiology, 2002, 22: 413-422.
    Poussart P F, Evans M N, Schrag D P. Resolving seasonality in tropical trees: multi-decade, high-resolution oxygen and carbon isotope records from Indonesia and Thailand. Earth and Plant, Science Letter. 2004, 218:301-316.
    Qian J L, De S Z. Chronosequences of element content in tree rings and soil. Pedosphere, 1994, 4(1): 27-33.
    Qian J L, Deng Z W, Tu Q P, Wang S M, Huang Y S. Climatic significance of δ D time series in tree rings from Tianmu Mountain. Science in China (Series D), 2001, 44(12): 1140-1146.
    Qian J L, Ke S Z, Huang J S and Xiang C X. Correlation between chemical elements contents in tree rings and soils. Pedosphere, 1993, 3(4): 309-319.
    
    Qian J L, Lu J, Tu Q P & Wang S M. Reconstruction of the climate in the Tianmu Mountain area, Zhejiang Province, in the last 160 years by δ~(13)C sequence of tree ring a-cellulose. Science in China (Series D). 2002, 45 (5): 409-419.
    
    Qian, J. L., Yin, Z. S., Ke, S. Z. and Xian, C. X. Application and verification of logarithmic linear correlation model of element contents between tree rings and soils near the tree roots.. Pedosphere. 1998, 8(1): 65-70
    Raitio H. Anatomical symptoms in the wood of scots pine damaged by frost and pine bard bugs. Flora, 1992, 186: 187-193.
    Ram R, Yadav et al. Spring-temperature variations in western Himalaya, India, as reconstructed from tree-rings: A. D. 1390-1987. The Holocene, 1999, 9(1): 85-90.
    Ram R. Yadav and Jayendra Singh. Tree-Ring-Based Spring Temperature Patterns over the Past Four Centuries in Western Himalaya. Quaternary Research, 2002, 57: 299~305.
    Ramesh R, Bhattacharya S K and Gopalan K. Climatic correlations in the stable isotope records of silver fir(abies pindrow) trees from Kashmir, India. Earth and Planetary Science Letters. 1986,79: 66-74.
    Ramesh R, Bhattacharya S K, Gopalan K. Dendroclimatological implications of isotope coherence in trees from Kashmir Valley, India. Nature, 1985, 317: 802-804.
    Raynaud D, Barnola J M. An Antarctic ice core reveals atmospheric CO_2 variations over the past few centuries. Nature. 1985,315(23): 309-311.
    Reindl D T, .Beckmann W A and .uffie J A D. Evaluation of hourly tilted surface radiation models. Solar Energy, 1990, 45,9-17.
    Rey A and Jarvis P G Long-term photosynthetic acclimation to increased atmospheric CO_2 concentration in young birch (Betula Pendula) trees. Tree Physiology, 1998, 18:441-450.
    Robertson I, Loader N J, McCarroll D, Carter A H C, Cheng L, Leavitt S W. δ~(13)C of tree-ring lignin as anindirect measure of climate change. Water, Air and Pollution: Focus, 2004, 4: 531-544.
    Robertson I, Switsur V R, et al. Signal strength and climate relationships in ~(13)C/~(12)C ratios of tree ring cellulose from oak in east England. J. Geophys. Res. 1997, 102(d16): 19507-19516.
    Robina Shaheen, Rebecca C. Hood-Nowotny. Effect of drought and salinity on carbon isotope discrimination in wheat cultivars. Plant Science, 2005, 168: 901-909.
    Roden J S, and Ehleringer J R. Hydrogen and oxygen isotope ratios of leaf water and tree-ring cellulose for field-grown riparian trees. Oecologia, 2000, 123: 481-489.
    
    Rundgren M, Loader N J, Hammarlund D. Stable carbon isotope composition of terrestrial leaves: inter- and intraspecies variability, cellulose and whole-leaf tissue difference, and potential for reconstruction. Journal of Quaternary Science, 2003, 18(7): 583-590.
    Runion G B, Mitchell R J and Green T H, et al. Long leaf pine photosynthetic response to soil resource availability and elevated atmospheric carbon dioxide. Journal of Environmental Quality, 1999, 28: 880-887.
    Saurer M, Fuhrer J, Siegenthaler U. Influence of ozone on the stable carbon isotope composition5l3C of leaves and grain of spring wheat (Triticum aestrvum L). Plant Physiology, 1991, 97: 313-316.
    Saurer M, Sigenthaler U. The climate-carbon isotope relationship in tree rings and the significance of site conditions. Tellus, 1995, (46B): 320-330.
    Saurer M. and Siegenthaler U. ~(13)C/~(12)C isotope ratios in trees are sensitive to relative humidity. Dendrochron, 1989,7:9-13.
    Schleser G H, Helle G, LUcke A, et al. Isotope signals as climate proxies: the role of transfer functions in the study of terrestrial archives. Quaternary Science Reviews. 1999, 18(7): 927-943.
    Schleser G H, Jayasekera R. δ~(13)C variations in leaves of a forest as an indication of reassimilated CO_2 from the soil. Oecologia, 1985,65: 536-542.
    Schleser G.H, Frielingsdorf J ,Blair A. Carbon isotope behaviour in wood and cellulose during artifcial aging. Chemical Geology, 1999. 158: 121-130.
    Schweingruber F H, Briffa K R and Nogler P. A tree-ring densitometric transect from Alaska to Labrador: comparison of ring width and maximum-latewood-density chronologies in the conifer belt of Northern North America. International Journal of Biometeorology 1993, 37: 151-69.
    Seitz R A, Kanninen M. Tree ring analysis of Araucaria angustifolia in southern Brazil: preliminary results. IAWA Bull. 1989, 10, 170-174.
    Sheppard P R, Graumlich L J, Conkey L E. Reflected-light image analysis of conifer tree rings for reconstructing climate. The Holocene, 1996,61: 62-68.
    Sheu D D, Kou P, Chiu C H and Chen M-J. Variability of tree-ring δ~(13)C in Taiwan fir: growth effect and response to May-October temperatures. Geochemica et cosmochimica Acta. 1996, 60(1): 171-177.
    Sheu, D.D. and Chiu, C.H. Evaluation of cellulose extraction procedures for stable carbon isotope measurement in tree ring research. Intern. J. Environ. Anal. Chem., 1995, 59: 59-67.
    Smith K T, Kennedy-Sutherland E. Terminology and biology of fire scars in selected central hardwoods. Tree Ring Research, 2001, 57: 141-147.
    Stahle D W, et al. North Carolima climate changes reconstructed from tree rings: A. D. 372 to 1985. Science, 1988,240: 1517-1519.
    Stahle D W. Useful strategies for the development of tropical tree-ring chronologies. IAWA J. 1999, 20:249-253.
    Stodes M A, Smiley T L. An introduction to tree-ring dating. Chicago: University of Chicago Press, USA, 1968, 1-73.
    Stuiver M, Braziunas T F. Tree cellulose ~(13)C/~(12)C isotope ratios and climatic change.. Nature. 1987, 328: 58-60.
    Stuiver M, Burk R L, Quay P D. ~(13)C/~(12)C ratios in tree rings and the transfer of biosphere carbon to the atmosphere. Jour. Geophys, Res., 1984, 89: 11731-11748.
    Sundquist R T. The global carbon dioxide budget. Science. 1993. 259: 934-941
    Sutherland E K, Martin B. Air pollution in the past recorded in width and stable carbon isotope composition of annual growth rings of Douglas fir. Plant. Cell and Environment, 1990, 13: 839-844.
    Swetnam T W. Fire history and climate change in guant sequoia groves. Science, 1993, 262: 885-889.
    Switsur V R, Waterhouse J S, Field E M, Carter A H C, Loader N J. Stable isotope studies in tree rings from oak-techniques and some preliminary results. Palaoklimaforschung, 1995, 15: 129-140.
    Tang K L, Feng X H and Ettl G J. The variations in 5D of tree rings and the implications for climatic reconstruction. Geochimica et Cosmochimica Acta, 2000, 64(10): 1663-1673.
    Tang K L. Feng X H, Funkhouser G. The ~(13)C of tree rings in full-bard and strip-bark bristlecone pine trees in the White Mountains of California. Global Change Biology, 1999, 5:33-40.
    Tans P P, Mook W G Past atmospheric CO_2 levels and the ~(13)C/~(12)C rations in tree rings. Tellus, 1980,32(3): 268-283.
    Temps C and Coulson K L.Solar radiation incident upon slopes of different orientation. Solar Energy, 1977, 19, 179-184.
    Thetford R D, D'Arrigo R D, Jacoby G C. An image analysis system for determining densitomotric and ring-width time series. Canadian Journal of Forest Research, 1991,21: 1544-1549.
    Thompson L G. Thompson E M, Davis M E et al, A 1000 year climate ice-core record from the Guliya ice cap, china: Its relationship to global climate variability. Armals ofGlaciology, 1995,21: 175-181.
    Trenberth K E and Caron J M. The Southern Oscillation revisited: sea level pressures, surface temperatures, and precipitation. J. Climate, 2000, 13: 4358-4365.
    Treydte K, Schleser G H, Schweingruber F H, Winiger M. The climatic significance of δ~(13)C in subalpine spruces (LOtschental, Swiss Alps). Tellus, 2001, 53B, 593-611.
    
    Tsou P S, Liu T K. Dendrochronoiogical and denreiclimatological studies of Chamaecyparis formosensis in central Taiwan. In: Ohta S, Fujii T, Okada N et al.,eds. Tree Rings: From the Past to the Future. Tsukuba:Forestry and Forest Products Research Institute, 1995, 64-69.
    Van de Water P K, Leavitt S W, Betancourt J L. Leaf δ~(13)C variability with elevation, slope aspect, and precipitation in the southwest United States. Oecologia, 2002, 132:332-343.
    Veblen, T T, Handley K S, Reid M S, Rebertus A J. Methods of detecting past spruce beetle outbreaks in Ricky Mountain subalpine forests. Canadian Journal of Forest Research, 1991, 21: 242-245.
    Villalba R. Cook E R, Jacoby G C, D'Arrig R D, Veblen T T and Jones P D.Tree-ring based reconstructions of northern Patagonia precipitation since AD 1600. The Holocene, 1998b, 8(6): 659-674
    Villalba, R., Grau, H.R. and Boninsegna, J.A., et al. Tree-ring evidence for long-term precipitation changes in subtropical South America. International J. Climatologic, 1998a, 18: 1,463-1,478.
    Vogel J C. Recycling of carbon in a forest environment. Oeclogy Plant, 1978,13:89-94.
    Walcroft A S, Silvester W B, Whitehead D, Kelliher F M. Seasonal changes in stable carbon isotope ratios within annual rings of Pinus radiata refect environmental regulation of growth processes. Australian Journal of Plant Physiology, 1997, 24: 57-68.
    Waring R H and Silvester W B. Variation in foliar δ~(13)C values within the crowns of Pinus radiate trees. Tree Physiology, 1994, 14: 1203-1213.
    Warren C R. McGrath J F, Adams M A. Water availability and carbon isotope discrimination in conifers. Oecologia, 2001, 127: 476-486.
    Watmough S A, Hutchinson T C. Analysis of tree rings using inductivrly coupled plasma mass spectrometry to record fluctuations in a metal pollution episode. Environmental Pollution, 1996, 93: 93-102.
    Watmough S A, Hutchinson T C. Changes in the dendrochemistry of sacred fir close to Mexico City over the past 100 years. Environmental Pollution, 1999, 104: 79-88.
    Watmough S A, Mcneely R &Lafleur P M. Changes in wood and foliar δ~(13)C in sugar maple at Gatineau Park, Quebec, Canada. Global Change Biology, 2001, 7: 955-960.
    Watmough S A, Mcneely R and Lafleur P M. Changes in wood and foliar δ~(13)C in sugar maple at Gatineau Park, Quebec, Canada. Global Change Biology, 2001,7: 955-960.
    Watmough S A. An evaluation of the use of dendrochemical analyses in environmental monitoring. Environmental Research, 1997, 5:181 -201.
    Watson, E. and Luckman, B.H. Dendroclimatic reconstruction of precipitation for sites in the southern Cannadian Rockies. The Holocene, 2001, 11:203-213.
    Waylen P R, Caviedes C N and Quesada M E. Interannual variability of monthly precipitation in Costa Rica. J. Climate, 1996, 9:2606-2613.
    Wiles G C, D'Arrigo R D and Jacoby G C. Gulf of Alaska atmosphere-ocean variability over recent centries inferred from coastal tree-ring records. Climatic Change, 1998, 38: 289-306.
    Wiles G C, D'Arrigo R D and Jacoby G C. Temperature changes along the Gulf of Alaska and the Pacific Northwest coast modeled from coastal tree rings. Canadian Journal of Forest Research ,1996, 26: 474-81.
    Willmott C J.On the climatic optimization of the tilt and azimuth of flat-plate sosar collectors. Solar Energy, 1982,28,205-216.
    Wilson, A.T. and Grinstead, M.J. ~(13)C/~(12)C in cellulose and lignin as palaeothermometers. Nature, 1977,264: 133-135.
    Wimmer R & Grabner M. A comparison of tree-ring features in Picea abies as correlated wuth climate. International Association of Wood Anatomists, 2000, 21: 403-416.
    Woodcock D W. Climate sensitivity of wood-anatomical features in a ring-porous oak. Canadian Journal of Forest Research, 1989, 19: 639-644.
    Woodward F 1, Stomatal numbers are sensitive to increase in CO_2 from pre-industrial levels. Nature, 1987, 327:617-618
    Worbes M. Growth rings, increment and age of trees in inundation forests, savannas and mountain forests in the neotropics. IAWA Bull, 1989,10: 109-122.
    
    Worbes M. One hundred years of tree-ring research in the tropics—a brief history and an outlook to future challenges. Dendrchronology. 2002, 2 (1-2): 217-231.
    Wu X, Zhang Z, Li J. A preliminary reconstruction of moisture index in central Qilian Mountains, China since A. D. 1310, from ring-width chronology. In: Ohta S, Fujii T, Okada N et al.,eds. Tree Rings: From the Past to the Future. Tsukuba: Forestry and Forest Products Research Institute, 1995, 273~280.
    Wyant J G, Reid R S. Dentermining the age of Acacia torrilis with ring counts for Sorth Turkana, Kenya: a preliminary analysis. Africa J. Ecology. 1992, 30: 1976~1980.
    Young P J. Megonigal J P, Scharitz R R, Day F P. False ring formation in Baldcypress (Taxodium distichum). Wetlands, 1999, 13: 293~298.
    Yu G, Xue B, Wang S M, Liu J. Lake-level records and the LGM climate in China. Chinese Science Bulletin, 2000, 45(3): 250~255.
    Zhang H, Shariti M R and Nobel P S. Photosynthetic characteristics of sun vs. shade plants of Encelia farinosa as affected by photosynthetic photon flux density, intercellular CO_2 concentration, leaf water potential and leaf temperature. Australia Journal Plant Physiology, 1995, 22: 833~841.
    Zhang S Y. Variations and correlation of various ring width and ring density features in European oak: Implication in dendrochronology. Wood Science Technlology, 1997, 31: 63~72.
    Zimmerman J K, Ehleringer J R. Carbon isotope ratios are correlated with irradiance levels in the Panamanian orchid Catasetum viridiflavum. Oecologia, 1990, (83): 247~249.
    查良松.我国太阳辐射量区域性变化特征研究.地理研究,15(2):21~27.
    陈宝君,钱君龙,濮培民,等.树轮α-纤维素δ~(13)C角分布及其气候含义.南京林业大学学报自然科学版),2002b,26(1):14~18.
    陈宝君,钱君龙,濮培民,等.树轮δ~(13)C的角分布及其在气候重建中的应用.南京气象学院学报 2002a,25(4):463~470.
    陈宝君,钱君龙,濮培民.ENSO对天目山柳杉树轮同位素的影响.海洋地质与第四纪地质,2002c,22 (4):53~58.
    陈家琪.从太湖流域历史冷暖变化看CO_2增加的气候效应.中国科学辽南京地理与湖泊研究所集刊. 1990.7:26~34.
    陈拓,秦大河,何元庆,任贾文,刘晓宏.祁连圆柏中稳定碳同位素分布特征.冰川冻土,2002c,24(5): 71~573.
    陈拓,秦大河,何元庆,节江风,刘晓宏,任贾文.从树轮δ~(13)C序列中提取大气δ~(13)C信息的可行性研究.海洋地质也第四纪地质,2002a,22(4):9~83.
    陈拓,秦大河,康兴成,任贾文.树轮稳定碳同位素的研究现况及前景.大自然探索,1999,18(1): 59~65.
    陈拓,秦大河,李江风,刘晓宏,任贾文.树轮δ~(13)C趋势地区差异的初步研究.兰州大学学报,2001. 7(6):107~111.
    陈拓,秦大河,刘晓宏,李江风,任贾文,孙维贞.新疆阿尔泰地区小冰期特征的树轮δ~(13)C记录.冰川冻土,2002b,24(1):83~86.
    陈拓,秦大河,刘晓宏,任贾文,李江风.新疆阿尔泰地区近440年来大气δ~(13)C变化.应用生态学报, 2003(a),14(9):1469~1472.
    陈拓,秦大河,李江风等.新疆昭苏云杉纤维素δ~(13)C的气候意义.冰川冻土,2000,22(4):347~352.
    陈拓.青藏高原北部植物叶子碳同位素组成的空间特征.冰川冻土,2003b,25(1):84~87.
    陈忠辉.植物与植物生理,中国农业出版社,2001,P:37~75,134~224.
    程海,艾思本,王先锋,汪永进,孔兴功,袁道先,张美良,林玉石,覃嘉铭,冉景丞.中国南方石笋??氧同位素记录的重要意义.第四纪研究,2005,25(2):157~163.
    邓自旺,钱君龙,屠其璞,等.环境因素对天目山柳杉树轮δ~(13)方位分布的影响.植物生态学报.2003. 27(1):93~98.
    刁明碧,张霞,饶良臣.理论统计学[M].北京:中国科学技术出版社.1998,P:165~170.
    范玮熠,王孝安.树木年轮宽度与气候因子的关系研究进展.西北植物学报,2004,24(2):345~351.
    范玮熠,王孝安.树木年轮稳定同位素与气候变化的关系研究进展.陕西师范大学学报(自然科学版,专辑),2004a.32:148~151.
    方精云,唐艳鸿,林俊达,等.全球生态学—气候变化与生态响应.高等教育出版社,施普林格出版社.2000,p:21.
    冯虎元,安黎哲,王勋陵.环境条件对植物稳定碳同位素组成的影响.植物学通报,2000,17(4): 312~318.
    傅抱璞.坡地方位对小气候的影响,专象学报,1962,32(1):71-86.
    盖钧镒,等.试验统计方法.北京:中国农业出版社,2000,99~120.
    葛全胜,郑景云,满志敏等.过去2000年中国东部冬半年温度变化序列重建及初步分析.地学前缘 2001.9(2):169~181.
    勾晓华,陈发虎,杨梅学,彭剑峰,维亚,陈拓,祁连山中部地区树轮宽度年表特征随海拔高度的变化.生态学报,2004,24(1):172~176.
    国家气候变化对策协调小组办公室/中国21世纪议程管理中心.全球气候变化—人类面临的挑战.商务印书馆,2004,PP:38~69.
    韩家懋,姜文英,刘东生.黄士碳酸盐中古气候变化的同位素记录.中国科学(D),1996,26:398~404.
    何勇,秦大河,任贾文等.塬堡黄土剖面末次间冰期古土壤有机同位素记录的夏季风演化历史.科学通报,2002,47(12):943~945.
    侯爱敏,彭少麟,周国逸,温志达.树木年轮δ~(13)C含量幼龄效应的定量化探讨.生态学报,2001b,21(3): 430~433.
    侯爱敏,彭少麟等.树木年轮对气候变化的响应研究及其应用.生态科学,1999,18(3):16~23.
    侯爱敏,彭少麟等.通过树木年轮δ~(13)C重建大气CO_2碳同位素比δ_a的可靠性探讨.生态学杂志,2001a,20(1):13~17.
    侯爱敏,彭少麟,周国逸,温达志 通过树木年轮重建大气CO_2浓度的可靠性探讨.科学通报,2000,45(13):1451~1456.
    黄会一,蒋高明,林治庆.树木年轮元素含量与环境污染关系的研究.中国环境科学,1993,13:11~16.
    蒋高明,黄银晓.树木年轮研究δ~(13)C值及其对我国北方大气CO_2浓度变化的指示意义.植物生态学报, 1997.21(2):155~160.
    蒋高明.运用油松年轮揭示承德市S及重金属污染的历史.植物生态学报,1994,18(4):314~321.
    康兴成,Grumlich L J,Sheppard P.青海都兰地区1835年来的气候变化—来自树木年轮的资料.第四纪研究.1997,(1):70~76.
    李江风,袁玉江,由希尧,等.树木年轮水文学研究与应用.科学出版社,2000.20~90.
    李明干,任青,王福全.浅谈紫金山风景林的自然回归.江苏林业科技,1998,25(增刊):6~9.
    李世杰,王小天,夏威岚,李万春.青藏高原苟鲁错湖泊沉积记录的小冰期气候变化.第四纪研究 2004,24(5):578~582.
    李相博,陈践发.植物碳同位素分馏作用与环境变化研究进展.地球科学进展,1998,13(3)285~290.
    李正华,刘荣谟,安芷生,吴祥定,刘禹,Leavitt S W,Hughes M K.树木年轮δ~(13)C季节性变化及其气??候意义.科学通报,1995,40(22):2064~2067.
    李正华,刘荣谟,安芷生,等.工业革命以来大气CO_2浓度不断增加的树轮稳定碳同位素证据.科学通报,1994,39(23):2172~2174.
    梁尔源,邵雪梅,黄磊,王丽丽.中国中西部地区树木年轮对20世纪20年代干旱灾害的指示.自然科学进展,2004,14(4):469~474.
    林学椿,于淑秋,唐国利.中国近百年温度序列.大气科学,1995,19(5):525~534.
    林植芳,梁春等,彭长连.鼎湖山地区人类活动对马尾松年轮δ~(13)C/δ~(12)C的影响.生态学报,1997,17 (2):124~132.
    林植芳,林桂珠,孔国辉,张鸿彬.生长光强对亚热带自然林两种木本植物、细胞间CO_2浓度和水分
    利用率的影响.热带亚热带植物学报,1995,3(2):77~82.
    刘广深,洪业汤,朴河春,姜洪波,陶发祥.树轮稳定碳同位素组成序列与降水变化,矿物学报 1997a,17(1):93~98.
    刘广深,米家榕,戚长谋,杨春雷.树轮稳定碳同位素研究的应用现况与发展趋势.世界地质,1996, 15(4):42~48.
    刘广深,戚长谋,林学钰.树轮-流域径流变化的记录.长春地质学院学报,1997b,27(3):333~336.
    刘广深,魏建云.树轮气候学研究的若干进展.生态学杂志,2001,20(1):63~64.
    刘洪滨,吴祥定,邵雪梅.利用树轮图像分析方法研究历史时期气候变化的可行性.地理研究,1996, 15(2):44~51.
    刘荣谟,刘禹,孙福庆等,安瓶法制备有机碳同位素样品的方法.环境地球化学与健康,贵州科技出版社.1990.
    刘晓宏,秦大河,邵雪梅,陈拓,任贾文.西藏喜马拉雅冷杉年轮δ~(13)C与气候意义.科学通报,2003b, 48(11):1209~1213.
    刘晓宏,秦大河,邵雪梅,赵良菊,陈拓,任贾文.西藏林芝地区近350a降水变化及突变分析.冰川冻土,2003a,25(4):375~379.
    刘晓宏,任贾文,等.树轮纤维素氢同位素气候环境意义.气象,2002,28(5):3~7.
    刘禹,马利民,蔡秋芳.采用树轮稳定碳同位素重建贺兰山1890年以来夏季(6~8月)气温.中国科学(D辑),2002,32(8):667~674.
    刘禹,吴祥定,Leavitt S W,Hughes M K.黄陵树木年轮稳定C同位素与气候变化.中国科学D辑. 1996,26(2):125~130.
    刘禹,祥定,邵雪梅,刘洪滨,安芷生,祝一志,李兆元.树轮宽度、稳定碳同位素对过去近100a陕西黄陵季节气温与降水的恢复.中国科学(D辑),1997,27(3):271~276.
    刘禹,马利民.树轮密度对近376年呼和浩特季节降水的重建.科学通报,1999.14:1986~1992.
    吕军,屠其璞,钱君龙.利用树轮δ~(13)C重建大气CO_2浓度序列.应用气象学报,2002b,13(3): 377~379.
    吕军,屠其璞,钱君龙.树木年轮碳稳定同位素在气象中的应用.气象2002a,27(1):9~13.
    吕军,屠其璞,钱君龙.天目山柳杉树轮δ~(13)C对华东地区降水序列的重建.南京气象学院学报,200b, 24(3):350~355.
    吕军,屠其璞,等.利用树木年轮碳同位素重建天目山相对湿度序列.气象科学,2001a,22(1):47~51
    马利民,刘禹,安芷生.秦岭树轮记录中的ENSO事件.海洋地质与第四纪地质,2001a,2I(3):93~97.
    马利民,刘禹,赵建夫,安芷生.树木年轮中不同组分稳定碳同位素含量对气候的响应.生态学报 2003b.23(12):2607~2613.马利民,刘禹,赵建夫.贺兰山油松年轮中稳定碳同位素含量和环境变化的关系.环境科学.2003.24(5):49~53.
    马利民,刘禹,赵建夫.交叉定年技术及其在高分辨率年代学中的应用.地学前缘,2003,10(2):351~355.
    马利民.贺兰山环境变化的树轮宽度与稳定碳同位素记录.博士论文.2001.
    倪允琪,邹力,张向东,王国民,杨修群,吴爱明.ENSO及其对亚洲季风和我国气候变化影响的研究.气象科学,1995,15(4);30~45.
    聂宝符,陈固特,彭子成,等.由重礁珊瑚重建南海西沙地区近220年的海面温度序列.科学通报,1999,44(17):1885~1888.
    聂瑞丽,罗海江,赵承义,等,北京市大气污染动态变化的树木年轮分析.中国环境监测.2001,17(4):20~24.
    潘瑞炽等,植物生理学,高等教育出版社,2001,P:8~152.
    钱君龙,邓自旺,屠其璞,王苏民,王国祥等.天目山δD年序列及其气候意义.中国科学(D辑).2001b,31(5):72~276.
    钱君龙,柯晓康,柯善哲,陈逸君,唐劲松.江西红壤地区马尾松的年轮与其根部土土壤化学元素含量的相关性研究.土壤学报.1999,36(3):347~353.
    钱君龙,柯晓康,尹卓思,等,南京太平门地段雪松年轮及其根土在化学元素含量的相关性研究.地理科学,1998,18(4):374~78.
    钱君龙,柯晓康,王明珠,等,树木年轮元素含量与环境演变.南京林业大学学报,1998,22(1):22~26.
    钱君龙,吕军,屠其璞,等.用树轮α-纤维素δ~(13)C重建天目山地区近160年气候变化.中国科学(D辑),2001a,31(4):333~341.
    邵雪梅.树轮年代学的若干进展.第四纪研究,1997,3:265~271.
    沈长泗,陈金敏,张志华,等.利用树木年轮资料重建山东沂山地区200多年来的湿润指数.地理研究,1998,17(2):150~156.
    沈吉,陈毅风.南京地区近二十年来雪松树轮的稳定同位素与气候重建.植物资源与环境学报,2000,9(3):34~37.
    沈渭洲等.稳定同位素地质.原子能出版社,1987,pp:145
    施雅风,姚檀栋,杨保.近2000年古里雅冰芯10年尺度的气候变化及其与中国东部记录的比较.中国科学,1999,9(1):85~87.
    孙谷畴,林植芳.亚热带季风常绿阔叶林树木年轮的~(13)C/~(12)C和空气CO_2浓度变化.应用生态学报,1992,(4):291~295.
    孙艳荣,崔海亭,穆治国,刘鸿雁,李平日,刘玉琳,谭惠忠.广东现代樟树树轮纤维素的碳同位素与厄尔尼诺事件的关系.地球学报,2003,24(6):505~510.
    唐国军,陈衍景.有机碳同位素示踪古环境变化研究.矿物岩石,2004,24(3):110~115.
    唐劲松、钱君龙、尹卓思、杨逢春.用树轮碳同位素年序列重建大气二氧化碳浓度.南京林业大学学报.2000,24(3):45~48.
    天目山自然保护区管理局.天目山自然保护区自然资源综合考察报告.浙江科技出版社.1990.PP:1~54.
    田沁花,勾晓华,田艳艳,张永,彭剑峰,张永香.树木年轮~(13)C/~(12)C比率记录的树木生长与生态环境关系的研究.干旱区资源与环境,2004,18(8):36~42,
    屠其璞,王俊德,丁裕国等.气象应用概率统计.北京:气象出版社,1984,148~183.汪青春,周陆生,秦宁生,李林,朱西德,王振宁.利用乌兰树木年轮重建托托河冬季气温序列.高原气象,2003,22(5):518~523.
    汪永进,吴江滢,刘殿兵,等.石笋记录的东亚季风H1事件突变性特征.中国科学(D辑),2002,32(3):227~233.
    汪永进,吴江滢,许汉奎,穆西南.南京汤山洞穴石笋稳定同位素指示的气候与环境意义.地质学报,2000,74(4):333~334.
    王炳忠.我国的太阳能资源及其计算,1980,1(1):1~9.
    王纪中.《杭州概览》,上海人民出版社,1988,P:23.
    王丽丽,邵雪梅,黄磊,梁尔源.黑龙江漠河兴安落叶松与樟子松树轮生长特性及其对气候的响应.植物生态学报,2005,29(3):380~385.
    王平,何春光,郎惠卿 周道伟.小兴安岭湿地植物的光合作用日变化研究.湿地科学,2003,1(2):98~104
    王绍武,叶瑾琳,龚道溢.中国小冰期的气候.第四纪研究,1998,(1):54~64.
    王苏民,吉磊等.内蒙古扎赉诺尔湖泊沉积物中的新仙女木事件记录.科学通报,1994,39:348~351.
    王苏民,童国榜等.江苏固城湖15ka以来的环境变迁与古季风的探讨.中国科学(D),1996,26:137~141.
    王苏民,刘健,周静.我国小冰期盛期的气候环境.湖泊科学,2003,15(4):370~376.
    魏凤英.现代气候统计诊断预测技术.气象出版社,1999,77~81.
    温达志.大气二氧化碳浓度增高与植物水分利用效率.热带亚热带植物学报,1997,5(3):83~90.
    吴祥定,林正耀.西藏过去2000年的气候变化.气候变化会议(1978)论文集,北京:科学出版社,1981.
    吴祥定,孙力,程志刚.若干西藏高原上树木年轮年表的建.科学通报,1988,8:616~619.
    吴祥定.树木年轮与气候变化.气象出版社,1990,P:1~145.
    吴彦,季节性雪被覆盖对植物群落的影响.山地学报,2005,3(5):550~556.
    武吉华,张绅.植物地理学.北京:高等教育出版社,1989,P:22~69.
    谢昆青,李志尧.树木年轮研究的扫描图像分析方法及其在环境演变中的应用.第四纪研究.2000,20(3):259~269.
    邢秋茹,刘鸿雁,孙艳荣,崔海亭等,广东阳春现代樟树树轮宽度变化及其对气候因子的响应.生态学报,2004,24(9):2077~2080.
    徐海,洪业汤,朱咏煊,刘广深.安图红松树轮稳定碳同位素记录的低云量信息.地球化学,2002,31(4):309~314
    许大全,沈允钢.植物光合作用效率的日变化.植物生理学报,1997,23(4):410~416.
    杨保,康兴成,施雅风.近2000年都兰树轮10尺度的气候变化及其与中国其它地区温度代用资料的比较.地理科学,2000,20(5):397~402.
    姚檀栋,T hompson L G,施雅风.古里雅冰芯中末次间冰期以来气候变化记录.中国科学(D),1997,27(5):447~452.
    姚檀栋,焦克勤,杨志红,等.古里雅冰芯中小冰期以来的气候变化.中国科学(B辑)1995,25(10):1108~1114.
    姚檀栋,谢自楚,武莜等.敦德冰帽中的小冰期气候记录.中国科学(B),1990,11:1196~1201.
    姚檀栋,杨梅学,康兴成.从古里雅冰芯与祁连山树轮记录看过去2000年气候变化.第四纪研究,2001,21(6):514~519于大炮,周莉,代力民,王庆礼,刘明国.树木年轮分析在全球变化研究中的应用.生态学杂志,2003,22(6):91~96.
    丁强,任保华,王天铎,孙菽芬.C_3植物光合作用日变化的模拟.大气科学,1998,22(6):867~880.
    张德二.中国南部近500年冬季温度变化的若干特征.科学通报,1980,25(6):270~172.
    张家诚,朱明道,张先恭,王雷,徐瑞珍,杨蕴华.气候变迁及其原因,科学出版社,1976,1~209.
    张丕远,龚高法.十六世纪以来中国气候变化的若干特征.地理学报,1979,34(3):238~247.
    张社奇,张文辉,雷瑞德,钱克红.陕北白桦个体生长过程的谐波分析.植物研究,2001,21(1):152~156.
    张志华,李骥.用树轮密度和宽度资料重建新疆吉木萨尔县的季节降水和温度.气象学报,1998,1:77~85.
    张志华.吴祥定.祁连山地区1310年以来湿润指数及其年际变幅的变化与突变分析.第四纪研究,1996,4,368~378.
    浙江简志之一《浙江地理简志》,浙江人民出版社,1986,P:99~126.
    郑成华,沈承德,于津生.两个树轮样品的~(13)C同位素研究及其古气候意义.地球化学,1994,23:210~216.
    郑景云,郑斯中.山东历史时期冷暖旱涝状况分析.地理科学,1993,48(4):348~354.
    郑永飞,陈江峰.稳定同位素地球化学.科学出版社,2000,pp:1~109;193~200.
    中央气象局气象科学研究院.中国近五百年旱涝分布图集.北京:地图出版社.1980,1~333.
    周春国,温小荣,丁胜,刘曙雯,万志洲,徐海兵.紫金山风景名胜区森林景观格局动态分析.南京林业大学学报(自然科学版),2005,29(2):83~86.
    周燮,陈婉芬,吴颂如.植物生理学,中央广播电视大学出版社,1988.
    朱海峰,王丽丽,邵雪梅,方修琦.雪岭云杉树轮宽度对气候变化的响应.地理学报,2004,59(6):863~870.
    竺可桢.中国近五千年来气候变迁的初步研究.中国科学,1973,(2):169~189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700