纳米硅酸盐(NS)吸附猪饲粮汞的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题构建的纳米硅酸盐(NS)在体外对汞具有专性吸附功用,继而以“杜长大”三元杂交猪为试验动物,研究了NS在胃肠道对日粮汞的吸附作用,并从肌肉、肝、肾组织中汞残留及生长性能、肉质、免疫力、抗氧化能力、内分泌、肝肾功能等方面探讨了NS对汞所致不良影响的缓解作用。
     饲养试验采用2×2二因子有重复试验设计,选择96头体重28Kg左右(27.87±1.15)的“杜长大”三元杂交猪,随机分为四个处理组,每组猪在基础日粮(生长期日粮汞含量为35.67ug╱kg,肥育期为34.75ug╱kg)上再分别添加0.1mg╱kg Hg(T1)、0.1mg╱kg Hg+0.3%NS(T2)、0.3mg/kg Hg(T3)和0.3mg/kg Hg+0.3%NS(T4),每组设3个重复,每个重复8头猪,公母各半。试验预饲期为7天,正式试验期为90天,饲料为颗粒饲料,前45天喂生长期饲料,后45天喂肥育期饲料,自由采食和饮水。饲养试验期间,分别在第30、45、60、75、90天,固定从每个重复中选2头猪(公母各半),共24头,前腔静脉采血;这24头猪在试验的第76天,每头猪肌肉注射4头份的猪瘟病毒兔化组织疫苗。饲养试验结束前7天,从每个重复中各选体重相近的2头猪(公母各半),共24头,采用全收粪法进行消化试验。饲养试验结束后,按体重相近的要求,从每个重复中各选2头(公母各半),共24头,按常规方法屠宰。取相关组织样品进行汞残留、肉质、抗氧化指标、免疫学指标、血清激素水平、组织微量元素水平、骨骼灰分、血生化指标等测定。获得以下主要结果:
     组织器官汞残留测定结果表明:日粮的汞污染水平明显地影响着猪各组织器官中汞的残留,随着日粮中汞水平的提高,试验猪的全血、肌肉、肾皮质、肾髓质、肝、心、大脑和被毛的汞水平也有了显著的提高(P<0.05),但在脾、肺、骨骼和皮下脂肪未发现汞含量有明显的变化(p>0.05)。在0.1mg╱kg汞添加组,猪肌肉中的汞残留量达45.65ug╱kg(接近国家猪肉卫生指标的最高允许值—50ug/kg);在0.3mg╱kg汞组,肌肉汞的残留水平高达57.25ug/kg(超出安全范围)。与T1组相比,加NS的T2组猪背最长肌、半膜肌、股二头肌和锯肌的汞水平分别降低了47.18%(P<0.05)、39.81%(P<0.05)、53.32%(P<0.05)和49.93%(P<0.05);与T3组相比,加NS的T4组猪背最长肌、半膜肌、股二头肌和锯肌的汞水平分别降低了32.12%(P<0.05)、30.54%
Present study was conducted to evaluate adsorption of dietary mercury by nanometer silicate(NS) in the gastrointestinal tract of growing/finishing pigs on the basis of better adsorption capacity of NS in vitro, and consequent role on reducing mercury residues on muscles, liver, kidney and other organs and alleviating deleterious effects of mercury on growth performance, meat quality, immune competence, anti-oxidative ability, endocrines, hepatic & renal function, and so on.A total of 96 cross bred pigs (DurocxLandracexlarge white, 48 barrows and gilts respectively), with similar initial weight (27.87±1.15 kg), were used in this study. The animals were randomly assigned to two concentrations of mercury (0.1 and 0.3 ppm from HgCl_2) and two levels of NS (0 and 0.3%) in a 2×2 factorial arrangement of treatments. Each group has 3 pens (replications), and each pen has 8 pigs (4 barrows and 4 gilts). The pigs were allowed ad libitum access to diets and water during the experiment, which last 90 days, 45 days in growing phase and 45 days in finishing phase.Body weights and feed intake were recorded to calculate average daily gain (ADG), average daily feed intake (ADFI) and feed/gain (F/G) for each pen on the 83~(rd) day. Blood was collected via anterior vena cava venipuncture from two random selected pigs in each pen for a total of 24 pigs sampled (6 pigs per group) on d30 (the 30th day), d45, d60, d75 and d90 respectively. And the 24 pigs were vaccinated for hog cholera. Those blood samples were obtained at about 08:00 each time and kept in freezer until analysis. Ten days before ending of the feeding trial, digestion experiment was conducted by the method of total fecal collection. Upon termination of the feeding trial, 6 randomly selected pigs (3 barrows and 3 gilts) from each treatment were slaughtered after a 24-hour fast. And related tissues samples were collected and kept until analysis. After determination of all sample and statistically analysis of the data, main results were obtained as follows:Mercury residues in tissues were subject to the extent of dietary mercury exposure. With the increase of Hg exposure, there was a marked enhancement of Hg contents in blood,
    muscle, renal cortex, renal medulla, liver, heart, brain and hair (P<0.05). Average Hg content in muscle of pigs fed with 0.1 mg/kg Hg contaminated diet came to 45.56 ug/kg, a little lower than maximum limit (50 ug/kg) of National Pork Hygiene Standard. Muscular Hg residue reached 57.25 ug/kg, a bit higher than the standard, for pigs with 0.3 mg/kg Hg supplementation. For pigs exposed to 0.1 ppm Hg, NS addition lowered Hg residues by about 47.18% in longissmus dorsi muscle (P<0.05), 39.81% in semimembranosus muscle (P<0.05), 53.32% in biceps femoris muscle (P<0.05), 49.93% in serratus muscle (P<0.05). When pigs fed with 0.3 ppm Hg diet, NS addition consistently lowered Hg residues by about 32.12%(P<0.05), 30.54%(P<0.05), 34.38% (P<0.05) and 33.79%(P<0.05) in the four tissues respectively. And average Hg levels were 23.91 ug/kg and 38.51ug/kg for the two NS addition groups, much lower than the national standard. Furthermore, the levels of Hg retention in the four different muscular tissues were quite consistent. Mercury residues in renal cortex, renal medulla and liver decreased significantly in pigs with NS on the basis of 0.1 mg/kg Hg supplementation, by 55.86%(p<0.05), 37.67%(p>0.05) and 67.56%(p<0.05). And 45.05%(p<0.05), 42.53%(p<0.05) and 40.245(p<0.05) for pigs with NS on the basis of 0.3 mg/kg Hg. Compared with pigs in Tl & T3 group, Pigs in T2 & T4 had lower Hg residues by 21.24% (p<0.05) in blood, 50.24% (p<0.05) in hair, 24.36% (p>0.05) in brain, 17.95% (p>0.05) in heart and 3.72% (p>0.05), 48.21% (p<0.05), 26.65% (p>0.05), 18.73% (p<0.05) respectively. No obvious changes were found for Hg contents among the four groups(p>0.05). In the early phase of the trial, blood Hg levels increased gradually with the increase of Hg exposure time. But it's level didn't continue to increase much in the late phase. Blood Hg contents were lower markedly on d30, d45, d60, d75 and d90 in T2 than those in Tl (p<0.05). A little decrease in T4 for various exposure period compared with that in T3 (p>0.05).Digesta Hg concentration in varied intestinal tracts, as well as Hg in feces, urine and bile, were markedly higher in pigs with 0.3 mg/kg Hg supplementation than that in 0.1 mg/kg group (P<0.05). For pigs exposed to 0.1 ppm Hg, NS addition promoted digesta Hg concentration by about 19.06% in stomach (P<0.05), 20.11% in duodenum (p>0.05), 40.42% in jejunum (P<0.05), 39.58% in ileum (P<0.05), 45.40% in cecum (P<0.05), 37.42% in colon (P<0.05) and 34.56% in rectum (P<0.05) respectively, and feces Hg by
    40.52%(P<0.05). When pigs fed with 0.3 ppm Hg diet, NS addition consistently enhanced Hg concentration by 4.93 (p>0.05), 20.87% (p<0.05), 35.51% (p<0.05), 48.69% (p<0.05), 50.77% (p<0.05), 47.65% (p<0.05), 41.86% (p<0.05) and 40.86% (p<0.05) in a variety of gastrointestinal digesta and feces respectively. Hg concentrations in bile and urine reduced obviously by 70.47%(p<0.05) and 45.15%(p>0.05) in T2 than those in Tl. And a decrease by 37.53%(p<0.05) and 13.30%(p>0.05) in T4 compared with those in T3.There were no obvious differences for ADG, F/G and ADFI among four groups (p>0.05). Apparent digestibility of crude protein decreased by 9.99% (p<0.05) in T3 compared with that in Tl. Other differences for nutrient digestibility were not found (p>0.05).Higher Hg supplementation resulted in a reduction on muscular A a value & myoglobin concentration, and a increase on dripping-loss in longissimus dorsi of pigs in T3 than those in Tl(p<0.05). And NS addition improved muscular a a value & myoglobin concentration to some extent(p>0.05), and reduced significantly dripping-loss in pigs of T4 than that in T3(p<0.05).The analysis of endocrine showed that pigs fed with the diet containing 0.3mg/kg mercury had lower serum FSH by 20.00% (p<0.05) and E2 by 8.89% (p<0.05) than those fed 0.1 mg/kg Hg. With the addition of NS, the two lowered endocrine increased a bit(p> 0.05). As for GH, T3, T4, LH and P4, no obvious differences were observed (p>0.05).With the increase of Hg supplementation, pigs had much lower activities of serum SOD, hepatic SOD, renal SOD, serum CAT, blood GSH-Px, hepatic GSH-Px and renal GSH-Px (p<0.05). NS addition made these decreased enzyme activities increase obviously (p<0.05). The same changes were observed on serum T-AOC, blood GSH and blood SH (p<0.05). Higher MDA contents were induced in serum, liver and kidney when pigs exposed to higher mercury(p<0.05). Pigs had lower MDA contents due to addition of NS(p<0.05).When fed with 0.3 mg/kg Hg, pigs had markedly decreased peripheral blood lymphocyte proliferation and serum hog cholera antibody titer than those in Tl(p<0.05). With the addition of NS, the two immune indexes significantly increased(p<0.05). However, no changes for weight ratios of immune organs were found(p>0.05).The analysis of zinc, iron, copper and selenium retentions in tissues showed that pigs in T3 had lower zinc concentrations in serum, muscle, liver & kidney, and lower iron
    concentrations in muscle, liver & kidney, and higher serum copper content, and higher selenium concentrations in the four tissues, than those in Tl, respectively (p<0.05). For pigs in T4 and T2, these changes withdrew obviously due to the addition of NS (p<0.05).No obvious changes for weight ratios of liver, kidney & other organs were found among four groups (p>0.05). In contrast to pigs fed 0.1 mg/kg Hg, pigs with 0.3mg/kg Hg had lower GST activities & MT contents in liver & kidney, and higher GST activity, LDH activity, BUN content & creatinine content in serum (p<0.05). NS addition made the changes in these indexes be alleviated effectively (p<0.05). But, the changes and alleviations were not obvious for ALP, GPT, GOT and other serum biochemical indexes (p >0.05). There appeared that irregular shapes of liver lobules, blurry border between liver lobules, irregular array of liver cell cords and some cells with vacuole-like metamorphism for pigs fed 0.3 mg/kg Hg in microscopical examination. And the pigs had thicker basolateral membrane in glomerulus and a little loss of cell luminal membrane in the pars recta of the proximal tubule at the microscopic level. Pigs in T3 had lower crude ash contents and Ca concentration in femur than those in Tl (p<0.05). And there was a marked improvement after NS addition (p<0.05).In summary, all the results implied that the addition of non-nutritive sorptive material, NS, could effectively reduce the gastrointestinal absorption of mercury via its specific adsorption, with a consequent reduction of mercury residues in body tissues, which include muscles, liver, kidney and other organs, alleviated adverse effects of mercury on growth performance, meat quality, immune competence, anti-oxidative ability, endocrines, hepatic & renal function, and so on. No doubt it would be of great significance to apply NS to solve the problem of Hg pollution in animal production industry. NS had provided an encouraging solution to produce safe and low-residue animal products with mercury contaminated feed.
引文
1. Abdelhamid AM. Effect of dietary contamination with mercury on the performance of rabbits. Arch Tierernahr, 1988, 38(3): 207-214.
    2. Abdel-Mageed AB., Agrawal KC., Activation of nuclear factor kappa B: potential role in metallothionein-mediated mitogenic response. Cancer Res. 1998, 58: 2335-2338.
    3. Afonne OJ., Orisakwe OE., Obi E., et al. Nephrotoxic actions of low-dose mercury in mice: protection by zinc. Arch Environ Health, 2002, 57(2): 98-102.
    4. Ammerman, CB., Miller, SL., Fick, KR. et al. Contaminating elements in mineral supplements and their potential toxicity: a review. Journal of Animal Science. 1977, 44: 485-508.
    5. Anderson HR., Anna-Maria A. Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals. Environ. Health Prosp., 1999, 107(S1): 89-100.
    6. Bapu C., Purohit RC., Sood PP. Fluctuation of trace elements during methyl mercury toxication and chelation therapy. Hum. Exp. Toxicol., 1994, 13(12): 815-823.
    7. Barbosa AC., Silva SR., Dorea JG. Concentration of mercury in hair of indigenous mothers and infants from the Amazon basin. Archives of Environmental Contamination & Toxicology. 1998, 34(1): 100-105.
    8. Beattie JH., Black DJ., Wood AM., et al. Cold-induced expression of the metallothionein-1 gene in brown adipose tissue of rats. Am J Physiol. 1996, 270: R971-R977.
    9. Beattie JH., Wood AM., Newman AM., et al. Obesity and hyperleptinemia in metallothionein(-Ⅰ and-Ⅱ) null mice. Proc Nail Acad Sci USA. 1998, 95: 358-363.
    10. Bigazzi PE. Autoimmunity induced by chemicals. Clin. Toxicol., 1998, 26: 125-156.
    11. Bohi Y., Sugimoto K., Yoshikawa et al. Effects of cadmium on soterogenesis within deffusion chambers marrow cells: biochemical evidence of decreased bone formation capacity. Toxicol. Appl. Pharmacol., 1993, 120: 274-280.
    12. Boroskova Z., Soltys J., Benkova M. Effect of mercury on the immune response and mean intensity of Ascaris suum infection in guinea pigs. Journal Helminthol, 1995, 69(3): 187-194.
    13. Bouton SN., Richey LJ., Schumacher IM. Histologic, neurologic, and immunologic effects of methylmercury in captive great egrets. Journal of Wildlife Diseases. 2000, 36(3): 423-435.
    14. Bridger MA., Thaxton JP. Cell-mediated immunity in the chicken as affected by mercury. Poulrty Sci. 1982, 61: 2356-2361.
    15. Brown SL., Chaney RL., Angle JS., et al. Zinc and cadmium uptake by gyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci Soc Am J, 1995, 59: 125-133.
    16. Brummer GW. The importance of chemical speciation in environmental processes. Berlin: Springer-Verlag. 1986, 20(2): 169-192.
    17. Bush AI. Metals and neuroscience. Curr. Opin. Chem. Biol., 2000, 4: 184-191.
    18. Cang L, Wang YJ, Zhou DM, Dong YH. Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province, China. Journal of Environmental Science-China, 2004, 16 (3): 371-374
    19. Cardellicchio N., Decataldo A., Leo AD., et al. Accumulation and tissue distribution of mercury and selenium in striped dolphins (Stenella coeruleoalba) from the Mediterranean Sea (southern Italy). Environmental Pollution, 2002, 116: 265-271.
    20. Cember H., Gallagher P., and Faulkner A. Distribution of mercury among blood fractions and serum proteins. Am. Ind. Hyg. Assoc. J., 1968, 29: 233-237.
    21. Chang CWJ., Nakamura RM. and Brooks CC. Effect of varied dietary levels and forms of mercury on swine. Journal of Animal Science. 1977, 45: 279-285.
    22. Chen RW., Ganther HE. and Hoekstra KG. Studies on the binding of methylmercury by thionein. Biochem Biophys Res Commun, 1973, 51(2): 383-390.
    23. Chmielnicka J., Brzeznicka E., and Sniady A. Kidney concentrations and urinary excretion of mercury, zinc and copper following the administration of mercuric chloride and sodium selenite to rats. Arch Toxicol, 1986, 59(1): 16-20.
    24. Clarkson, TW. Mercury: major issues in environmental health. Environ Health Perspect. 1992, 100: 31-38.
    25. Colbom T. et al. Developmental effects of endocrine disrupting chemicals in wild life and humans. Environ. Health Prospective, 1993, 101: 378-384.
    26. Condoh M., Tsukahara R., Kuronaga M., et al. Enhancement of MT synthesis by leptin in fasted mice. Life Sci. 2002, 71: 2425-2433.
    27. Conrad CC., Walter CA., Richardson A., et al. Cadmium toxicity and distribution in metallothionein-Ⅰ and -Ⅱ deficient transgenic mice. J Toxicol Environ Health. 1997, 52: 527-543.
    28. Cousins RJ., Baber AK. and Trout JR. Cadmium toxicity in growing swine. J. Nutr. 1973, 103: 964-972.
    29. Cox C., Davidson PW., Myers, GJ. Mercury in fish. Science, 1998, 279: 459.
    30. Coyle P., Philcox JC., Rofe AM. Metallothionein-null mice absorb less Zn from an egg-white diet, but a similar acount from solutions, although sith altered intertissue Zn distribution. J Nutr. 1999, 129: 372-379.
    31. Davidson PW., Myers GJ., Cox C. Effects of prenatal and postnatal methylmercury exposure from fish consumption on neurodevelopment: outcomes at 66 months of age in the Seychelles child development study. JAMA, 1998, 280: 701-707.
    32. Desai MA. A study of micromolecular diffusion through native porcine mucus. Experientia. 1992, 48: 22-26.
    33. Dietz R., Riget E, Johansen P. Lead, Cadmiun, Mercury and selenium in Greenland marine animals. The Science of the total Environment, 1996, 186: 67-93.
    34. Doh-Yeed L., Schroeder J. and Gordon DT. Enhancement of Cu bioavailability in the rat by phytic acid. J Nutr, 1988, 118: 712
    35. Donaldson WE., Thaxton JP. Mercuric chloride effects on the activities of some hepatic enzymes in chickens. Poultry Sci. 1975, 54: 1613-1616.
    36. Eaton DL., Toal BF. Evaluation of the Cd/hemoglobin affinity assay for the rapid determination of metallothionein in biological tissues. Toxicol Appl Pharmacol, 1982, 66: 134-142.
    37. E1-Begearmi MM., Ganther HE. and Sunde ML. Dietary interaction between methylmercury, selenium, arsenic, and sulfur amino acids in Japanese quail. Poult Sci, 1982, 61(2): 272-279.
    38. E1-Begearmi MM., Ganther HE. and Sunde ML. Toxicity of mercuric chloride in Japanese quail as affected by methods of incorporation into the diet. Poult Sci, 1980, 59(10): 2216-2220.
    39. E1-Begearmi MM., Sunde ML. and Ganther HE. A mutual protective effect of mercury and selenium in Japanese quail. Poult Sci, 1977, 56(1): 313-322.
    40. Ellman G L. Tissue sulfhydryl groups. Arch Biochem Biophys, 1959, 82: 70-77.
    41. Endo T. and Sakata M. Effects of sulfhydryl compounds on the accumulation, removal and cytotoxicity of inorganic mercury by primary cultures of rat renal cortical epithelial cells. Pharmacol Toxicol., 1995, 76(3): 190-195.
    42. Endo T., Haraguchi K., Sakata M. Mercury and selenium concentrations in the internal organs of toothed whales and dolphins marketed for human consumption in Japan. The Science of the Total Environment, 2002, 300: 15-22.
    43. Enestrom S. and Hultman P. Immune-mediated glomerulonephritis induced by mercuric chloride in mice. Experientia, 1984, 40: 1234-1240.
    44. Erickson, BE. Regenerating mercury-loaded sorbents. Environ Sci. Technol. 2002, 36(21): 408A-409A.
    45. Eyles J., Alpar HO., Field WN., et al. The transfer of polystyrene microspheres from the gastrointestinal tract to the circulation after oral administration in the rat. J. Pharm. Pharmacol., 1995, 45: 561-565.
    46. Falnoga I., Kregar I., Skreblin M., et al. Interactions of mercury in rat brain. Biol Trace Elem Res, 1993; 37(1): 71-83.
    47. Fang SC. Interaction of selenium and mercury in the rat. Chem. Biol. Interact. 1977, 17: 25-40
    48. Flora SD., Bennicelli C., and Bagnasco M. Genotoxicity of mercury compounds. A review. Mutat Res, 1994; 317(1): 57-79.
    49. Florence D. Evaluation of nano-and microparticle uptake by the gastrointestinal tract. Adv. Drug Deliv. Rev., 1998, 34: 221-233.
    50. Fukino H., Hirai M., Hsueh YM., et al. Mechanism of protection by zinc against mercuric chloride toxicity in rats: effects of zinc and mercury on glutathionine metabolism. J Toxicol Environ Health, 1986, 19(1): 75-89.
    51. Galal-Gorchev, H. Dietary intake, levels in food and estimated intake of lead, cadmium, and mercury. Food Addit. Contam. 1993, 10: 115-128.
    52. Ganther HE., Goudie C., Sunde ML., et al. Selenium: relation to decreased toxicity of methylmercury added to diets containing tuna. Science, 1972, 175(26): 1122-1124.
    53. Ganther HE. Modification of methylmercury toxicity and metabolism by selenium and vitamin E: possible mechanisms. Environ Health Perspect, 1978, 25: 71-76.
    54. Ganther HE. Interactions of vitamin E and selenium with mercury and silver. Ann. N. Y. Acad. Sci., 1980, 355: 212-226.
    55. Georgopoulos C, Welch WJ. Role of the major heat stress proteins as molecular chaperones. Annu. Rev. Cell Biol., 1993, 9: 601-634.
    56. Glynn AW., Lind Y. Effect of long-term sodium selenite supplementation on levels and distribution of mercury in blood, brain and kidneys of methyl mercury-exposed female mice. Pharmacol Toxicol, 1995, 77(1): 41-47.
    57. Gochfeld M. Cases of mercury exposure, bioavailability, and absorption. Ecotoxicology and Environmental Safety, 2003, 56: 174-179.
    58. Goering PL., Fisher BR., Chaudhary PP., et al. Relationship between stresss protein induction in rat kidney by mercuric chloride and nephrotoxicity. Toxicol. Appl. Pharmacol., 1992, 113: 184-191.
    59. Hac, E., Galka, K., Stolarska, K., et al. Correlation between mercury contents in hair, kidney, blood and urine of rats intoxicated with mercury chloride. Toxicology Letter, 1996, 88(S1): 56
    60. Hansen JC. and Kristensen P. On the influence of zinc on mercury/selenium interaction. Arch Toxicol, 1980, 46(3-4): 273-276.
    61. Hasler DW., Jensen LT., Zerbe O., et al. Effect of the Two Conserved Prolines of Human Growth Inhibitory Factor (Metallothionein-3) on Its Biological Activity and Structure Fluctuation: Comparison with a Mutant Protein. Biochemistry. 2000, 39: 14567-14575.
    62. Hayes JD., Pulford DJ. The glutathion S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol., 1995, 30(6): 445-460.
    63. Hernandez-Pando R., Pedraza-chaverri J., Orozco-Estevez H., et al. Histological and subcellular distribution of 65 and 70 kD heat shock proteins in expertimental nephrotoxic injury. Exp. Toxicol. Pathol. 1995, 47: 501-508.
    64. Horvat M., Nolde N., Fajon V. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. The Science of the Total Environment, 2003, 304: 231-256.
    65. Hua J., Brun A., and Berlin M. Pathological changes in the Brown Norway rat cerebellum after mercury vapour exposure. Toxicology, 1995, 104(1-3): 83-90.
    66. Hultman P. and Enestrom S. Dose-response studies in murine mercury induced autoimmunity and immune-complex disease. Toxicol Appl Pharmacol, 1992, 113: 199-208.
    67. Hultman P., Nielsen JB. The effect of dose, gender, and non-H-2 genes in murine mercury-induced autoimmunity. Journal of Autoimmunity. 2001, 17(1): 27-37.
    68. Hussain T., et al. Effct of cadmium on superoxide dismutase and lipid peroxidation in liver and kidney of grow rats: in vivo and in vitro studies. Pharmacol Toxicol, 1987, 60: 335-345.
    69. Ilback NG., Lindh U., Wesslen L., et al. Trace element distribution in heart tissue sections studied by nuclear microscopy is changed in Coxsackie virus B3 myocarditis in methyl mercury-exposed mice. Biol Trace Elem Res, 2000; 78(1-3): 131-147.
    70. Itano K., Kawai S., Miyazaki N., et al. Body burdens and distribution of mercury and selenium in striped dolphins, Stenella-coeruleoalba. Agricultural and Biological Chemistry, 1984, 48(5): 1117
    71. Jackson MO. Total mercury determination in biological and environmental standard samples by gold amalgamation followed by cold vapor atomic absorption spectrometry. Microchemical Joural. 1996, 53: 195-200.
    72. Jacobson KB. and Turner JE. The interaction of cadmium and certain other metal ions with proteins and nucleic acids. Toxicol, 1980, 16: 1-37.
    73. Jani P. and Florence AT. Nanospheres and microsphere uptake via Peyer's patches: observation of the rate of uptake in the rat after a single oral dose. Int. J. Pharm., 1992, 86: 239-246.
    74. Janicki, K., Dobrowolski, J., and Krasnicki, K. Correlation between contamination of the rural environment with mercury and occurrence of leukaemia in men and cattle. Chemosphere. 1987, 16: 253-257.
    75. Jeng, SL. and Yang, CP. Determination of lead, cadmium, mercury, and copper concentrations in duck eggs in Taiwan. Poultry Science. 1995, 74: 187-193.
    76. Jorhem, L., Slorach, S., Sundstrom, B. et al. Lead, cadmium, arsenic and mercury in meat, liver and kidney of Swedish pigs and cattle in 1984-88. Food Addit. Contam. 1991, 8: 201-212.
    77. Juliann GK, George CT. Heat Shock Protein 70 kDa: Molecular Biology, Biochemistry, and Physiology. Pharmacol. Ther. 1998, 80(2): 183-201.
    78. Kenow KP., Gutreuter S., Hines RK., et al.. Effects of methyl mercury exposure on the growth of juvenile common loons. Ecotoxicology, 2003, 12: 171-182.
    79. Key SW. New study highlights hazards on hormone disrupting chemicals. World Disease, 1998, 9: 11-12.
    80. Khajarern, JM., Khajarern, S., Moon, TH. and Lee, JH. Effects of dietary supplementation of fermented chitin-chitosan (FERMKIT) on toxicity of mycotoxin in ducks. Asian-Aust. J. Anim. Sci. 2003, 16: 706-713.
    81. Khan AT., Atkinson A., Graham TC., et al. Uptake and distribution of mercury in rats after repeated administration of mercuric chloride. J. Environ. Sci. Health, 2001, A36(10): 2039-2045.
    82. Kling LJ., Soares JH. Mercury metabolism in Japanese quail Ⅰ- the effects of dietary mercury and selenium on their tissue distribution. Poultry Sci. 1978a, 57: 1279-1285.
    83. Kling LJ., Soares JH. Mercury metabolism in Japanese quail Ⅱ- the effects of dietary mercury and selenium on blood and liver glutathione peroxidase activity and selenium concentration. Poultry Sci. 1978b, 57: 1286-1292.
    84. Kling LJ., Soares JH. The effects of mercury and vitamin E on tissue glutathione peroxidase activity and thiobarbituric acid values. Poultry Sci. 1982, 61: 1762-1765.
    85. Koeman JH., Peeters WHM., et al. Mercury-selenium correlation in marine mammals. Nature, 1973, 245: 385-386.
    86. Koller LD. Methylmercury: effect on serum enzymes and humoral antibody. J. Toxicol. Environ. Health, 1977, 2: 1115.
    87. Koller JD. Effects of lead, cadmium and methylmercury on immuneological memory. J. Environ. Pathol. Toxicol. 1980, 4: 47.
    88. Kosta L., Byrne AR. and Zelenko V. Correlation between selenium and mercury in man following exposure to inorganic mercury. Nature, 1975, 254: 238-239.
    89. Kramer KK., Zoelle JT., and Klaassen CD. Induction of metallothionein mRNA and protein in primary murine neuron cultures. Toxicol Appl Pharmacol, 1996; 141(1): 1-7.
    90. Lafuente A., Cano P. and Esquifino AI. Are cadmium effects on plasma gonadotropins, prolactin, ACTH, GH and TSH levels, dose-dependent? BioMetals, 2003, 16: 243-250.
    91. Lai CH., Lo SL., Lin CF. Evaluatiing an iron-coated sand for removint copper from water. Wat Sci Tech, 1995, 30(1): 175-182.
    92. Lau S. and Sarkar B. Inorganic mercury (Ⅱ)-binding components in normal human blood serum. J Toxicol Environ Health 1979, 5: 907-916.
    93. Levesque PC., Hare MF., and Atchison WD. Inhibition of mitochondrial Ca~(2+) release diminishes the effectiveness of methyl mercury to release acetylcholine from synaptosomes. Toxicol Appl Pharmacol, 1992, 115(1): 11-20.
    94. Lin XL., Xu ZR., Zou XT., et al. Effects of montmorillonite nanocomposite on mercury residues in growing/finishing pigs. Asian-Aust. J. Anim. Sci. 2004, 17(10): 1434-1437.
    95. Madsen KM. Mercury accumulation in kidney lysosomes of proteinuric rats. Kidney Int., 1980, 18: 445-453.
    96.Manahan E.环境化学.陈甫华译.天津:南开大学出版社,1993.
    97. March, B. E., Soong, R., Bilinski, E. et al. Effects on chickens of chronic exposure to mercury at low levels through dietary fish meal. Poultry Science. 1974, 53: 2175-2181.
    98. Matsuoka M., Wispriyono B., and Igisu H. Induction of c-fos gene by mercury chloride in LLC-PK1 cells. Chem. Biol. Interaction, 1997, 108: 95-106.
    99. McDowell EM., Nagle RB., Zalme RC., et al. Studies on the pathophysiology of acute renal failure. I. Correlation of ultrastructure and function in the proximal tubule of the rat following administration of mercuric chloride. Virchows Arch [Cell Pathol.], 1976, 22: 173-196.
    100. Mercola J., Klinghardt D. Mercury toxicity and systemic elimination agents. Journal of Nutritional & Environmental Medicine. 2001, 11(1): 53-62.
    101. Miura K., Himeno S., Koide N., et al.. Effects of methylmercury and inorganic mercury on the growth of nerve fibers in cultured chick dorsal root ganglia. Tohoku J. Exp. Med., 2000, 192(3): 195-210.
    102. Myers GJ., Davidson PW. Prenatal methylmercury exposure and children: neurologic, developmental, and behavioral research. Environ Health Perspect, 1998, 106(S3): 841-847.
    103. Naganuma A., Imura N. Changes in distribution of mercury and selenium in soluble fractions of rabbit tissues after simultaneous administration. Pharmacol Biochem Behav, 1980, 13(4): 537-544.
    104. Nicholson JK., Osborn D., and Kendall MD. Comparative distributions of zinc, cadmium and mercury in the tissues of experimental mice. Comp Biochem Physiol C, 1984; 77(2): 249-56.
    105. Nicholson, FA. Chambers, BJ., Williams, JR. et al. Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresource Technology. 1999, 70: 23-31.
    106. Nielsen JB., Andersen O. Oral mercuric chloride exposure in mice: effects of dose on intestinal absorption and relative organ distribution. Toxicology. 1989, 59(1): 1-10.
    107. Nielsen JB., Andersen O. Disposition and retention of mercuric chloride in mice after oral and parenteral administration. Journal of Toxicology & Environmental Health. 1990, 30(3): 167-180.
    108. Nielsen JB., Hultman P. Mercury-induced autoimmunity in mice. Environmental Health Perspectives. 2002, 110(S5): 877-881.
    109. Nigro M. Mercury and selenium localization in macrophages of the striped dolphin, stenella-coeruleoalba. Journal of the Marine Biology Association, 1994, 74(4): 975.
    110. Nigro M., Leonzio C. Intracellular storage of mercury and selenium in different marine vertebrates. Marine Ecology-Progress Series, 1996, 135(1-3): 137.
    111. Nriagu, J. O. and Pacyna, J. M. 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace elements. Nature. 333: 134-139.
    112. Ohta H., Seki Y., Imamiya S. Possible role of metallothionein on the gastrointestinal absorption and distribution of cadmium. Kitasato Archives of Experimental Medicine. 1993, 65(S1): 137-145.
    113. Ooliveira, R., Guimara, E. and Pfeiffer, W. Accumulation and distribution of inorganic mercury in a tropical fish (Trichomycterus zonatus). Ecotoxicology and Environmental Safety 1996, 34: 190-195.
    114. Orisakwe OE., Afonne OJ., Nwobodo E., et al. Low-dose mercury induces testicular damage protected by zinc in mice. Eur J Obstet Gynecol Reprod Biol, 2001, 95(1): 92-96.
    115. Palmisano F., Cardellicchio N., Zambonin PG. Speciation of mercury in dolphin liver: a two-stage mechanism for demethylation accumulation processs and role of selenium. Marine Environment Research, 1995, 40(2): 109-121.
    116. Pan SK., Imura N., Yamamura Y., et al. Urinary methylmercury excretion in persons exposed to elemental mercury vapor. Tohoku J Exp Meal, 1980; 130(1): 91-95.
    117. Parizek J., Ostadalova I., Kalouskova J., et al. The detoxifying effects of Se interrelations between compounds of Se and certain metals. Newer Trace Elements in Nutrition, 1971, 85.
    118. Parizek J., Kalouskova J., Babicky A., et al. Interaction of Se with mercury, cadmium and other toxic metals. Trace Elements Metabolism in Animals. 1974, 2: 119.
    119. Park JD., Liu Y., Klaassen CD. Protective effect of metallothionein against the toxicity of cadmium and other metals. Toxicology. 2001,163: 93-100.
    120. Pedersen TV., Block M., Part P. Effect of selenium on the uptake of methyl mercury across perfused gills of rainbow trout, Oncorhynchus mykiss. Aquatic Toxicology, 1998, 40: 361-377.
    121. Piper, RC., Miller, VL. and Dickinson, ED. Toxicity and distribution of mercury in pigs with acute methylmercurialism. Amer. J. Vet. Res. 1971, 32: 263.
    122. Plessil M., Bertelli D., and Monzani A. Mercury and Selenium Content in Selected Seafood. Journal of food composition and analysis, 2001, 14: 461-467.
    123. Pocker L. Oxygen radicals in biological systems. In: Methods in enzymology, Vol 105. Academic Press, INC, 1984. 93.
    124. Prohaska JR. and Ganther HE. Interactions between selenium and methylmercury in rat brain. Chem Biol Interact, 1977, 16(2): 155-167.
    125. Ramos, AJ. and Hernanadez, E. Prevention of aflatoxicosis in farm animals by means of hydrated sodium calcium aluminisilicate addition to feedstuffs: a review. Animal Feed Science Technology. 1997, 65: 197-206.
    126. Rickansrud DA. and Henrickson RL. Total pigments and myoglobin concentration in four bovin muscles. J Feed Sci, 1967, 32: 57-61.
    127. Robbins AH., McRee DE., Williamson M., et al. Refined crystal structure of Cd, Zn metallothionein at 2.0 A resolution. J Mol Biol. 1991, 221: 1269-1293.
    128. Romero-Isart N., Vasak M. Advances in the structure and chemistry of metallothioneins. J Inorg. Biochem. 2002,88: 388-396.
    129. Rubenstein DA., Soares JH. The effect of selenium on the biliary excretion and tissue deposition of two forms of mercury in the broiler chick. Poultry Sci. 1979, 58: 1289-1298.
    130. Safe SH., Gaido K. Pytoestrogens and anthropogenic estrogenic compounds. Environ Toxicol Chem, 1998, 17: 119-126.
    131. Sandulescu G., Calugar A., Botez S. Effects of mercury on the reproductive function of small laboratory animals. Rev Med Chit Soc Med Nat Iasi, 1998, 92(1): 95-101.
    132. Sarkar D., Essington ME., and Misra KC. Adsorption of mercury(Ⅱ) by kaolinite. Soil Science Society of America Journal, 2000, 64: 1968-1975.
    133. Sato M., Apostolova MD., Hamaya M., et al. Susceptibity of metallothiionein-null mice to paraquat. Environ Toxicol Pharmacol. 1996, 1: 221-225.
    134. Sato M., Kondoh M. Recent studies on metallothionein: Protection against toxicity of heavy metals and oxygen free radicals. Tohoku Journal of Experimental Medicine. 2002, 196(1): 9-22.
    135. Schafer SG. and Forth W. Effect of acute and subchronic exposure to cadmium on the retention of iron in rats. J Nutr, 1984, 114: 1989-1996.
    136. Schionning JD. and Danscher G. Autometallographic mercury correlates with degenerative changes in dorsal root ganglia of rats intoxicated with organic mercury. APMIS, 1999, 107(3): 303-310.
    137. Sharp RM. and Skakkebaek NE. Are oestrogens involved in falling sperm count and disorders of male reproductive tract. Luncat., 1993, 341: 1392-1395.
    138. Shimai S., Satoh H., Watanabe C. Evolution of our understanding of methylmercury as a health threst. Envion. Health Perspect. 1985, 10: 199-216.
    139. Simpson, VR., Stuart, NC., Munro, R., et al. Poisoning of dairy heifers by mercurous chloride. Vet. Res. 1997, 140: 549-552.
    140. Sindayigaya E., Cauwenbergh RV., Robberecht H., et al. Copper, zinc, manganese, iron, lead, cadmium, mercury and arsenic in fish from Lake Tanganyika, Burundi. Sci Total Environ, 1994; 144(1-3): 103-115.
    141. Soderstrom S. and Ebendal T. In vitro toxicity of methyl mercury: effects on nerve growth factor (NGF)-responsive neurons and on NGF synthesis in fibroblasts. Toxicol. Letter, 1995, 75: 133-144.
    142. Soderstrom S., Fredriksson A., Dencker L., et al. The effect of mercury vapour on cholinergic neurons in the fetal brain: studies on the expression of nerve growth factor and its low-and high-affinity receptors. Brain Res Dev Brain Res, 1995, 85(1): 96-108.
    143. Storelli M., Giacominelli-Stuffier R. and Marcotrigiano G. Mercury accumulation and speciation in muscle tissue of different species of sharks from Mediterranean Sea, Italy. Bull. Environ. Contain. Toxicol. 2002, 68: 201-210.
    144. Suhy DA., Simon KD., Linzer DI., et al. Metallothionein os part of a zinc-scavenging mechanism for cell survival under conditions of extreme zinc deprivation. J Biol Chem. 1999, 274: 9183-9192.
    145. Sunderman FWJ., Marzouk A., Hopfer SM., et al. Increased lipid peroxidation in tissues of nickel chloride-treated rats. Ann Clin Lab Sci, 1985, 15: 229-236.
    146. Tamaru T. Cadmium-induced anemia in relation to cadmium and iron in organs and vitamin D deficiency. Jpn. J. Hyg 1980, 35: 573-583.
    147. Terelak H., Stuczynski T., Piotrowska M. Heavy metals in agricultural soils in Poland. Polish J Soil Sci, 1997, 30(2): 35-42.
    148. Thaxton P., Parkhurst CR., Cogburn LA., et al. Adrenal function in chickens experiencing mercury toxicity. Poultry Sci. 1975, 54: 578-584.
    149. Tomasevic-Canovic M., Dumic M., Vulicevic O., et al. Adsorption effects of mineral adsorber of clinoptilolite basis. Part Ⅱ. Adsorption behavior in the presence of amino acids and vitmines. Acta Vet., 1996, 46: 227-234.
    150. Uchida Y. and Ihara Y. The N-terminal Portion of Growth Inhibitory Factor Is Sufficient for Biological Activity. J Biol Chem. 1995, 270: 3365-3369.
    151. Undabeytia, T. Adsorption-desorption of chlordimeform on montmorillonite: Effect of clay aggregation and competitive adsorption with cadmium. Environ. Sci. Tech. 1993, 33: 864-869.
    152. Warfvinge K., Hua J., Berlin M. Mercury distribution in the rat brain after mercury vapor exposure. Toxicology & Applied Pharmacology. 1992, 117(1): 46-52.
    153. Weening JJ., Hoedemaeker PJ. and Bakker WW. Immuno-regulation and anti-nuclear antibodies in mercury-induced glomerulopathy in the rat. Clin. Exp. Immunol., 1981, 45: 64-71.
    154. West JL. and Halas NJ. Applications of nanotechnology to biotechnology commentary. Curr. Opin. Biotechnol., 2000, 11(2): 215-217.
    155. Wilson AK., Bhattacharyya MH. Effects of cadmium on bone: an in vivo model for early response. Toxicol. Appl. Pharmacol., 1996, 145: 68-73.
    156. Wolfe ME., Schwarzbach S. and Sulaiman RA. Effects of mercury on wildlife: A comprehensivee review. Environmental Toxicology and Chemistry, 1998, 17(2): 146-160.
    157. Yoneda S. and Suzuki KT. Detoxification of mercury by selenium by binding of equimolar Hg-Se complex to a specific plasma protein. Toxico. and Appl. Pharm., 1997, 143: 274-280.
    158. Yoshida M., Satoh M., Yasutake A. et al. Distribution and retention of mercury in metallothionein-null mice after exposure to mercury vapor. Toxicology, 1999, 139: 129-136.
    159. Young-Ok K., Myoung-Yun P., Joung-Hoon K. Influence of melatonin on immunotoxicity of lead. International Journal of Immunopharmacology. 2000, 22: 821-832.
    160. Zalups RK. and Cherian MG. Renal metallothionein metabolism after a reduction of renal mass. Ⅱ. Effect of zinc pretreatment on the renal toxicity and intrarenal accumulation of inorganic mercury. Toxicology, 1992, 71: 103-117.
    161. Zalups RK. and Barfuss DW. Intrarenal distribution of inorganic mercury and albumin after coadministration. Toxicol. Appl. Pharmacol., 1993, 40: 77-103.
    162. Zalups RK. Reductions in Renal Mass and the Nephropathy Induced by Mercury. Toxicology and Applied Pharmacology. 1997, 143: 366-379.
    163. Zalups, RK. Progressive losses of renal mass and the renal and hepatic disposition of administered inorganic mercury. Toxicology and Applied Pharmacology. 1995, 130: 121-131.
    164. Zalups, RK. Molecular interactions with mercury in the kidney. Pharmacological Review, 2000, 52(1): 113-143.
    165. Zhao JJ, Chen CY, Zhang PQ, Chai ZF, Qu LY, Li M. Preliminary study of selenium and mercury distribution in some porcine tissues and their subcellular fractions by NAA and HG-AFS. Journal of Radioanalytical and Nuclear Chemistry, 2004, 259 (3): 459-463.
    166. Zangger K, G oz, J D Otvos et al. Three-dimensional solution structure of mouse [Cd_7]-metallothionein-1 by homonuclear NMR spectroscopy. Protein Sci. 1999, 8: 2630-2638.
    167.包国章,董德明,李向林等.环境雌激素生态影响的研究进展.生态学杂志,2001,20(5):44-50.
    168.蔡原,张颖花,万伯健等.氟化钠、氯化汞和亚砷酸钠对小鼠睾丸早期精细胞微核率的影响.中国公共卫生学报,1995,14(2):120-122.
    169.常学秀,段昌群.根分泌作用与植物对金属毒害的抗性.应用生态学报,2000,11(2):315-320.
    170.常学秀,施晓东.土壤重金属污染与食品安全.云南环境科学,2001,20(增刊):21-24,77.
    171.常学秀,文传浩,王焕校.重金属污染与人体健康.云南环境科学,2000,19(1):59-61.
    172.陈清,卢国理.微量元素与健康.北京:北京大学出版社,1989,pp211-221.
    173.陈敏,谢吉民,曹友清等.氯化汞对小鼠肾脏的急性毒性机制探讨.中国工业医学杂志,2001,14(5):266-268.
    174.陈敏,高晓钦,荆俊杰等.氯化汞染毒小鼠各脏器中汞和微量元素的测定及分析.光谱实验室,2000,17(5):525-527.
    175.陈武,季寿元.矿物学导论.北京:地质出版社,1985.
    176.陈建华译.金属污染.食品理化检验,1998,(4):67-88.
    177.陈小玉.汞蒸气对雄性小鼠的生殖毒性.卫生毒理学杂志,1992,6(2):142-144.
    178.陈志良,仇荣亮,张景书等.重金属污染土壤的修复技术.中国环保,2002,(3):35-37.
    179.丁振华,王文华,瞿丽雅等.贵州万山汞矿区汞的环境污染及对生态系统的影响.环境科学,2004,25(2):111-114.
    180.董杰影、金龙金、张军明等.汞、铅对小鼠睾丸和生殖细胞的亚慢性毒性.癌变·畸变·突变,2004,16(4):220-222.
    181.方洛云.不同锌源对断奶仔猪生长、免疫和消化的影响及其作用机理的探讨.硕士学位论文,浙江大学,2002.
    182.费云芸,刘代成.低剂量汞元素的毒性作用机理.山东师范大学学报(自然科学版),2003,18(1):88-90.
    183.季全兰,沈维干,周华珠等.砷汞对小鼠生殖毒性的研究.微量元素与健康研究,2000,17(2):1-3.
    184.高婷,李润植.转基因培育清除汞污染的植物.世界农业,2001,11:37-38.
    185.龚震宇译.1999年美国幼儿和育龄妇女血液和头发中汞的水平.疾病监测,2002,17(5):195-196.
    186.关海红.鲤鱼肾组织结构及重金属对肾组织的损伤.水产学杂志,2002,15(2):61-64.
    187.关荣发.纳米三价铬对生长肥育猪胴体组成和免疫机能的影响及其作用机理探讨.硕士学位论文,浙江大学,2003.
    188.韩新燕.纳米硅酸盐添加剂(CDAA)吸附饲料镉的研究.博士学位论文,浙江大学,2004.
    189.何宏平,郭九皋,谢先德等.蒙脱石等粘士矿物对重金属离子吸附选择性的实验研究.矿物学报,1999,19(2):231-235.
    190.何宏平,郭九皋,朱建喜等.蒙脱石、高岭石、伊利石对重金属离子吸附容量的实验研究.岩石矿物学杂志,2001,20(4):573-577.
    191.胡卫萱,王文华,瞿丽雅等.环境中汞神经毒性的自由基机制研究进展.中华劳动卫生职业病杂志,2003,21(6):470-472.
    192.胡晓荣,丁利华,李晖.汞和硒的生理作用及其环境影响.广西化工,2000年中南西南分析化学学术会议论文专集,2000,80-83.
    193.花永丰.汞的地球化学.北京:中国有色金属工业总公司地质勘查总局,1999.
    194.黄莉,王建华.影响胚胎早期发育环境因素的研究进展.动物医学进展,2004,25(1):7-10.
    195.惠秀娟,Kirsch-Volders M..汞化合物对人体外淋巴细胞的DNA损伤的比较研究.中国公共卫生学报,1998,17(4):240-241.
    196.金海丽.PBAN吸附猪日粮中重金属铅(Pb)效果的研究.硕士学位论文,浙江大学,2003.
    197.金明华,石龙,孙志伟等.甲基汞对小鼠睾丸生殖细胞周期的影响.吉林大学学报(医学版),2002,28(5):465-466.
    198.靳立军,徐小清,郭攀.硒对汞在稀有鲫体内积累动力学影响.重庆环境科学,1997,19(5):35-38.
    199.匡少平,张书圣.环境激素污染研究进展及污染防治.环境污染治理技术与设备,2002,3(6):8-12.
    200.雷国元.重金属离子吸收剂的研究进展.国外金属矿选矿,2000,37(10):2-6.
    201.李爱芬,张惟杰,罗大珍.硒酵母生理功能研究(Ⅱ)-对汞中毒小鼠体重及全血GSH-Px活性的影响.烟台大学学报(自然科学与工程版),1998,11(1):48-50.
    202.李波,青长乐,周正宾等.肥料中氮、磷和有机质对土壤重金属行为的影响及在土壤污染中的应用.农业环境保护,2000,19(6):375-377.
    203.李广君,徐丹令,刘黎明等.氯化汞中毒对大鼠肾小管酶活性的影响.解剖学杂志,2001,24(5):450-454.
    204.李荔,梁桂霞,司克媛.氯化汞染毒小鼠肝脏的病理形态与超微结构变化研究.西北师范大学学报(自然科学版),2000,36(3):58-62.
    205.李书广,熊远著,王津等.中国养猪大全.北京:中国农业出版社,2001,126-127.
    206.李树强,赵金垣.汞在肾脏内代谢的研究进展.中国职业医学,2002,29(2):47-48.
    207.李涛,范士茂,刘璐.汞对氢过氧化物灭活酶系活性的影响.工业卫生与职业病,1994,20(4):211-213.
    208.李艳华,林秀武.甲基汞诱导母鼠骨髓细胞和胎肝血嗜多染红细胞微核实验.环境与健康杂志,1994,11(3):135.
    209.李艳华,牟颖,金明华.甲基汞中毒小鼠体内巯基含量的变化.环境与健康杂志,1994a,11:181.
    210.李艳华,牟颖,金明华等.甲基汞对小鼠生物膜系统的毒性效应.中华预防医学杂志,1994b,28(9):290.
    211.李艳华,周尚福,牟颖等.大蒜对甲基汞中毒小鼠体内巯基含量的影响.环境与健康杂志,1993,10(1):29.
    212.连祥霖.钼对汞毒性的保性作用.工业卫生与职业病,1995,21(3):149-150.
    213.连祥霖,陈新春.硒对氯化汞免疫毒性的影响及其机理.卫生毒理学杂志,1998,12(2):89-91.
    214.连祥霖,林嗣豪.硒,锌,钼对汞中毒拮抗作用的比较.中国工业医学杂志1998,11(1):19-21.
    215.梁称福,陈法正.我国无公害蔬菜生产现状与发展对策.中国农业网,2000-5-1.
    216.林秀武,李艳华,牟颖.甲基汞对细胞膜损伤作用.中华预防医学杂志,1995,29(1):9-12.
    217.林秀武,李艳华,牟颖.甲基汞对细胞膜系统损伤作用及其防治的研究.医学研究通讯,1996,25:12-13.
    218.林芃,任宏伟,茹炳根.鱼体内金属硫蛋白与水环境关系的研究.北京大学学报(自然科学版),2001,37(6):779-784.
    219.林祥霖,许梓荣.谷氨酰胺对热休克蛋白表达的影响.中国畜牧杂志,2004,40(10):45-48.
    220.林祥霖,许梓荣,姜俊芳等.饲喂汞污染日粮的生长肥育猪组织器官中汞的残留和分布.浙江大学学报(农业与生命科学版),2005.
    221.林映才,蒋忠勇.生长肥育猪有效磷需要量的研究.养猪,2002,(4):1-7.
    222.刘秉涛,邵坚,刘欣.改性膨润土处理含汞废水研究.华北水利水电学院学报,1998,19(1):65-67.
    223.刘斌剑,孙月庭,万军.谷胱甘肽硫转移酶对动物肝损伤模型诊断价值的探讨.中华肝脏病研究,2001,9(7):91.
    224.刘波静,钱利纯.连续流动氢化物发生-原子吸收光谱法测定螺旋藻中痕量硒.光谱学与光谱分析,1999,19(4):610-612.
    225.刘珺,秦善.层状硅酸盐矿物对重金属污染的防治.岩石矿物学杂志,2001,20(4):461-466.
    226.刘明.汞元素中毒作用的研究进展.国外医学:医学地理分册,2001,22(3):123-125.
    227.刘起展,董国宾,赵跃等,刺梨利康饮对汞中毒大鼠汞铜锌含量的影响.广东微量元素科学,1999,6(8):14-17.
    228.刘燕强.超量添加矿物质对肥育猪生产性能及组织中某些微量元素含量的影响.畜牧与兽医,1996,28(2):60-62.
    229.陆现彩,尹琳,赵连泽,熊飞.常见层状硅酸矿物的表面特征.硅酸盐学报,2003,31(1):60-65.
    230.阮晓等.重金属在罗非鱼淡水白鲳和鲤鱼体内的蓄积.农业环境保护,2001,20(5):357-359.
    231.罗国钧.鲫鱼体内重金属的分布和积累规律研究.渝州大学学报(自然科学版),2000,17(1):56-61.
    232.马成林,陈琦昌,高晓伟.屠宰猪体内汞含量与食物链相关研究.肉品卫生,1996,(4):6-8.
    233.马成林,邹尔新,高晓伟等.工业、农业和山区屠宰猪体内重金属含量的分析研究.肉品卫生,1994,(3):9-13.
    234.马欣.汞的毒理学研究.国外医学:医学地理分册,1993,14(3):105-107.
    235.牟颖,刘文祥,金明华.甲基汞对生物膜流动性及通透性的影响.环境与健康杂志,1998,13:97-99.
    236.聂立红,王声湧,胡毅玲.谷胱甘肽硫-转移酶的研究进展.中国病理生理杂志,2000,16(11):1240-1243.
    237.聂燕,李缙扬,万春燕.用HG-AFS法测定饲料中的微量汞.中国饲料,1999,(2):19-20.
    238.齐莉莉.AAN吸附肉鸭日粮中黄曲霉毒素(B1)效果的研究.硕士学位论文,浙江大学,2002.
    239.邱东茹,吴振斌.环境雌激素对动物和人体的影响及其作用机制.水生生物学报,1997,21(4):366-375.
    240.冉红彦,曹俊臣,张蕙芬.层间阳离子对水黑云母层问水赋存状态的影响.矿物学报,1999,19(2):215-221.
    241.任莹,陈炳卿,王蕊.甲基汞与免疫(综述).中国食品卫生杂志,1994,6(3):48-50.
    242.任莹,壬蕊,李蓉等.甲基维生素B_(12)拮抗甲基汞毒性的毒理学研究.环境与健康杂志,1994,11(6):227-228.
    243.沈维干,陈彦,李朝军等.汞对雌性小鼠生殖功能及脏器的影响.卫生研究,2000,29(2):75-77.
    244.沈文止.汞的生殖毒性和发育毒性.动物医学进展,2001,21(4):128-130.
    245.史德浩,卞建春,任建新等.亚硒酸钠对镉中毒预防和治疗的研究.江苏农学院学报,1995,16(1):57-61.
    246.石龙,金明华,孙志伟等.甲基汞对小鼠卵巢线粒体DNA聚合酶的影响.中国公共卫生学报,1998,17(4):244-245.
    247.石龙,金明华,孙志伟等.甲基汞、电离辐射对小鼠胸腺DNA合成及适应性反应的影响.中国公共卫生,2000,16(5):393-394.
    248.孙汉文.原子吸收光谱分析技术.北京:中国科技出版社,1992.
    249.孙贵范,李松,丁桂英等.外源性谷胱甘肽对染汞动物脏器汞含量的影响.中国医科大学学报,1995,24(6):566-568.
    250.孙经建.热休克蛋白70的分布、调节及功能.国外医学:生理、病理科学与临床分册,1997,17(1):7-10.
    251.孙志伟,牟颖,林秀武.甲基汞对雄性生殖细胞DNA合成及修复合成的作用.中国公共卫生学报,1995a,14(5):284-287.
    252.孙志伟,王献理,林秀武.慢性甲基汞染毒所致小鼠生精过程改变及定量组织学分析.癌变·畸变·突变,1995b,7(4):236-237.
    253.唐玄乐,吏力田,吕嵩.硒和汞在汞污染区放养家鸭脏器中的分布.中国卫生工程学.2002,1(3):144-145.
    254.覃国杰,陈月华,周心丽等.氯化汞对大鼠肾、肝、睾丸的急性损伤.中华劳动卫生职业病杂志,1992,10(4):237-239.
    255.仝宗喜,康世良,武瑞.硒及硒蛋白生物学作用的研究进展.动物医学进展,2002,23(6):17-19.
    256.王爱国.硒与镉、锰、汞、砷、钼等微量元素关系的研究进展.中国地方病学杂志,1993,12(3):179-181.
    257.王爱国,陈学敏,杨克敌.甲基汞对大鼠脑组织脂质过氧化作用的影响.现代预防医学,1999,26:129-130.
    258.王鸿禧,樊素兰等.矿物饲料添加剂和饲料矿物资源.北京:科学出版社,1993.
    259.王夔.生命科学中的微量元素(第二版).北京:中国计量出版社,1996,pp850-884.
    260.王茂起,王竹天,包大跃等.中国2000年食品污染状况监测与分析.中国食品卫生杂志,2002,14(2):3-8.
    261.王锐,任锐,刘世凯.甲基汞的生殖毒性及其研究进展.国外医学:卫生学分册,2001,28(4):215-218.
    262.王世俊.金属中毒(第2版).北京:人民卫生出版社,1998,213.
    263.王叔淳.食品卫生检验技术手册.北京:化学工业出版社,1994,pp185-189.
    264.王昕陟译.降低猪肉中重金属含量的研究.国外畜牧科技,1999,26(4):41-43.
    265.王灿,张朝红.氯化汞对小鼠精子毒性作用的研究.中华劳动卫生职业病杂志,1994,12(5):290-291.
    266.王笑虹,苗迎秋,宋光.热休克蛋白70生物学功能研究的新进展.大连大学学报,2003,24(2):103-105.
    267.王淑彩.AAN对肥育猪日粮中黄曲霉毒素吸附及其解毒效果的研究.硕士学位论文,浙江大学,2003.
    268.王艳华.硫酸铜和纳米铜对断奶仔猪生长、腹泻和消化的影响及作用机理探讨.硕士学位论文,浙江大学,2002.
    269.王毅,王艺,王恩德.改性蒙脱石吸附Pb~(2+)、Hg~(2+)的实验研究.岩石矿物学杂志,2000,20(4):565-567.
    270.吴胜虎.汞的神经毒性及机制研究进展.国外医学:儿科学分册,2000,27(4):169-172.
    271.吴大清,刁桂仪,彭金莲.矿物对金属离子的竞争吸附实验.地球化学,1997,26(6):25-32.
    272.吴平霄,廖宗文.粘土矿物层间域的研究进展.自然杂志,2000,22(1):25-32.
    273.武瑞,康世良.动物汞中毒及硒保护效应的研究进展.动物毒物学.2001,16(2):41-44.
    274.武瑞,康世良,刘焕奇等.实验性雏鸡汞中毒诊断指标的筛选.动物医学进展,2001a,22(4):67-69.
    275.武瑞,康世良,徐世文等.硒对汞致抗氧化系统损伤的拮抗作用.中国兽医杂志,2001b,37(11):6-8.
    276.武瑞,康世良,徐世文等.硒对汞致雏鸡肝功能损伤的拮抗作用.中国兽医科技,2001c,31(7):8-10.
    277.武瑞,康世良,王伟等.硒对汞致红细胞膜上ATPase活性变化的拮抗作用.黑龙江畜牧兽医,2000,(11):3-5.
    278.武瑞,仝宗喜,杨爽等.硒对雏鸡血液及组织汞含量的影响.黑龙江畜牧兽医.2001d,2:3-5.
    279.夏畅斌.麦饭石对Pb~(2+)离子吸附动力学研究.环境化学,2000,19(5):436-440.
    280.夏海萍,柯家骏.膨润土对重金属离子的吸附动力学.中国有色金属学报,1995,5(4):51-53.
    281.夏奕明,朱莲珍.血和组织中谷胱甘肽过氧化物酶活力的测定方法Ⅰ,DTNB直接法.卫生研究,1987,16(4):29-32.
    282.夏世钧,吴中亮.分子毒理学基础.武汉:湖北科学技术出版社,2001.
    283.谢惠安,梁山,刘大海.尼罗罗非鱼对汞富集的研究.安徽大学学报(自然科学版),1994,(1):67-71.
    284.谢黎虹.纳米材料CAN对生长肥育猪日粮中六六六的吸附研究.硕士学位论文,浙江大学,2003.
    285.线引林.生物材料中有毒物质分析方法手册.北京:人民卫生出版社,1994,pp13-21,132-153.
    286.许传杰,李志超,毕晓颖.氯化甲基汞对大鼠脑神经细胞凋亡及P~(53)基因表达的影响.中国公共卫生,1999,15(4):285-286.
    287.徐厚恩.卫生毒理学基础.北京:北京医科大学出版社,1991.
    288.徐厚恩.中国污染物有毒危险性评价.北京:北京医科大学、中国协和医科大学联合出版社,1997,pp29-46.
    289.徐洪鑫,刘焕奇.雏鸡汞中毒血液及组织的残留分析.中国动物检疫,2002,19(6):26-27.
    290.徐洪鑫,康世良,武瑞.氯化汞诱发雏鸡肝脏脂质过氧化作用的研究.饲料博览,2002,(5):30-31.
    291.徐辉碧,黄开勋.硒的化学、生物化学及其在生命科学中的应用.武汉:华中理工大学出版社,1994.
    292.徐乐焱,王毅,邱炳源等.锌金属硫蛋白拮抗甲基汞对红细胞膜损伤的作用.卫生研究,2000,29(2):80-82.
    293.胥保华.纳米硒对Avian肉鸡的生物学效应及其分子机理的研究.博士学位论文,浙江大学,2003.
    294.薛彬.免疫毒理学实验技术.北京:北京医科大学中国协和医科大学联合出版社,1995.
    295.颜世铭.微量元素导论.上海:同济大学出版社,1992.
    296.杨频,高飞.生物无机化学原理.北京:科学出版社,2002,p111-p121.
    297.杨雅秀,张乃娴等.中国粘土矿物.北京:地质出版社,1994.
    298.杨学斌,肖萍,仲伟鉴等.镉对去卵巢火鼠骨密度和肾功能的影响.卫生毒理学杂志,2002,16(3):157-159.
    299.杨学斌,金泰.骨质疏松症的环境危险因素.劳动医学,2001,18:58-60.
    300.袁慧.饲料毒物与卫生学.长沙:湖南科学技术出版社,1995.
    301.张波,孟紫强.汞和镍对人血淋巴细胞转化及DNA合成的效应.广东微量元素科学,1998,5(4):30-33.
    302.张立德,牟其美.纳米材料学.沈阳:辽宁科学技术出版社,1994.
    303.张海英.汞、硒、砷的胚胎毒性及致畸性研究进展.国外医学:卫生学分册,2003,30(6):334-337.
    304.张志耘,胡志洁.微量元素硒多种拮抗作用研究进展.天津药学,2001,13(4):7-9.
    305.赵东旭,韦新桂,谷振宇等.脱磷脂牛血红蛋白的制备.生物工程学报,2002,18(5):609-613.
    306.张培勤,周英梅.重金属汞在树麻雀体内不同组织和器官中分布规律的研究.山西大学学报(自然科学版),1998,21(3):272-275.
    307.张彦明,齐雪茹,赵全刚等.陕西省部分市县鱼肉蛋奶中汞含量的检测分析.西北农业大学学报,1997,25(2):61-65.
    308.张永志.运用AFS—2202双道原子荧光光度计测定甲鱼的汞.食品研究与开发.2003,24(3):104-106.
    309.张立德.纳米材料.北京:化学工业出版社,2000.
    310.张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2002.
    311.赵素牌译.清除猪体内有害重金属的方法.中国畜牧兽医,2002,29(2):8.
    312.赵九江,章佩群,陈春英等.汞与硒在不同汞暴露水平地区猪肝脏和肾脏蛋白质中的分布.中国生物化学与分子生物学报.2003,19(3):377-382.
    313.周华.汞对女工生殖机能及其子代健康的影响.职业卫生与应急救援,2002,20(2):98.
    314.周杰吴,程时.金属硫蛋白与医学.生理科学进展,1995,26(1):29-34.
    315.郑全美,吕秀强,李松等.氯化汞对脏器GSH的影响及外源性GSH的作用.中国医科大学学报,1996,25(3):257-259.
    316.郑军恒,李海洋,茹刚等.金属硫蛋白清除羟自由基功能的研究.北京大学学报(自然科学版),1999,35(4):573-576.
    317.朱砂,郑波,杨茵等.氯化汞的肝细胞毒性与脂质过氧化.同济医科大学学报,1993,22(6):2-4.
    318.朱士雅,胡蓉芳,顾素斐等.氯化汞对大鼠生殖系统及受孕率的影响.职业医学,1994,21(2):12-14.
    319.朱学涛,杨海燕.尿液乳酸脱氢酶测定与泌尿系统疾病关系的研究.陕西医学检验,2000,15(1):48-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700