分离式霍普金森压剪杆实验技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在各类涉及爆炸、冲击加载的工程技术和科学研究领域中,材料的动态本构关系研究始终是重要的研究课题。传统的一维波加载实验只能确定部分本构参数,动态压-剪复合加载实验则可以提供材料的动态压缩和剪切特性,为本构关系提供更加完整的实验参数。除此之外,材料的屈服、损伤演化、失效、相变等均与剪切密切相关。材料动态压-剪加载的研究不仅丰富了材料的动态力学现象,拓展了研究范围,而且对于认识材料动态响应的演化规律和机理有重要的意义。在武器系统应用中,炸药在压-剪复合加载响应研究,更是关系到武器系统安全性问题的一个关键环节。因此研究和发展压-剪复合加载实验技术不仅具有重要的学术价值而且也是实际应用的迫切需要。本文旨在研究和发展高应变率下的压-剪复合加载实验技术,论证和发展能够有效用于研究材料高应变率压-剪动态力学行为的SHPSB(分离式霍普金森压剪杆,Split Hopkinson Pressure Shear Bar)实验技术,并拓展其应用领域,最终为研究材料特别是含能材料在压-剪复合加载下的动态力学响应提供实验支撑。本文是在国家自然科学基金项目(10672177,10872215)的资助下开展的实验技术和应用研究。
     本文的主要内容分为以下三部分:
     第一部分内容是对分离式霍普金森压剪杆实验技术的基本加载原理及装置中传播的应力波的类型和规律进行研究。讨论了弹性弯曲波与弹性纵波复合传播的问题,建立了弯曲波和纵波复合传播的动力学方程。分析结果表明,一般情况下杆中弯曲波和纵波同时传播时,两者在一定程度上是耦合的。然而在弹性小变形情况下,两者可以进行解耦处理,利用数值模拟验证了分析结果。对SHPSB实验过程进行了数值模拟。结果表明:入射杆中反射波为平面纵波,不存在弯曲波扰动;试样在横截面内平均轴向压缩应力与平均剪切应力沿试样轴向是一致的。
     第二部分内容是对分离式霍普金森压剪杆实验测试技术的研究,并对实验误差进行了分析,进一步对试样构型进行了优化探索。
     压缩应力、压缩应变测试技术是基于电阻应变片测试方法,利用实验杆上所贴的应变片组,通过半桥接法,消除弯曲波的影响,间接地测量得到了试样的压缩应力、压缩应变。从数值模拟和验证实验两方面证明了压缩应力测试技术、压缩应变测试技术的有效性。提出了基于压电效应的剪切应力测试技术。剪切应力计为Y切旋转17.705°(yzw/17.705°)石英晶体片,利用数值模拟和实验研究了剪切应力在透射杆中的衰减规律,结果表明本文采用的剪切应力测试技术有效。通过理论分析表明,建立起简单可用的剪切应变与实验所测得的剪切应力之间的关系是非常困难的,因此本研究采用了光通量法对剪切应变进行间接测量,由基于数字图像处理的验证实验的结果证明剪切应变测试技术是合理的。
     分析了实验测试的主要误差源。结果表明:压缩应力测试的主要误差是在加载初始阶段,试样与实验杆没有达到应力平衡造成的。压缩应变测试的主要误差是透射杆-试样界面与入射杆-试样界面的压缩速度时间不同步,而这一误差的引入具有明显的主观性。剪切应力测试的主要误差有:由于剪切应力计距试样有一定距离,由此引起的系统误差;动态压电系数的标定结果引入的随机误差;电荷放大器的系统噪声误差。剪切应变测试的主要误差是:电压-距离转换系数标定结果引入的随机误差;光电接收器的系统噪声误差。对于本文给出的算例,分别计算出剪切应力的极限误差为0.24 MPa,剪切应变测量极限误差为0.00038。
     提出了两种优化的试样构型(试样构型I、试样构型II)以简化试样的应力状态。分别通过数值模拟以及SHPB实验对优化的试样构型的合理性进行了验证。结果表明:试样构型I的计算结果与真实应力-应变曲线吻合较差,而在应变不超过5%情况下,试样构型II与数值模拟以及真实应力-应变曲线吻合较好。第三部分是对分离式霍普金森压剪杆实验技术的应用研究。对某含铝PBX炸药试样进行了SHPSB实验和动态摩擦研究。
     建立了一个率相关的损伤本构模型来描述PBX炸药试样不同动态加载下的力学响应。采用试样构型II对PBX炸药进行了分离式霍普金森压剪杆实验。实验结果表明PBX试样在破坏前达到了压力和剪力平衡,符合SHPSB的基本假定;随着加载应变率的增大,试样压缩破坏强度增大而剪切破坏强度减小;随着应变率的增加,试样由“剪切破坏-压缩破坏”的顺序向“压缩破坏-剪切破坏”的顺序转变。分析表明这些现象均与实验的加载路径有关。基于损伤力学,建立了一个包含应变率效应的损伤本构模型,模型参数由SHPSB实验、被动围压实验、动态巴西实验结果标定获得。进一步利用LS-DYNA提供的二次开发接口将本文建立的损伤本构模型添加到材料模型库中。对SHPB实验、动态巴西实验、SHPSB实验进行了模拟,结果表明本文建立的本构模型较为准确地预测了所研究PBX炸药试样不同加载下试样力学性能的劣化以及试样的破坏,具有较强的普适性。
     利用SHPSB实验技术对一种PBX炸药试样和钢摩擦副进行了动态摩擦实验。实验结果表明:本文研究的两种摩擦副在稳定摩擦阶段的摩擦系数并非恒定值,摩擦系数在0.09-0.19范围内变化,表面粗糙度越大的摩擦副的摩擦系数越大。由实验结果表明,分离式霍普金森压剪杆可以方便地应用于动态摩擦研究。基于SHPSB实验技术,实现了对试样的压剪破坏-动态摩擦过程的实验研究。实验结果表明:在试样压剪破坏过程中,试样出现了微观裂纹萌生-发展、宏观裂纹形成、宏观裂纹发展—宏观裂纹界面滑动三个过程。在试样动态摩擦过程可分为稳定摩擦阶段与摩擦系数增大阶段。在稳定摩擦阶段,相互滑动摩擦的界面基本是原有的破坏界面,摩擦系数比较稳定;在摩擦系数增大阶段,相互接触的摩擦面不再是裂纹开裂界面,摩擦界面不再平滑,粗糙度增大,随之摩擦系数也增大。而裂纹摩擦系数增大必然导致裂纹的温升增大,对于炸药的安全性将构成严重的威胁。
In the engineering and scientific fields relating with blast and dynamic loading, the dynamic constitutive research is one of major issues. However, traditional one dimension wave experiments is not compatible for furnishing all the constitutive parameters. The combined pressure and shear waves can disclose both the dynamic compression and shear properties of materials directly, which offers more integrated parameters. Besides, materials’yield, damage evolution, failure, phase transition etc, have great correlation to shear process. Study on the dynamic compression and shear load on materials not only enriches materials’dynamic phenomenon and extends the research field, but also makes a great sense to understand the dynamic response evolution and its mechanism of materials. In weapon system application, the study on the compression and shear response of explosives is the key part correlated to the security of the weapon system. So, to investigate and develop the experiment technique of compression and shear load is not only important for academic research, but also the imperious requirement of practical application.
     This dissertation focuses on developing a SHPSB (Split Hopkinson Pressure Shear Bar) technique, validating the experimental results, extending the application of the SHPSB and finally makes the technique well serving researches of materials constitutive, especially energetic materials. This work was supported by the Natural Science Foundation of China (NSFC) through Grant No. 10672177 and 10872215.
     The main contents are divided into three parts:
     The first partial work includes basic theory and the propagation of stress waves in the SHPSB bars. The combined propagation of the bending wave and longitudinal wave are discussed. The analysis indicates that two kinds of waves are coupled in general; but in the case of small elastic deformation, they can be uncoupled approximately, which is validated by the numerical results. Detailed simulation of the SHPSB experimental process has been taken. The numerical results indicate that the reflected wave in the incident bar is the longitudinal wave without bending motion; the compression and shear forces are balanced in the specimen.
     The second partial work is measuring techniques of the SHPSB, the corresponding error analysis and the optimization of specimen outline. The measurements of the compression stress and strain are based on the strain gauges on the bars. The shear stress is measured by two piezoelectric transducers of quartz (Y-cut with rotation angle-17.7°, yzw/17.705°) embedded at the close-to-specimen end of transmission bars; the shear strain is measured with a novel optical technique which is based on the luminous flux method. The numerical and experimental results validate the measuring techniques of the SHPSB.
     It indicates that the error of the compression stress measuring is mainly introduced at early stage of testing, due to the force un-equilibrium in the sample. The error of the compression strain is mainly introduced during data processing. The measuring error of shear stress is aroused by the difference of the shear stress in the specimen and that in the transmission bar, the scatter of the calibration and the system noise of the charge amplifier. The error of shear strain measuring is resulted by the scatter of the calibration and the system noise of the photodiode light detector. The errors of the shear stress and strain measurement are respectively 0.24 MPa and 0.00038 in the examples provided in this paper.
     Two kinds of specimen outline (plane stress and plane strain specimen) are proposed, and validated by the numerical simulations and experimental results. The results indicate that the plane stress specimen is better than the plane strain model. When the strain is less than 5%, the simulation and the validated experiment yield good agreement with the analytic results of the plane stress specimen.
     The third partial work is application of the split Hopkinson pressure and shear bar technique.
     We performed SHPSB experimental method on a PBX. The plane stress specimens are used. The results indicate that the dynamic compression and shear forces equilibrium are reached in specimens; the compression failure stress enhances, but the shear failure stress decreases with the strain rate increasing; the compression and shear failure time run earlier with the strain rate increasing; the shift of compression failure time is larger than that of shear failure time. Based on the maximum shear failure criterion, we analyze the experimental results. The analysis results show that the above mentioned experimental phenomena are related with experimental loading path. A damage constitutive model including rate-effect is built up. The parameters of the model are calibrated by confinement-SHPB tests, flattened Brazilian disc tests and SHPSB experiments. The proposed damage model is implemented in LS-DYNA as a user defined subroutine. SHPB tests, flattened Brazilian disc tests and SHPSB tests are simulated. The numerical results yield good agreement with experimental results. It indicates that the proposed damage model can rationally predict the PBX mechanical behaviors at different dynamic loadings.
     The SHPSB technique is extended to investigate dynamic friction of a steel-PBX friction pair. The results indicate that rough steel-PBX pair takes on a larger friction coefficient (0.09-0.14) than that of the flat one (0.09-0.19). Based on the SHPSB, the response of the PBX at the process of the compression and shear failure-friction loading is investigated. The results indicate that process of the compression and shear failure includes three stages; micro cracks developing, macro cracks appearing and macro cracks developing-macro cracks sliding. In the early process of dynamic friction, the friction coefficient is less than the ratio of the shear stress to the compression stress in the failure process. The friction coefficient increases finally. It may be related with the roughness change in the cracks.
引文
[1] Abou-Sayed A, Clifton R, Hermann L. The oblique-plate impact experiment[J]. Experimental mechanics, 1976, 16(4): 127-132.
    [2] Gupta Y M. Shear measurements in shock-loaded solids[J]. Applied Physics Letters, 1976, 29(11): 694-696.
    [3] Gupta Y M, Keough D D, Walter D F, et al. Experimental facility to produce and measure compression and shear waves in impacted solids[J]. Review of Scientific Instruments, 1980, 51(2): 183-210.
    [4] Johnson J N. Shock propagation produced by planar impact in linearly elastic anisotropic media [J]. J Appl Phys, 1971, 42(13): 5522-5531.
    [5] Chhabildas L C,Swegle J W. Dynamic pressure-shear loading of materials using anisotropic crystals[J]. J Appl Phys, 1980, 51(9): 4799-4807.
    [6] Young C,Dubugnon O. A reflected shear-wave technique for determining dynamic rock strength[J]. Int J Rock Mech Min Sci & Geomech Abstr, 1977, 14(5): 247-259.
    [7] Couque H. A hydrodynamic hat specimen to investigate pressure and strain rate dependence on adiabatic shear band formation[J]. Journal De Physique IV France, 2003, 110: 423-428.
    [8] Couque H. Dynamic compression failure of two metal at 0.5 and 1.5 Gpa[C]// Jones N B, C.A., (ed.). the computational ballistics II Cordoba, Spain: WIT Press, 2005: 239-248.
    [9] Hartmann K H, Kunze H D, Meyer L W. Metallurgical effects on impact loaded materials[C]// Meyers M A, et al., (eds.). EXPLOMET 1980. Plenum,N.Y., 1981: 325-335.
    [10] Meyer L W,Manwaring S. Critical adiabatic shear strength of low alloyed steel under compressive loading[C]. Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena: Marcel Dekker Inc. 1986, 657-674.
    [11] Wei Z G, Yu J L, Li J R, et al. Influence of stress condition on adiabatic shear localization of tungsten heavy alloys[J]. International Journal of Impact Engineering, 2001, 26(1-10): 843-852.
    [12] Rittel D, Lee S, Ravichandran G. A shear-compression specimen for large strain testing[J]. Experimental Mechanics, 2002, 42(1): 58-64.
    [13] Rittel D, Ravichandran G, Lee S. Large strain constitutive behavior of OFHC copper over a wide range of strain rates using the shear compression specimen[J]. Mechanics of Materials, 2002, 34(10): 627-642.
    [14] Rittel D, Levin R, Dorogoy A. On the isotropy of the dynamic mechanical and failure properties of swaged tungsten heavy alloys[J]. Metallurgical and Materials transactions A, 2004, 35(12): 3787-3795.
    [15] Dorogoy A,Rittel D. Numerical validation of the shear compression specimen. Part I: Quasi-static large strain testing[J]. Experimental mechanics, 2005, 45(2): 167-177.
    [16] Dorogoy A,Rittel D. Numerical validation of the shear compression specimen. Part II: Dynamic large strain testing[J]. Experimental mechanics, 2005, 45(2): 178-185.
    [17] Rittel D, Ravichandran G, Venkert A. The mechanical response of pure iron athigh strain rates under dominant shear[J]. Materials Science and Engineering: A, 2006, 432(1-2): 191-201.
    [18] Rittel D, Wang Z, Merzer M. Adiabatic shear failure and dynamic stored energy of cold work[J]. Physical review letters, 2006, 96(7): 75502.
    [19] Rittel D, Bhattacharyya A, Poon B, et al. Thermomechanical characterization of pure polycrystalline tantalum[J]. Materials Science and Engineering: A, 2007, 447(1-2): 65-70.
    [20] Rittel D, Landau P, Venkert A. Dynamic recrystallization as a potential cause for adiabatic shear failure[J]. Physical review letters, 2008, 101(16): 165501.
    [21] Rittel D, Wang Z, Dorogoy A. Geometrical imperfection and adiabatic shear banding[J]. International Journal of Impact Engineering, 2008, 35(11): 1280-1292.
    [22] Daly S, Rittel D, Bhattacharya K, et al. Large deformation of nitinol under shear dominant loading[J]. Experimental mechanics, 2009, 49(2): 225-233.
    [23] Dorogoy A,Rittel D. Determination of the Johnson¨CCook material parameters using the SCS specimen[J]. Experimental mechanics, 2009, 49(6): 881-885.
    [24] Vural M, Molinari A, Bhattacharyya N. Analysis of Slot Orientation in Shear-Compression Specimen (SCS)[J]. Experimental mechanics, 2011, 51(3): 263-273.
    [25] Zhao J, Knauss W G, Ravichandran G. A new shear-compression-specimen for determining quasistatic and dynamic polymer properties[J]. Experimental mechanics, 2009, 49: 427-436.
    [26] Nie X, Chen W W, Sun X, et al. Dynamic failure of borosilicate glass under compression/shear loading experiments[J]. Journal of the American Ceramic Society, 2007, 90(8): 2556-2562.
    [27] Sun X, Liu W, Chen W, et al. Modeling and characterization of dynamic failure of borosilicate glass under compression/shear loading[J]. International Journal of Impact Engineering, 2009, 36(2): 226-234.
    [28] Huang H,Feng R. A study of the dynamic tribological response of closed fracture surface pairs by Kolsky-bar compression-shear experiment[J]. International Journal of Solids and Structures, 2004, 41(11-12): 2821-2835.
    [29] Huang H,Feng R. Dynamic Friction of SiC Surfaces: A Torsional Kolsky Bar Tribometer Study[J]. Tribology Letters, 2007, 27(3): 329-338.
    [30] Espinosa H D, Patanella A, Fischer M. A novel dynamic friction experiment using a modified Kolsky bar apparatus.[J]. Experimental Mechanics, 2000, 40(2): 138-153.
    [31] Espinosa H, Patanella A, Xu Y. Dynamic compression-shear response of brittle materials with specimen recovery[J]. Exper Mech, 2000, 40(3): 321-330.
    [32] Hou B, Ono A, Abdennadher S, et al. Impact behavior of honeycombs under combined shear-compression. Part I: Experiments[J]. International journal of solids and structures, 2011, 48: 687-697.
    [33] Hou B, Pattofatto S, Li Y L, et al. Impact behavior of honeycombs under combined shear-compression. Part II: Analysis[J]. International Journal of Solids and Structures, 2011, 48: 698-705.
    [34]崔云霄,卢芳云,林玉亮,等.一种新的高应变率复合压剪实验技术[J].实验力学, 2006, 21(5): 584-589.
    [35] Lin Y, Lu F, Zhao P. A new split Hopkinson pressure-shear testing set[C]. DYMAT2009. Brussels: EDP Sciences, 2009: 583-589.
    [36]唐志平,胡晓军,廖香丽,等.双磁场IMPS粒子速度测试系统[J].实验力学, 2000, 15(1): 15-21.
    [37]唐志平,胡晓军,廖香丽.压剪炮和压剪复合加载技术[J].中南工业大学学报, 2001, 32(3): 9-12.
    [38] Tang Z P, Xu S L, Dai X Y. S-wave tracing technique to investigate the damage and failure behavior of brittle materials subjected to shock loading[J]. Int J Impact Eng, 2005, 31(9): 1172-1191.
    [39] Abou-Sayed A S,Clifton R J. Pressure shear waves in fused silica[J]. J Appl Phys, 1976, 47(5): 1762-1770.
    [40] Kim K S, Clifton R J, Kumar P. A combined normal and transverse-displacement interferometer with an application to impact of y-cut quartz[J]. J Appl Phys, 1977, 48(10): 4132-4139.
    [41]张磊,李英雷,王悟.压剪炮的激光测速的系统[J].实验力学, 2005, 20(3): 434-440.
    [42]赵鹏铎.分离式霍普金森压剪杆实验技术[D].长沙:国防科学技术大学, 2007.
    [43] Abou-Sayed A S,Clifton R J. Pressure-shear impact of 6061-T6 Aluminum due to oblique-plate-impact[J]. J Appl Mech, 1977, 44(1): 85-88.
    [44] Abou-Sayed A S,Clifton R J. Analysis of combined pressure-shear waves in an elastic/visco-plastic material[J]. J Appl Mech, 1977, 44(10): 79-84.
    [45] Gilat A,Clifton R J. Pressure-shear waves in 6061-T6 aluminum and alpha-tianium[J]. J Mech Phys Solids, 1985, 33(3): 263-284.
    [46] Kim K S,Clifton R J. Pressure-shear impact of 6061-T6 Aluminum [J]. J Appl Mech, 1977, 47(1): 11-16.
    [47] Gilat A. A viscoplastic theory with anisotropic hardening and its application to pressure-shear plate impact experiments [J]. J Appl Mech, 1985, 52(3): 629-633.
    [48] Frutschy K J,Clifton R J. High-temperature pressure-shear plate impact experiments using pure tungsten carbide impactors[J]. Exper Mech, 1998, 38(2): 116-125.
    [49] Frutschy K J,Clifton R J. High-temperature pressure-shear plate impact experiments on OFHC copper[J]. J Mech Phys Solids, 1998, 46(10): 1721-1743.
    [50] Okada M, Liou N S, Prakash V. Dynamic shearing resistance of molten metal films under high pressures and extremely high shearing rates[J]. Exper Mech, 2002, 42(2): 161-171.
    [51] Steinberg D J,Cochran M W. A constitutive model for metals applicable at high strain rate[J]. J Appl Phys, 1980, 51(3): 1498-1503.
    [52] Steinberg D J,Lund C M. A constitutive model for strain rates from 10-4~106 s-1[J]. J Appl Phys, 1989, 65(4): 1528-1533.
    [53] Gupta Y M. Determination of impact response of PMMA using combined compression and shear loading[J]. J Appl Phys, 1980, 51(10): 5352-5361.
    [54] Li T, Tang Z P, Cai J. Micro-observation of shear wave attenuation mechanism in nylon-66[J]. Materials Letters, 2007, 61(6): 1436-1438.
    [55] Jiao T, Clifton R J, Grunschel S E. High Strain rate response of an elastomer[C]. Shock Compression of Condensed Matter-2005, . U.S.A: AIP, 2005: 809-812.
    [56] Clifton R J, Jearanaisilawong P, Jiao T. High strain rate response of an epoxy and a vinyl ester[C]. Shock Compression of Condensed Matter-2005. U.S.A: AIP, 2005: 797-800.
    [57] Nemat-Nasser S,Amirkhizi A V. Finite-amplitude shear wave in pre-stressed thin elastomers[J]. Wave Motion, 2005, 43(1): 20-28.
    [58]卢芳云,陈丕琪.材料压剪加载的实验测试[J].国防科技大学学报, 1995, 17(4): 116-123.
    [59] Prakash V,Clifton R J. Time resolved dynamic friction measurements in pressure-shear[C]. // Ramesh K T, (ed.). Experimental Techniques in the Dynamics of Deformable Bodies, New York: ASME. 1993, 33-47.
    [60] Frutschy K J,Clifton R J. Plate-impact technique for measuring dynamic friction at high temperatures[J]. Journal of Tribology, 1997, 119(3): 590-593.
    [61] Irfan M,Prakash V. Time resolved friction during dry sliding of metal on metal[J]. Int J Solids Structures, 2000, 37(20): 2859-2882.
    [62] Dandekar D P,Prakash V. Effect of shock induced shear on spall strength of SiC-N[C]. Shock Compression of Condensed Matter-2005. U.S.A: AIP, 2005: 607-610.
    [63]马维,段祝平.压剪复合应力波作用下材料断裂韧性研究[J].固体力学学报, 2002, 23(1): 17-23.
    [64] Ma W,Duan Z. The investigation of dynamic fracture behavior of material under the compressive-shear combined stress waves[J]. Acta Mechanica Sinica, 2000, 16(4): 333-347.
    [65] Sundaram S,Clifton R J. Flow behavior of soda-lime glass at high pressures and high shear rates[C]// Schmidt S C, Dandekar D PForbes J W, (eds.). Shock Compression of Condensed Matter-1997. Amherst, MA: AIP, 1997: 517-520.
    [66]姚国文,刘占芳,黄培彦.压剪复合冲击下氧化铝陶瓷的剪切响应实验研究[J].爆炸与冲击, 2005, 25(2): 119-124.
    [67] Duvall G E,Graham R A. Phase transitions under shock-wave loading[J]. Rev Modern Phys, 1977, 49(3): 523-579.
    [68] Aidun J B,Gupta Y M. Simultaneous measurement of inmaterial longitudinal and transverse particle velocity histories in a compression-shear experiment[J]. J Appl Phys, 1989, 65(5): 1898-1901.
    [69] Aidun J B. Study of shear and compressive waves in shocked calcium carbonate[D]. Olympia Wash State Univ, 1989.
    [70] Aidun J B,Gupta Y M. Shear wave measurements for improved characterization of shock-induced phase transformation in carrara marble[J]. Geophys Res Lett, 1989, 16(4): 191-195.
    [71] Aidun J B,Gupta Y M. Shear and compression waves in shocked calcium carbonate[J]. J Geophys Res, 1995, 100(B2): 1955-1980.
    [72] Escobar J C,Clifton R J. Pressure-shear impact-induced phase transformations in Cu-14.44Al-4.19Ni single crystals[C]// Anderson G LLagoudas D C, (eds.). Active Materials and Smart Structures: SPIE, 1995: 186-197.
    [73] Rittel D,Wang Z G. Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti6Al4V alloys[J]. Mechanics of Materials, 2008, 40(8): 629-635.
    [74]林玉亮,卢芳云,崔云霄.冲击加载条件下材料之间摩擦系数的确定[J].摩擦学学报, 2007, 27(1): 64-67.
    [75] Li J, Lu F, Zhao P, et al. Impact friction test for friction materials, in DYMAT2009. 2009, EDP sciences: Brussels. p. 243-248.
    [76] Bhattacharya A, Rittel D, Ravichandran G. Effect of strain rate on deformation texture in OFHC copper[J]. Scripta Materialia, 2005, 52: 657-661.
    [77] Vural M, Rittel D, Ravichandran G. Large strain mechanical behvior of 1018 cold-rolled steel over a wide range of strain rates[J]. Metallurgical and Materials Transactions A, 2003, 34A: 2003-2873.
    [78]王礼立.应力波基础[M].北京:国防工业出版社2005.
    [79] Clifton R. An analysis of combined longitudinal and torsional plastic waves in a thin-walled tube. 1966, DTIC Document.
    [80] Ting T,Nan N. Plane waves due to combined compressive and shear stresses in half-space[J]. Journal of Applied Mechanics, 1969, 36: 189-197.
    [81] Ting T. Elastic-plastic boundaries in the propagation of plane and cylindrical waves of combined stress[J]. Quarterly of applied mathematics, 1970, 27: 441-449.
    [82] Ting T. Plastic wave propagation in linearly work-hardening materials[J]. Journal of Applied Mechanics, 1973, 40(4): 1045-1049.
    [83] Davies R. A critical study of the Hopkinson pressure bar[J]. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1948, 240(821): 375-457.
    [84] Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society. Section B, 1949, 62(11): 676-700.
    [85] Lindholm U. Some experiments with the split hopkinson pressure bar[J]. Journal of the mechanics and physics of solids, 1964, 12(5): 317-335.
    [86] Bell J. An experimental diffraction grating study of the quasi-static hypothesis of the split Hopkinson bar experiment[J]. Journal of the mechanics and physics of solids, 1966, 14(6): 309-327.
    [87] Rabotnov Y N,Mileiko S. Short-term creep[J]. Na,~ rs, Moscow, 1970.
    [88] Ellwood S, Griffiths L, Parry D. Materials testing at high constant strain rates[J]. Journal of Physics E: Scientific Instruments, 1982, 15(3): 280-282.
    [89] Gorham D. Sources of error in very high strain rate compression tests[C]. Mechanical Properties at High Rates of Strain. Oxford, 1984: 151-158.
    [90] Marchand A,Duffy J. An experimental study of the formation process of adiabatic shear bands in a structural steel[J]. Journal of the mechanics and physics of solids, 1988, 36(3): 251-283.
    [91] Nemat-Nasser S, Isaacs J B, Starrett J E. Hopkinson techniques for dynamic recovery experiments[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1991, 435(1894): 371-391.
    [92]唐志平,胡时胜.动态力学量的光电测试法[J].实验力学, 1991, 6(4): 401-406.
    [93] Lifshitz J,Leber H. Data processing in the split Hopkinson pressure bar tests[J]. International Journal of Impact Engineering, 1994, 15(6): 723-733.
    [94] Ravichandran G,Subhash G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar[J]. Journal of the American Ceramic Society, 1994, 77(1): 263-267.
    [95] Ramesh K,Narasimhan S. Finite deformations and the dynamic measurement of radial strains in compression Kolsky bar experiments[J]. International journal of solids and structures, 1996, 33(25): 3723-3738.
    [96] Zhao H,Gary G. On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains[J]. International journal of solids and structures, 1996, 33(23): 3363-3375.
    [97]李玉龙,郭伟国.高g值加速度传感器校准系统的研究[J].爆炸与冲击, 1997,17(1): 90-96.
    [98] Trojanowski A, Macdougall D, Harding J. An improved technique for the experimental measurement of specimen surface temperature during Hopkinson-bar tests[J]. Measurement Science and Technology, 1998, 9(1): 12-19.
    [99]刘剑飞,王正道.低阻抗多孔介质材料的SHPB实验技术[J].实验力学, 1998, 13(2): 218-223.
    [100]夏开文,程经毅,胡时胜. SHPB装置应用于测量高温动态力学性能的研究[J].实验力学, 1998, 13(3): 307-313.
    [101] Chen W, Zhang B, Forrestal M. A split Hopkinson bar technique for low-impedance materials[J]. Experimental mechanics, 1999, 39(2): 81-85.
    [102] Chen W, Lu F, Zhou B. A quartz-crystal-embedded split Hopkinson pressure bar for soft materials[J]. Experimental mechanics, 2000, 40(1): 1-6.
    [103] Gray G. Classic Split-Hopkinson Pressure Bar Testing[M]: Materials Park, OH: ASM International 2000. 462-476.
    [104] Li Y, Ramesh K, Chin E. The compressive viscoplastic response of an A359/SiCp metal-matrix composite and of the A359 aluminum alloy matrix[J]. International journal of solids and structures, 2000, 37(51): 7547-7562.
    [105] Nemat-Nasser S, Isaacs J, Rome J. Triaxial Hopkinson Techniques[M]: Materials Park, OH: ASM International 2000. 516-518.
    [106]施绍裘,王礼立.材料在准—维应变下被动围压的SHPB试验方法[J].实验力学, 2000, 15(4): 377-384.
    [107] Ninan L, Tsai J, Sun C. Use of split Hopkinson pressure bar for testing off-axis composites[J]. International Journal of Impact Engineering, 2001, 25(3): 291-313.
    [108] Frew D, Forrestal M J, Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J]. Experimental mechanics, 2002, 42(1): 93-106.
    [109]胡时胜,王道荣.冲击载荷下混凝土材料的动态本构关系[J].爆炸与冲击, 2002, 22(3): 242-246.
    [110]张学舜,沈瑞琪.火工品动态着靶模拟仿真技术研究[J].火工品, 2003, 23(4): 1-4.
    [111] Field J, Walley S, Proud W, et al. Review of experimental techniques for high rate deformation and shock studies[J]. International Journal of Impact Engineering, 2004, 30(7): 725-775.
    [112] Gama B A, Lopatnikov S L, Gillespie Jr J W. Hopkinson bar experimental technique: A critical review[J]. Applied Mechanics Reviews, 2004, 57(4): 223-250.
    [113] Song B,Chen W. Loading and unloading split Hopkinson pressure bar pulse-shaping techniques for dynamic hysteretic loops[J]. Experimental mechanics, 2004, 44(6): 622-627.
    [114]赵习金,卢芳云,王悟,等.入射波整形技术的实验和理论研究[J].林玉亮, 2004, 18(3): 231-236.
    [115] Nemat-Nasser S,Guo W G. Thermomechanical response of HSLA-65 steel plates: experiments and modeling[J]. Mechanics of Materials, 2005, 37(2-3): 379-405.
    [116] Song B, Chen W, Yanagita T, et al. Confinement effects on the dynamic compressive properties of an epoxy syntactic foam[J]. Composite structures, 2005, 67(3): 279-287.
    [117]胡时胜. Hopkinson压杆实验技术的应用进展[J].实验力学, 2005, 20(4):589-594.
    [118]李夕兵,周子龙,王卫华.运用有限元和神经网络为SHPB装置构造理想冲头[J].岩石力学与工程学报, 2005, 24(23): 4215-4218.
    [119]林玉亮,卢芳云,卢力.石英压电晶体在霍普金森压杆实验中的应用[J].高压物理学报, 2005, 19(4): 299-304.
    [120]宋力,胡时胜. SHPB数据处理中的二波法与三波法[J].爆炸与冲击, 2005, 25(4): 368-373.
    [121] Luo H, Chen W W, Rajendran A. Dynamic Compressive Response of Damaged and Interlocked SiC¨CN Ceramics[J]. Journal of the American Ceramic Society, 2006, 89(1): 266-273.
    [122] Shim V P W, Liu J, Lee V. A technique for dynamic tensile testing of human cervical spine ligaments[J]. Experimental mechanics, 2006, 46(1): 77-89.
    [123] Yu J, Li J, Hu S. Strain-rate effect and micro-structural optimization of cellular metals[J]. Mechanics of Materials, 2006, 38(1-2): 160-170.
    [124]李玉龙,郭伟国,徐绯,等. Hopkinson压杆技术的推广应用[J].爆炸与冲击, 2006, 26(5): 385-394.
    [125]王晓燕,卢芳云,林玉亮. SHPB实验中端面摩擦效应研究[J].爆炸与冲击, 2006, 26(2): 134-139.
    [126] Hanina E, Rittel D, Rosenberg Z. Pressure sensitivity of adiabatic shear banding in metals[J]. Applied Physics Letters, 2007, 90(6): 021915.
    [127] Huang W, Zan X, Nie X, et al. Experimental study on the dynamic tensile behavior of a poly-crystal pure titanium at elevated temperatures[J]. Materials Science and Engineering: A, 2007, 443(1-2): 33-41.
    [128] Li Y,Ramesh K. An optical technique for measurement of material properties in the tension Kolsky bar[J]. International Journal of Impact Engineering, 2007, 34(4): 784-798.
    [129] Luo Y, Lv L, Sun B, et al. Transverse impact behavior and energy absorption of three-dimensional orthogonal hybrid woven composites[J]. Composite structures, 2007, 81(2): 202-209.
    [130] Song B, Chen W, Ge Y, et al. Dynamic and quasi-static compressive response of porcine muscle[J]. Journal of biomechanics, 2007, 40(13): 2999-3005.
    [131] Bragov A, Lomunov A, Sergeichev I, et al. Determination of physicomechanical properties of soft soils from medium to high strain rates[J]. International Journal of Impact Engineering, 2008, 35(9): 967-976.
    [132] Xia K, Chen R, Huang S, et al. Controlled multipulse loading with a stuffed striker in classical split Hopkinson pressure bar testing[J]. Review of Scientific Instruments, 2008, 79(5): 053906.
    [133] Ballmann J, Raatschen H, Staat M. High stress intensities in focussing zones of waves[J]. Proc. of Local Effects in the Analysis of Structures: 235-252.
    [134] Niethammer R, Kim K S, Ballmann J. Numerical simulation of shock waves in linear-elastic plates with curvilinear boundaries and material interfaces[J]. International Journal of Impact Engineering, 1995, 16(5-6): 711-725.
    [135]王礼立,余同希,李永池.冲击动力学进展[M].合肥:中国科学技术大学出版社1992.
    [136]李远,秦自楷,周志刚.压电与铁电材料的测量[M].北京:科学出版社1980.
    [137]秦自楷.压电石英晶体[M].北京:国防工业出版社1980.
    [138]张福学,王丽坤.现代压电学(中册)[M].北京:科学出版社2002.
    [139]张福学,王丽坤.现代压电学(上册)[M].北京:科学出版社2002.
    [140] Duwez P E, Clark D S, Bonenblust H F. The behavior of long beams under impact loading[J]. Journal of Applied Mechanics, 1950, 17(1): 27-34.
    [141]杨桂通.弹塑性力学引论[M].北京:清华大学出版社2004.
    [142] Carroll M M,Holt A C. Static and dynamics pore-collapse relations for ductile porous materials[J]. Journal of Applied Physics, 1972, 43(4): 1626-1635.
    [143]卢芳云.固体炸药装药在复合压剪加载下的力学响应和起爆特点[D].长沙:国防科技大学, 1994.
    [144] Dagley I J, Ho S Y, Montelli L, et al. High strain rate impact ignition of RDX with ethylene-vinyl acetate (EVA) copolymers[J]. Combustion and flame, 1992, 89(3-4): 271-282.
    [145] Smallwood J,Field J. Hot-Spot Ignition Mechanisms for Explosives and Propellants: Discussion[J]. Royal Society of London Philosophical Transactions Series A, 1992, 339(1654): 269-283.
    [146] Kaye S, Dunlap J, Kugel H, et al. An overview of PBX-M H-mode results[J]. Plasma physics and controlled fusion, 1994, 36(5): 36-41.
    [147] Idar D, Lucht R, Straight J, et al. Low amplitude insult project: Pbx 9501 high explosive violent reaction experiments. 1998, Los Alamos National Lab., NM (United States).
    [148] Blumenthal W, Gray III G, Idar D, et al. Influence of temperature and strain rate on the mechanical behavior of PBX 9502 and Kel-F 800 (TM)[C]. Shock Compression of Condensed Matter. U.S.A: AIP Conference Proceedings, 2000: 671-674.
    [149] Quidot M, Racimor P, Chabin P. Constitutive models for PBX at high strain rate[C]. Shock Compression of Condensed Matter. U.S.A: AIP Conference Proceedings, 2000: 687-690.
    [150] Balzer J, Siviour C, Walley S, et al. Behaviour of ammonium perchlorate-based propellants and a polymer-bonded explosive under impact loading[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2004, 460(2043): 781-806.
    [151] Clements B,Mas E. A theory for plastic-bonded materials with a bimodal size distribution of filler particles[J]. Modelling and Simulation in Materials Science and Engineering, 2004, 12(3): 407-421.
    [152] Grantham S, Siviour C, Proud W, et al. High-strain rate Brazilian testing of an explosive simulant using speckle metrology[J]. Measurement Science and Technology, 2004, 15(9): 1867-1870.
    [153] Wiegand D,Reddingius B. Mechanical properties of plastic bonded composites as a function of hydrostatic pressure[C]. SHOCK COMPRESSION OF CONDENSED MATTER. U.S.A: AIP, 2004: 812-815.
    [154] Perry W L, Dickson P M, Parker G R, et al. Quantification of reaction violence and combustion enthalpy of plastic bonded explosive 9501 under strong confinement[J]. Journal of applied physics, 2005, 97(2): 023528.
    [155] Cady C, Blumenthal W, Gray III G, et al. Mechanical properties of plastic bonded explosive binder materials as a function of strain rate and temperature[J]. Polymer Engineering & Science, 2006, 46(6): 812-819.
    [156] Perry W L, Zucker J, Dickson P M, et al. Interplay of explosive thermal reactiondynamics and structural confinement[J]. Journal of applied physics, 2007, 101(7): 074901.
    [157] Govier R, Gray G, Blumenthal W. Comparison of the Influence of Temperature on the High-Strain-Rate Mechanical Responses of PBX 9501 and EDC37[J]. Metallurgical and Materials transactions A, 2008, 39(3): 535-538.
    [158] Siviour C, Laity P, Proud W, et al. High strain rate properties of a polymer-bonded sugar: their dependence on applied and internal constraints[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2008, 464(2093): 1229-1255.
    [159] Trevino S,Wiegand D. Mechanically Induced Damage in Composite Plastic-Bonded Explosives: A Small Angle Neutron and X-ray Study[J]. Journal of Energetic Materials, 2008, 26(2): 79-101.
    [160]陈荣.一种PBX炸药试样在复杂应力动态加载下的力学性能实验研究[D].长沙:国防科学技术大学, 2010.
    [161] Chen P, Xie H, Huang F. Deformation and failure of polymer bonded explosives under diametric compression test[J]. Polymer Testing, 2006, 25(3): 333-341.
    [162] Fossum A F,Brannon R M. Unified compaction/dilation, strain-rate sensitive, constitutive model for rock mechanics structural analysis applications[C]. Gulf rocks 2004, the sixth North America rock mechanics symposium. Houston: American Rock Mechanics Association: 5-9.
    [163] Stacey T. A simple extension strain criterion for fracture of brittle rock[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics, 1981, 18(6): 469-474.
    [164]余天庆,毛为民.张量分析及应用[M].北京:清华大学出版社2006.
    [165] Yang R, Bawden W, Katsabanis P. A new constitutive model for blast damage[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics, 1996, 33(3): 245-254.
    [166] Liu L,Katsabanis P. Development of a continuum damage model for blasting analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(2): 217-231.
    [167] Whittaker B N, Singh R N, Sun G. Rock fracture mechanics: principles, design, and applications[M]. Amsterdam: Elsevier 1992.
    [168]白金泽. LS-DYNA3D[M].北京:科学出版社2005.
    [169]陈丁丁,卢芳云,林玉亮,等.某含铝PBX压缩性能的应变率与温度效应[J].高压物理学报, 2011, (已投稿).
    [170] Bhushan B.摩擦学导论[M].北京:机械工业出版社2007.
    [171]陈鹏万,黄风雷.含能材料损伤理论及应用[M].北京:北京理工大学出版社2006.
    [172] Ogawa K. Impact friction test method by applying stress wave[J]. Experimental Mechanics, 1997, 37(4): 398-402.
    [173] Rajagopalan S,Prakash V. A modified torsional Kolsky bar for investigating dynamic friction[J]. Experimental Mechanics, 1999, 39(4): 295-303.
    [174] Chichili D,Ramesh K. Recovery experiments for adiabatic shear localization: a novel experimental technique[J]. Journal of Applied Mechanics, 1999, 66(1): 10-20.
    [175] Nemat-Nasser S,Isaacs J. Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and TaW
    [77] Vural M, Rittel D, Ravichandran G. Large strain mechanical behvior of 1018 cold-rolled steel over a wide range of strain rates[J]. Metallurgical and Materials Transactions A, 2003, 34A: 2003-2873.
    [78]王礼立.应力波基础[M].北京:国防工业出版社2005.
    [79] Clifton R. An analysis of combined longitudinal and torsional plastic waves in a thin-walled tube. 1966, DTIC Document.
    [80] Ting T,Nan N. Plane waves due to combined compressive and shear stresses in half-space[J]. Journal of Applied Mechanics, 1969, 36: 189-197.
    [81] Ting T. Elastic-plastic boundaries in the propagation of plane and cylindrical waves of combined stress[J]. Quarterly of applied mathematics, 1970, 27: 441-449.
    [82] Ting T. Plastic wave propagation in linearly work-hardening materials[J]. Journal of Applied Mechanics, 1973, 40(4): 1045-1049.
    [83] Davies R. A critical study of the Hopkinson pressure bar[J]. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1948, 240(821): 375-457.
    [84] Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society. Section B, 1949, 62(11): 676-700.
    [85] Lindholm U. Some experiments with the split hopkinson pressure bar[J]. Journal of the mechanics and physics of solids, 1964, 12(5): 317-335.
    [86] Bell J. An experimental diffraction grating study of the quasi-static hypothesis of the split Hopkinson bar experiment[J]. Journal of the mechanics and physics of solids, 1966, 14(6): 309-327.
    [87] Rabotnov Y N,Mileiko S. Short-term creep[J]. Na,~ rs, Moscow, 1970.
    [88] Ellwood S, Griffiths L, Parry D. Materials testing at high constant strain rates[J]. Journal of Physics E: Scientific Instruments, 1982, 15(3): 280-282.
    [89] Gorham D. Sources of error in very high strain rate compression tests[C]. Mechanical Properties at High Rates of Strain. Oxford, 1984: 151-158.
    [90] Marchand A,Duffy J. An experimental study of the formation process of adiabatic shear bands in a structural steel[J]. Journal of the mechanics and physics of solids, 1988, 36(3): 251-283.
    [91] Nemat-Nasser S, Isaacs J B, Starrett J E. Hopkinson techniques for dynamic recovery experiments[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1991, 435(1894): 371-391.
    [92]唐志平,胡时胜.动态力学量的光电测试法[J].实验力学, 1991, 6(4): 401-406.
    [93] Lifshitz J,Leber H. Data processing in the split Hopkinson pressure bar tests[J]. International Journal of Impact Engineering, 1994, 15(6): 723-733.
    [94] Ravichandran G,Subhash G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar[J]. Journal of the American Ceramic Society, 1994, 77(1): 263-267.
    [95] Ramesh K,Narasimhan S. Finite deformations and the dynamic measurement of radial strains in compression Kolsky bar experiments[J]. International journal of solids and structures, 1996, 33(25): 3723-3738.
    [96] Zhao H,Gary G. On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains[J]. International journal of solids and structures, 1996, 33(23): 3363-3375.
    [97]李玉龙,郭伟国.高g值加速度传感器校准系统的研究[J].爆炸与冲击, 1997,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700