LAWCA读出电子学时钟分发与数据传输研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宇宙线是来自宇宙空间的高能粒子流,由带电粒子与极少量的伽马光子和中微子组成,是人类能够从宇宙空间获得的主要物质载体。高能宇宙线粒子携带着宏观宇宙、微观世界和空间环境的丰富信息,关系着宇宙的历史、天体的演化、空间的环境和许多未解的科学之谜,可以帮助人类建构宇宙起源模型。
     为了寻找更多的伽玛射线源探寻宇宙线起源,在甚高能伽玛射线天文从“百源时代”迈向“千源时代”的过程中发挥重要作用,我国物理学家提出了在西藏羊八井建立大面积水切伦科夫巡天探测器(Large Area Water Cherenkov Array, LAWCA)。
     LAWCA读出电子学采用前端数字化架构,这种架构优点明显,通过光纤传输数字信号代替模拟信号到后端,避免了模拟信号的信息损失,并且减少了成本。但其也带来了新的挑战。由于数字化是在前端完成的,前端电荷与时间测量都需要精确的同步时钟,并且前端测量的数据量比较大,如何将后端的系统时钟精确地分发到前端以及将前端测量数据实时传输到后端成为了前端数字化架构的难题,而这也正是本论文需要研究的。
     本文研究内容主要包括两部分,一是电子学时钟分发关键技术的研究,高精度的时间测量要求全局范围的FEE具有高精度时钟,时钟需与全球绝对时间相关联,并且能补偿由于环境温度等条件变化带来的漂移影响。二是数据传输关键技术的研究,系统的实时性要求FEE测量得到的数据能实时传输到后端,并且传输通道还要兼顾命令与时钟的传输。
     本文结构安排如下:
     第一章作为绪论,首先介绍LAWCA实验的背景、物理目标及其结构。接着对读出电子学任务指标、技术路线及结构进行描述,最后引出本文的研究内容。
     第二章介绍国际上一些大型物理实验的时钟分发与数据传输方案,通过分析这些实验的设计特点,可作为LAWCA实验时钟分发与数据传输设计的重要参考依据。
     第三章从LAWCA读出电子学时钟分发及数据传输的需求出发,引出电子学使用的两项关键技术:大尺度范围内的精确同步时钟分发以及数据、命令与时钟的融合传输。接着分别对两种关键技术如何实现进行详细的描述。
     第四章介绍具体的电子学设计与实现。首先介绍时钟分发与数据传输系统的总体结构,给出了系统的原理框图与工作流程。然后对电子学的三个组成部分时钟源插件、时钟及数据传输插件以及FEE的时钟接收数据发送模块分别进行介绍,详细描述了各个部分的电子学设计与实现。
     第五章给出了电子学系统的性能测试。首先介绍了测试目的与基本测试方法,给出了系统测试平台的构建。然后对时钟性能进行了测试,测试包含时钟抖动、相位自动补偿、全局时间基准同步以及稳定性等方面。最后测试了数据传输性能,包括误码测试与眼图测试。
     第六章是本文的总结与展望。对现有工作进行了总结,并且指出了下一步研究工作的方向。
Cosmic rays are high energy particles from the outer space, consisting of charged particles and a small amount of gamma photons and neutrinos, which are the material we can receive from the outer space. The high-energy cosmic rays carry a large amount of messages about macrocosm, microcosm and space environment, linking the cosmogony, the evolution of stars, the matter distribution in space and many unsolved science mysteries. Cosmic rays can help human to construct the model of the origin of the universe.
     In order to make great contribution in the process from "100sources era" to "1000sources era" of the very high energy gamma-ray astronomy, physicists in China propose to establish the Large Area Water Cherenkov Array (LAWCA) in Tibet.
     The front-end digitization architecture is implemented in LAWCA readout electronics. In this architecture, digital signals instead of analog signals are transmitted from the front end via optical fibers, so that the deteriaration of analog signal can be greatly decreased and the system cost can be reduced as well. However, it introduces new challenges. Since digitization is done in the frontend, precise charge and time measurement plays a high requirement on the clock distribution over a large area, accompanied by the increase of data volume. High performane clock distribution and precise phase alignment, as well as high speed data transferring are the challenges for this architecture, which are studied in this dissertation.
     The research content of this dissertation consists of two parts:clock distribution and data transmission. Regarding the clock distribution, the high precision of time measurement requires high performance clocks distributed to FEE. Besides, clocks must be associated with the global absolute time, and be able to compensate the delay variation caused by ambient temperature fluctuation, etc. As for data transmission, high speed transferring method must be studied. Data transferring, clock distribution, as well as commands transferring is integrated within the same transmission path in this system.
     The structure of this dissertation is as follows:
     Chapter1is introduction. It introduces the background, purpose and structure of LAWCA experiment. Then the indicators, technical route and structure of readout electronics are presented. The last part lists the research content of this dissertation.
     In Chapter2, several clock distribution and data transmission schemes for large-scale physics experiments are described. Through the analysis of the techniques in these experiments, these schemes may provide important references for the clock distribution and data transmission design in the LAWCA experiment.
     In Chapter3, the requirements of clock distribution and data transmission are analyzed first, which lead to two key techniques used in the electronics:precise synchronous clock distribution for a large area and mixed transmission of data, command and clock. Then we discuss how to implement the two key techniques in detail.
     In Chapter4, how to design and implement the specific electronics is introduced. First, the overall structure of the clock distribution and data transmission system is described, with the block diagram and work flow as well. Then the main three parts of electronics (clock source module, clock and data transmission module, clock receiving and data sending module of FEE) are described in detail.
     In Chapter5, we present the performance test results of the electronics system. First, the test methods and testing platform setup are introduced. Then we tested the clock performance, including jitter performance, phase automatic compensation, synchronization of the global time benchmark and stability. At last, the performance of high speed data transmission is tested, consisting of the error test and eye diagram test.
     In Chapter6, the conclusion and outlook of the future work are introduced.
引文
[1]何会海,宇宙线研究进展评述与展望[J],物理42卷1期,2013年.
    [2]宇宙线的发现http://www.ihep.cas.cn/kxcb/kpcg/lztt/kpyd_yzsx/
    [3]马宇倩、况浩怀、白新华,宇宙线天体物理中的几个重要问题[J],物理学进展,1998,18(4):383-394.
    [4]宇宙线探测方式.http://www.ihep.cas.cn/kxcb/kpcg/lztt/kpyd_yzsx/kpyd_yzx_fzlc/.
    [5]Eun-Suk Seo, James H.Adams,Jr., et al, Advanced Thin lionization Calorimeter(ATIC) balloon experiment: expected performance[C]. SPIE2806, August 4,1996.
    [6]E.S.Seo, H.S.Ahn, et al, Cosmic-ray energetics and mass (CREAM) balloon project[J]. Advances in Space Research, Volume 33, Issue 10,2004.
    [7]曹喆,西藏羊八井LHAASO实验水切伦科夫探测器阵列分布式电子学方案研究[D],合肥:中国科学技术大学,2011.
    [8]广延空气簇射.1http://www.ihep.cas.cn/kxcb/kpcg/lztt/kpyd_yzsx/.
    [9]VHE γ-ray Sky Map Source Catlag. www.mppmu.mpg.de/~rwagner/sources.
    [10]BG Keilhauer, Investigation of atmospheric effects on the development of extensive air showers and their detection with the Pierre Auger Observatory[J]. Wissenschaftliche Berichte FZKA, vol.6958,2004.
    [1 l]陈天禄,刘茂元等,西藏羊八井中日合作AS γ实验进展与前景展望[J],西藏大学学报,2011年1期.
    [12]徐斌,基于ARGO-YBJ实验的宇宙线气象效应和时间变化研究[G],成都:西南交通大学,2009.
    [13]徐克尊等编,粒子探测技术[M],合肥:中国科学技术大学出版社.
    [14]ZHiguo Yao, Min Zha, Zhen Cao, Huihai He for the LHAASO collaboration,2009, "LHAASO simulation:Performance of Water Cerenkov Detector Array", Proceedings of the 31st international cosmic ray confernece.
    [15]国家重大科研仪器设备研制专项立项建议书-大面积水切伦科夫巡天探测器[DB/OL],中国科学院高能物理研究所.
    [16]李秋菊、王铮、常劲帆、王佩良、贺翔、聂晶,大亚湾中微子实验PMT触发判选电路的初步设计[J],核电子学与探测技术,2006,26(6):1046-1048.
    [17]LBNE Conceptual Design Report [DB/OL]. August,2010.
    [18]Stokstad, Robert. Design and Performance of the IceCube Electronics [C].11th Workshop on Electronics for LHC and Future Experiments, Heidelberg, Germany, September,2005,20-29.
    [19]Shebli Anvar, on behalf of the ANTARES Collaboration. Addressing the Software and Hardware Trade-offs of an Embedded Distributed System: The case of the ANTARES Data Acquisition and Detector Control [C]. Stockholm,14th IEEE-NPSS Real Time Conference, 2005.
    [1]李良,“冰立方”:南极冰层下的巨型中微子望远镜[J],现代物理知识,22(5),33-37.
    [2]Spencer R. Klein, for the IceCube Collaboration. IceCube: A Cubic Kilometer Radiation Detector [J]. IEEE Trans.Nucl.Sci.2009,56:1141-1147.
    [3]R. Abbasi, et al. The IceCube data acquisition system:Signal capture, digitization, and time stamping [J]. Nuclear Instruments and Methods in Physics Research A 601(2009):294-316.
    [4]Martin Kestel. Design and status of IceCube [J]. Nuclear Instruments and Methods in Physics Research A.535(2004):139-142.
    [5]M. CIRCELLA ON BEHALF OF THE ANTARES COLLABORATION. The ANTARES Detector: Electronics and Readout [C]. Proceedings of the 30th International Cosmic Ray Conference, Mexico City, Mexico,2008,5:1609-1612.
    [6]U.F. Katz. Neutrino telescopy in the Mediterranean Sea [J]. Progress in Particle and Nuclear Physics.57(2006):273-282.
    [7]The ANTARES Collaboration, Time Calibration of the ANTARES Neutrino Telescope[J]. Astroparticle Physics, December 13,2010.
    [8]The ANTARES Collaboration. A Deep Sea Telescope for High Energy Neutrinos [DB/OL]. May,1999.
    [9]密集型光波复用,http://baike.baidu.com/view/414120.htm?fromId=196983.百度百科,[DB/OL].
    [10]The ICARUS Collaboration, Precision measurement of the neutrino velocity with the ICARUS detector in the CNGS beam[J].
    [11]Pedro Moreira, Javier Serrano, et al, White Rabbit: Sub-Nanosecond Timing Distribution over Ethernet[C]. ISPCS 2009, October 12-16,2009.
    [12]Emilio G.Cota, Maciej Lipinski, et al, White Rabbit Specification:Draft for Comments[DB/OL], September,2010.
    [13]IEEE Std 1588TM-2008. IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems [S]. July,2008.
    [14]J.Serrano, P.Alvearez, et al, The White Rabbit Project[C]. CERN-ATS-2009-096.
    [15]Maciej Linpinski, White Rabbit-a PTP Application for Robust Sub-nanosecond Synchronization[C]. ISPCS2011, September 14,2011.
    [16]王贻芳主编,北京谱仪(BESⅢ)的设计与研制[M],上海科学技术出版社,2011.
    [17]李浩等,2010,北京谱仪飞行时间的时钟系统[J],核科学汇刊,57:442-445.
    [18]郭建华,北京谱仪(BESⅢ)飞行时间读出电子学系统设计与实现[D],合肥:中国科学技术大学,2007.
    [19]Li Hao, Liu Shubin, Feng Changqing, Tang Shaochun, An Qi, TOF Clock System for BESIII[C],16th IEEE-NPSS Real Time Conference,2009.
    [20]VMEbus International Trade Association,1999, "American National Standard for VME64 Extensions for Physics and Other Applications".
    [21]郝新军,LHAASO水切伦科夫探测器原型阵列读出电子学研究[D],合肥:中国科学技术大学,2011.
    [22]PANDA Collabortion, Technical Progress Report for:PANDA Strong Interaction Studies with Antiprotons[C].
    [23]I.Konorov, H.Angerer, A.Mann, S.Paul, SODA:Time Distribution System for the PANDA Experiment[C],2009 IEEE Nuclear Science Symposium Conference Report, N25-249.
    [24]CBM Collaboration, FutureDAQ for CBM: On-line Event Selection[J]. IEEE Transactions on Nuclear Science, VOL.53, NO.3, June,2006.
    [25]Nicolai Schroer, Clock Distribution/Synchronization for the Readout-Chain of the CBM experiment at GSI Darmstadt using Xilinx FPGAs[D]. University of Heidelberg,2007.
    [1]曹喆,西藏羊八井LHAASO实验水切伦科夫探测器阵列分布式电子学方案研究[D],合肥:中国科学技术大学,2011.
    [2]邵钟浩,毛锁方,光纤传输延迟温度特性的测量[J],南京邮电学院学报,1996,16(3):82-85.
    [3]王东旅,高速串行通信中时间抖动的若干问题研究[D],合肥:中国科学技术大学,2011.
    [4]李成,大型物理实验装置高精度时间同步技术研究[D],合肥:中国科学技术大学,2012..
    [5]张勤,李家权等,GPS测量原理及应用[M].科学出版社,2005.
    [6]马煦,孔维,孙海燕,基于GPS驯服时钟的频率校准系统设计[J],电讯技术,2011,51(10),109-112.
    [7]T.Korhonen. "Review of Accelerator Timing Systems". International Conference on Accelerator and Large Experimental Physics Control Systems. Trieste, Italy, Oct.1999, pp.167-170.
    [8]BESIII设计报告——TOF电子学,http://bes.ihep.ac.cn/bes3/design05/design/4.10.3new.doc
    [9]Hao Li, Shubin Liu et al. "TOF Clock System for BESIII". The 16th IEEE-NPSS Real Time Conference. Beijing, China, May.2009, pp.522-526.
    [10]I.Konorov, H.Angerer, A.Mann, S.Paul. "SODA:Time Distribution System for the PANDA Experiment".2009 IEEE Nuclear Science Symposium Conference Record, N25-249.
    [11]P Moreira, J Serrano, T Wlostowski, P Loschmidt, G Gaderer. White Rabbit: Sub-Nanosecond Timing Distribution over Ethernet [C]. ISPCS 2009 International IEEE Symposium on Precision Clock Synchronization for Measurement, Control and Communication Brescia, Italy, October 12-16,2009.
    [12]IEEE Std 1588TM-2008. IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems [S]. July,2008.
    [13]安琪,《高速数字系统设计》课件[DB/OL],
    [14]霍华德·约翰逊,格雷厄姆,高速数字设计[M],电子工业出版社,2002.
    [15]郝新军,LHAASO水切伦科夫探测器原型阵列读出电子学研究[D],合肥:中国科学技术大学,2011.
    [16]Xilinx. Virtex-5 FPGA User Guide, UG190(v5.3) May 17.2010.
    [17]Xilinx. Virtex-5 FPGA Data Sheet: DC and Switching Characteristics, DS202(v5.3) May 5, 2010.
    [18]Micrel. SY89295U,2.5V/3.3V 1.5GHz Precision LVPEVL Programmable Delay [DB/OL]. March,2004.
    [19]Dave Lewis, National Semiconductor Corporation. SerDes Architectures and Applications [DB/OL].
    [20]Sifeng Zhang, Keli Zhang et al. "Design and Realization of Remote Synchronous Data Transmission System Based on Distributed Architecture of Serial Concurrent Bus". The Ninth International Conference on Electronic Measurement & Instruments. Beijing, China, Aug.2009, pp.3-358~3-362.
    [1]Xilinx. Virtex-4 Family Overview, DS112(v3.1) [DB/OL]. August 30,2010.
    [2]Analog Devices. ADM222, High-Speed,5V,0.1 uF CMOS RS-232 Drives/Receivers [DB/OL].
    [3]摩托罗拉公司,WinHelp 2000[DB/OL],2000.
    [4]MAXIM. MAX9601, Dual ECL and Dual/Quad PECL,500ps, Ultra-high-speed Comparators [DB/OL].
    [5]ANALOG DEVICES. AD9518-3,6-Output Clock Generator with Integrated 2.0GHz VCO[DB/OL].
    [6]麦瑞半导体公司,2008, SY89828 datasheet[DB/OL]. Http://www.micrel.com.
    [7]TEXAS INSTRUMENTS. CDC318A,1-Line To 18-Line Clock Drive With I2C Control Interface [DB/OL]. June,2002.
    [8]Xilinx. Virtex-5 FPGA Configuration User Guide, UG191(v3.9.1) [DB/OL]. August 20, 2010.
    [9]ST. M25P32,32Mbit, Low Voltage, Serial Flash Memory with 50MHz SPI Bus Interface [DB/OL].
    [10]Altera Corporation. MAX II Device Handbook [DB/OL]. August,2009.
    [11]Xilinx. Virtex-5 Family Overview, DS100(v5.0) [DB/OL]. February 6,2009.
    [12]ANALOG DEVICES. AD9522-3,12 LVDS/24 CMOS Output Clock Generator with Integrated 2 GHz VCO [DB/OL].2008.
    [13]吉讯科技有限公司, GT2541& GT2542 datasheet[DB/OL]. Http://www.gissen.com.
    [14]Xilinx. Virtex-5 FPGA RocketIO GTX Transceiver User Guide, UG198(v3.0) [DB/OL]. October 30,2009.
    [15]Micron Technology Inc. MT47H128M16,2Gb:×4, × 8, × 16 DDR2 SDRAM Features [DB/OL].
    [16]Cypress Semiconductor Corporation. CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A EZ-USB FX2LPTM USB Microcontroller High-Speed USB Peripheral Controller [DB/OL]. February,2004.
    [17]Altera. CycloneⅢ, Cyclone Ⅲ Device Handbook[DB/OL].
    [18]Micrel. SY89295U,2.5V/3.3V 1.5GHz Precision LVPEVL Programmable Delay [DB/OL]. March,2004.
    [1]王东旅,高速串行通信中时间抖动的若干问题研究[D],合肥:中国科学技术大学,2011.
    [2]斯坦福研究系统,2002,FS725铷原子钟操作手册[DB/OL].
    [3]江洋,双绞线传输特性研究[D],合肥:中国科学技术大学,2012.
    [4]Anritsu Company LTD,误码测试基础[DB/OL],5.13,2013.
    [5]ITU-T Recommendations, http://www.itu.int/ITU-T/recommendations/index.aspx.
    [6]吕凤英,李留青,陈中良,基于数模混合信号源的高速Serial ATA总线测试方法[J], 计算机测量与控制.
    [7]LeCroy,自定义眼图模板[DB/OL].
    [8]LeCroy, SDA Ⅱ[DB/OL], November,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700