CD8~+T细胞免疫压力下丙型肝炎病毒的适应性变异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1.检测武汉人群中慢性HCV感染患者基因分型,分析基因分型分布及其临床意义;
     2.扩增HCV1b型感染患者的HCV NS3区并进行测序,分析HCV NS3功能区氨基酸变异和CD8~+T细胞表位内外的变异;
     3.比较中国武汉人群和德国人群HLA频率分布差异。检测HCV1b型感染患者HLA分型,并比较分析武汉HCV患者人群与武汉健康人群HLA频率分布;
     4.分析HCV1b病毒株序列变异与宿主HLA-I限制性CD8~+T细胞表位变异的相关性,并针对NS3序列预测HLA-I限制性CD8~+T细胞表位。
     方法
     1.收集227例武汉慢性HCV感染患者血清和全血,抽提血清中HCV RNA,采用型特异性引物扩增法对HCV RNA进行基因分型,分析武汉人群中HCV基因型别分布,并分析HCV1b型的临床意义。
     2.采用巢式PCR对HCV1b基因型的HCV NS3区进行扩增并测序,采用软件将HCV1b型患者的HCV NS3区序列进行序列比,分析HCV NS3功能区的变异和CD8~+T细胞表位内外的变异。
     3. HLA频率分布网站中比较中国武汉人群和德国人群的HLA频率分布。采用型特异性引物PCR法检测中国武汉HCV1b型患者相应的HLA-I(A-和B-位点)等位基因,与武汉健康人群HLA-I等位基因频率相比较。
     4.采用ALIGN、DNAMAN等软件分析武汉HCV1b感染患者中不同HLA-I限制性的CD8~+T细胞表位的变异频率。采用网络软件预测HCV1b型NS3区序列的HLA-I限制性CD8~+T细胞表位。
     结果
     1.227份武汉慢性丙肝患者中HCV基因1b型126例(63.6%),其他HCV基因型72例(36.4%),表明在我国慢性丙肝患者HCV主要型别是1b型。比较39例HCV1b型和19例HCV其他基因型别患者肝功能,发现HCV1b型感染者较其他HCV基因型感染者更容易出现肝功能异常,提示HCV1b型较其他HCV基因型更易造成肝脏损伤。
     2.对30条HCV NS3区全长序列进行分析,发现决定HCV功能的氨基酸序列很难发生变异,表明HCV NS3功能区的氨基酸序列相对保守。而且HCV NS3区CD8~+T细胞表位内的氨基酸突变频率明显大于表位外(p<0.05,有统计学意义),提示CD8~+T细胞的免疫压力是导致HCV NS3变异的重要原因之一。
     3.比较中国武汉人群和德国人群的HLA-A和HLA-B基因型频率分布,发现中国武汉人群中HLA-A02/11/24和HLA-B13/15/46频率较高。而且中国武汉和德国人群的HLA基因型频率分布有明显不同,在武汉人群中分布频率较高的HLA-A11、HLA-B46基因型频率在德国人群中明显较低;而在德国人群中分布频率较高的HLA-A01、HLA-A03、HLA-B07、HLA-B08基因型频率在中国武汉人群中较低。分析本研究中135例HCV患者的HLA-A基因型频率和134例HCV患者的HLA-B基因型频率,发现跟中国武汉健康人群的HLA基因型频率基本一致。
     4.从群体水平上分析HCV1b型患者HLA-I限制性的HCV NS3区CD8~+T细胞表位突变,发现两个HLA-A02阳性的HCV NS3区CD8~+T细胞表位(NS31169-1177和NS31443-1451)突变频率,明显高于HLA-A02阴性的HCV NS3区CD8~+T细胞表位突变频率,有统计学意义(P<0.05)。将预测的HCV1b型患者中HLA-I限制性的HCVNS3区CD8~+T细胞表位与30条HCV NS3全长序列联合分析,发现四个预测的HCVNS3区CD8~+T细胞表位的变异与HLA-I限制性CD8~+T细胞免疫压力可能有关。
     结论
     1.武汉人群中主要的HCV病毒株型别是HCV1b型,并且HCV1b型较其他HCV基因型更易造成肝脏损伤。
     2.决定HCV功能的NS3功能区氨基酸序列很难发生变异,而HCV NS3区CD8+T细胞表位内的氨基酸突变频率明显大于CD8~+T细胞表位外的氨基酸突变频率,提示CD8~+T细胞的免疫压力是导致HCV NS3变异的重要原因之一。
     3.武汉和德国人群的HLA基因频率有明显不同,在武汉人群中HLA频率较高比如HLA-A11、HLA-B46在德国人群中明显较低。武汉人群中频率较高的HLA-I限制性的HCV CD8~+T细胞表位突变频率则相对较高。
     4.两个NS3区CD8~+T细胞表位(NS31169-1177和NS31443-1451)跟HLA-A02相关,表明HCV NS3区CD8~+T细胞表位突变受到宿主HLA等位基因限制。
     本研究的创新点
     1.发现武汉和德国人群的HLA基因频率有明显不同,武汉人群中频率较高的HLA-I限制性的HCV CD8~+T细胞表位突变频率相对较高,为找出最佳的HCV抗原序列并研制预防性和治疗性疫苗提供了科学基础。
     2.国内既往多项研究集中在HCV的异质性和HCV CD8~+T细胞表位预测,仅少数研究HLA-I类等位基因与HCV变异的关系。
     本研究的意义
     探讨HCV在CD8~+T细胞免疫压力下演化适应过程,测定HLA-I限制性HCV NS3区CD8~+T细胞表位序列多态性,明确不同人群中HCV在CD8~+T细胞免疫压力下演变规律,为寻找保护性CD8~+T细胞抗原表位和研制基于T细胞HCV疫苗提供科学基础。
Objective
     1. To detect the HCV genotyping of chronic HCV patients in Wuhan population, toanalyze the distribution of HCV genotyping and its clinic significance.
     2. To amplificate HCV NS3region (HCV genotype1b) and finish its sequencing, andanalyze the amino acid mutation of HCV NS3function region and CD8~+T cell epitope.
     3. Compare the HLA phenotypic frequence distribution between Wuhan and German.To detect HLA typing of HCV1b isolates, and compare the HLA phenotypic frequencedistribution between Wuhan HCV patient population and German healthy population.
     4. To analyze the sequence variation of peripheral circulating HCV isolates and itscorrelation with the HLA-I alleles, and predict HLA-I restricted CD8~+T cell epitope.
     Methods
     1. We collected the serum and whole blood from227patients. The genotyping afterextracting the HCV RNA from the serum is detected for analyzing the distribution of HCVgenotyping in Wuhan patients and the clinical significance of HCV genotype1b.
     2. HCV NS3(HCV genotype1b) will be amplified by a nested RT-PCR assay withtype specific primers and sequenced. Software for sequence analysis is used for analyzing thesequence of the function region and identified the mutation according to their location insideor outside previously described CD8~+T cell epitope.
     3. We compared HLA phenotypic frequence distribution which was obtained from HLA phenotypic frequence web between Wuhan population and German population. HLAphenotypic frequence of HLA-class I alleles (A-and HLA-B locus) in patients with HCVgenotype1b was performed for comparing with the HLA-Alleles of Wuhan healthy patients.
     4. Analyzing HCV NS3(HCV genotype1b) CD8~+T cell epitope mutation withrespect to the host’s HLA-type with ALIGN software. We also predicted the HLA-Irestricting CD8~+T cell epitope with HCV genotype1b by web software.
     Results
     1. There were126cases of HCV genotype1b in227Wuhan HCV patients whose ratiowas63.6%, whereas the other HCV genotype had72cases whose ratio was36.4%, whichindicated the major genotype in Chinses HCV patients is genotype1b. Comparing the liverfunction of39cases with HCV genotype1b and19cases with other HCV genotype, we foundthat the liver disfunction of HCV genotype1b happened more easily than other HCVgenotype, that is to say the disease with HCV genotype1b is sicker than HCV other genotype.
     2. After30HCV NS3sequence were analyzed, it is indicated that the amino acidsequence of HCV NS3function region was difficult to mutate with relatively conservative. Inaddition, the amino acid mutations frequency of inside previously described CD8~+T cellepitope was significantly higher compared with the outside region, which had statisticsignificance (P<0.05). It is indicated that the immune pressure of CD8~+T cell is one of theimportant reason for HCV NS3mutation.
     3. It is indicated that the HLA-A02/11/24and HLA-B13/15/46frequence was higher inWuhan population than in German population. The HLA phenotypic frequence distributionbetween Wuhan population and German population was different obviously. HLA-A11orHLA-B46frequence which was high in Wuhan population was lower in Germany population,whereas the frequence of HLA-A01/03or HLA-B07/08which is high in German populationis lower in Wuhan population. HLA genotypes of HCV patients population being analyzedand compared with Wuhan healthy population, it is suggested that the HLA phenotypicfrequency of HCV patients population and healthy population is basically the same.
     4. HLA-I restricted NS3CD8~+T epitope mutation frequence analyzed in a populationlevel (HCV1b) indicated two HLA-A02positive associated NS3CD8~+T cell epitopemutation frequence was higher than HLA-A02negative, which had statistical significance(P<0.05). In another words, in two previously described CD8~+T cell epitope mutations werehighly reproducible in patients sharing the relevant HLA-Alleles in a population level. HLA-Irestriced NS3region CD8~+T cell epitope (HCV1b) were predicted and analyzed with30NS3sequence with HLA data, which suggested predicted four HLA-I positive NS3region CD8~+Tcell epitope mutation frequence have higher tendency than HLA-I negative.
     Conclusion
     1. The major genotype in Chinses HCV patients is genotype1b, and the disease ofwhich is worese than HCV other genotype.
     2. The amino acid sequence of HCV NS3function region was difficult to mutate orrelatively conservative. The amino acid mutations frequency of inside previously describedCD8~+T cell epitope was significantly higher compared to the outside region, which suggestedthe immune pressure of CD8~+T cell is one of the important reasons for HCV NS3mutation.
     3. The HLA phenotypic frequence between Wuhan healthy population and Germanhealthy population was different obviously. The frequence of HLA-A11or HLA-B46whichwas high in Wuhan healthy population was lower in German healthy population. The HCVCD8~+T cell epitope mutation frequence which is restricted by HLA with higher phenotypicfrequence is relatively higher in wuhan population.
     4. Two HCV NS3region (HCV genotype1b) CD8~+T cell epitope mutation wasrestricted with HLA-A02, which indicated HLA-I associated CD8~+T cell pressure was themajor driving force for viral evolution of. HLA-I restriced HCV NS3region CD8~+T cellepitope (HCV genotype1b) were predicted and predicted four HLA-I positive HCV NS3region CD8~+T cell epitope mutation frequence have higher tendency than HLA-I negative.
引文
[1] Hepatitis C--global prevalence (update). Wkly Epidemiol Rec,1999.74(49): p.425-7.
    [2] Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G, Goncales FL Jr, Haussinger D,Diago M, Carosi G, Dhumeaux D, Craxi A, Lin A, Hoffman J, Yu J. Peginterferon alfa-2aplus ribavirin for chronic hepatitis C virus infection. N Engl J Med2002;347:975-982.
    [3] Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R,Goodman ZD, Koury K, Ling M, Albrecht JK. Peginterferon alfa-2b plus ribavirincompared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C:a randomised trial. Lancet2001;358:958-965.
    [4] Lindenbach BD, Rice CM. Unravelling hepatitis C virus replication from genome tofunction. Nature2005;436:933-938.
    [5] Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, Zhao Z, Murthy K, HabermannA, Krausslich HG, Mizokami M, Bartenschlager R, Liang TJ. Production of infectioushepatitis C virus in tissue culture from a cloned viral genome. Nat Med2005;11:791-796.
    [6] Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL, Liu CC, Maruyama T,Hynes RO, Burton DR, McKeating JA, Rice CM. Complete replication of hepatitis Cvirus in cell culture. Science2005;309:623-626.
    [7] Zhong J, Gastaminza P, Cheng G, Kapadia S, Kato T, Burton DR, Wieland SF, UprichardSL, Wakita T, Chisari FV. Robust hepatitis C virus infection in vitro. Proc Natl Acad SciUSA2005;102:9294-9299.
    [8] Yamanaka, T., M. Uchida, and T. Doi, Innate form of HCV core protein plays animportant role in the localization and the function of HCV core protein. Biochem BiophysRes Commun,2002.294(3): p.521-7.
    [9] Arai, M., et al.,[Analysis of HCV core protein function using HCV core transgenic mice].Nihon Rinsho,2004.62Suppl7(Pt1): p.135-8.
    [10]Bian, T., et al., HCV envelope protein function is dependent on the peptides preceding theglycoproteins. Biochem Biophys Res Commun,2009.378(1): p.118-22.
    [11]Ishikawa, K., T. Koyama, and N. Isobe,[HCV associated antibodies (anti-HCV, anti-HCVcore, anti-C14, anti-NS)]. Nihon Rinsho,2010.68Suppl6: p.446-9.
    [12]Zhang, Z.X., et al., Antigenic structure of the complete nonstructural (NS)2and5proteins of hepatitis C virus (HCV): anti-HCV NS2and NS5antibody reactivities inrelation to HCV serotype, presence of HCV RNA, and acute HCV infection. Clin DiagnLab Immunol,1994.1(3): p.290-4.
    [13]Feng, D.Y., et al., Effect of HCV NS(3) protein on p53protein expression in hepatocarcinogenesis. World J Gastroenterol,1999.5(1): p.45-46.
    [14]Wilson, J.J., et al., Characterization of simple and complex hepatitis C virus quasispeciesby heteroduplex gel shift analysis: correlation with nucleotide sequencing. J Gen Virol,1995.76(Pt7): p.1763-71.
    [15]Farci P, Purcell RH. Clinical significance of hepatitis C virus genotypes and quasispecies.Semin Liver Dis2000;20:103-126.
    [16]Nainan OV, Lu L, Gao FX, Meeks E, Robertson BH, Margolis HS. Selective transmissionof hepatitis C virus genotypes and quasispecies in humans and experimentally infectedchimpanzees. J Gen Virol2006;87:83-91.
    [17]Korenaga, M., et al., A possible role of hypervariable region1quasispecies in escape ofhepatitis C virus particles from neutralization. J Viral Hepat,2001.8(5): p.331-40.
    [18]Yamagushi K, Tanaka E, Higashi K, et al. Adaptation of hepatitis C virus for persistentinfect i on in patients with acute hepatitis. Hepatology,1994,106:1344-1348.
    [19]Racanelli, V. and B. Rehermann, Hepatitis C virus infection: when silence is deception.Trends Immunol,2003.24(8): p.456-64.
    [20]Shoukry, N.H., et al., Memory CD8+T cells are required for protection from persistenthepatitis C virus infection. J Exp Med,2003.197(12): p.1645-55.
    [21]Stuart C. Ray, Liam Fanning et al. Divergent and convergent evolution after acommon-source outbreak of hepatitis C virus. JEM. June6,2005Vol.201, No.11,1753–1759.
    [22] Andrea L. Cox, Timothy Mosbruger, et al. Cellular immune selection with hepatitis Cvirus persistence in humans. JEM. June6,2005Vol.201, No.11,1741–1752.
    [23] McKierman SM, Haqan R, et al. Distinct MHC class I and II alleles are associated withhepatitis C viral clearance, originating from a single source. Hepatology.2004Jul;40(1):108-14.
    [24]Verstrepen, B.E., et al., Clearance of genotype1b hepatitis C virus in chimpanzees in thepresence of vaccine-induced E1-neutralizing antibodies. J Infect Dis,2011.204(6): p.837-44.
    [25]Roohvand, F. and N. Kossari, Advances in hepatitis C virus vaccines, Part one: Advancesin basic knowledge for hepatitis C virus vaccine design. Expert Opin Ther Pat,2011.21(12): p.1811-30.
    [26]Sillanpaa, M., et al., Hepatitis C virus core, NS3, NS4B and NS5A are the majorimmunogenic proteins in humoral immunity in chronic HCV infection. Virol J,2009.6: p.84.
    [27]Dahari, H., S.M. Feinstone, and M.E. Major, Meta-analysis of hepatitis C virus vaccineefficacy in chimpanzees indicates an importance for structural proteins. Gastroenterology,2010.139(3): p.965-74.
    [28]Li, D., et al.,[Forecasting of hepatitis C virus CD8+T细胞epitopes and design ofmulti-epitopes vaccine]. Zhonghua Gan Zang Bing Za Zhi,2009.17(10): p.786-7.
    [29]Lechner, F., et al., Analysis of successful immune responses in persons infected withhepatitis C virus. J Exp Med,2000.191(9): p.1499-512.
    [30]Thimme, R., et al., Determinants of viral clearance and persistence during acute hepatitisC virus infection. J Exp Med,2001.194(10): p.1395-406.
    [31]Thimme, R., et al., Viral and immunological determinants of hepatitis C virus clearance,persistence, and disease. Proc Natl Acad Sci U S A,2002.99(24): p.15661-8.
    [32]Mehta, S.H., et al., Protection against persistence of hepatitis C. Lancet,2002.359(9316):p.1478-83.
    [33]Shoukry, N.H., et al., Memory CD8+T cells are required for protection from persistenthepatitis C virus infection. J Exp Med,2003.197(12): p.1645-55.
    [34]Grakoui, A., et al., HCV persistence and immune evasion in the absence of memory Tcell help. Science,2003.302(5645): p.659-62.
    [35]McKiernan, S.M., et al., Distinct MHC class I and II alleles are associated with hepatitisC viral clearance, originating from a single source. Hepatology,2004.40(1): p.108-14.
    [36]Erickson, A.L., et al., The outcome of hepatitis C virus infection is predicted by escapemutations in epitopes targeted by cytotoxic T lymphocytes. Immunity,2001.15(6): p.883-95.
    [37]Ghany, M.G., et al., Diagnosis, management, and treatment of hepatitis C: an update.Hepatology,2009.49(4): p.1335-74.
    [38]Carter, A.S., et al., Nested polymerase chain reaction with sequence-specific primerstyping for HLA-A,-B, and-C alleles: detection of microchimerism in DR-matchedindividuals. Blood,1999.94(4): p.1471-7.
    [39]Ohno, O., et al., New hepatitis C virus (HCV) genotyping system that allows foridentification of HCV genotypes1a,1b,2a,2b,3a,3b,4,5a, and6a. J Clin Microbiol,1997.35(1): p.201-7.
    [40]Houghton, M. and S. Abrignani, Prospects for a vaccine against the hepatitis C virus.Nature,2005.436(7053): p.961-6.
    [41]Ruhl, M., et al., CD8+T-cell response promotes evolution of hepatitis C virusnonstructural proteins. Gastroenterology,2011.140(7): p.2064-73.
    [42]Cox, A.L., et al., Comprehensive analyses of CD8+T cell responses during longitudinalstudy of acute human hepatitis C. Hepatology,2005.42(1): p.104-12.
    [43]Habib, M., et al., Hepatitis C virus infection in a community in the Nile Delta: risk factorsfor seropositivity. Hepatology,2001.33(1): p.248-53.
    [44]Zeng, Y., et al., Hepatitis C virus amino acid sequence diversity correlates with theoutcome of combined interferon/ribavirin therapy in Chinese patients with chronichepatitis C. Arch Virol,2012.
    [45]Chang, K.M., et al., Immunological significance of cytotoxic T lymphocyte epitopevariants in patients chronically infected by the hepatitis C virus. J Clin Invest,1997.100(9): p.2376-85.
    [46]Frasca, L., et al., Hypervariable region1variants act as TCR antagonists for hepatitis Cvirus-specific CD4+T cells. J Immunol,1999.163(2): p.650-8.
    [47]Neumann AU, Lam NP, Dahari H, Gretch DR, Wiley TE, Layden TJ, Perelson AS.Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy.Science1998;282:103-107.
    [48]Dusheiko, G., et al., Hepatitis C virus genotypes: an investigation of type-specificdifferences in geographic origin and disease. Hepatology,1994.19(1): p.13-8.
    [49]Farci, P., J. Bukh, and R.H. Purcell, The quasispecies of hepatitis C virus and the hostimmune response. Springer Semin Immunopathol,1997.19(1): p.5-26.
    [50]Bokharaei Salim, F., et al., Distribution of different hepatitis C virus genotypes in patientswith hepatitis C virus infection. World J Gastroenterol,2010.16(16): p.2005-9.
    [51]Torres, H.A., et al., Hepatitis C virus genotype distribution varies by underlying diseasestatus among patients in the same geographic region: A retrospective multicenter study. JClin Virol,2012.
    [52]Chancey, C., et al., Distribution of hepatitis C virus in circulating blood components fromblood donors. Vox Sang,2012.
    [53]Ramos-Sanchez Mdel, C. and F.J. Martin-Gil,[Changes in the distribution of hepatitis Cvirus (HCV) genotypes over the1999-2010period in northern Valladolid, Spain]. RevEsp Salud Publica,2011.85(2): p.227-30.
    [54]Kabir, A., S.M. Alavian, and H. Keyvani, Distribution of hepatitis C virus genotypes inpatients infected by different sources and its correlation with clinical and virologicalparameters: a preliminary study. Comp Hepatol,2006.5: p.4.
    [55]Berg, T., et al., Distribution of hepatitis C virus genotypes in German patients withchronic hepatitis C: correlation with clinical and virological parameters. J Hepatol,1997.26(3): p.484-91.
    [56]Deng, J., et al.,[Identification and typing for adenovirus by multiplex nest-PCR].Zhonghua Liu Xing Bing Xue Za Zhi,2007.28(8): p.781-4.
    [57]Kim, O., Development of in situ nest PCR and comparison of five molecular biologicaldiagnostic methods for the detection of intracellular viral DNAs in paraffin sections. J VetMed Sci,2003.65(2): p.231-5.
    [58]Yuan, S.H., F. Jin, and H.F. Huang,[Detection of multiple loci in single cell by primerextension preamplification and nest PCR]. Zhejiang Da Xue Xue Bao Yi Xue Ban,2002.31(3): p.145-148.
    [59]Yan, L., et al.,[Analysis of different methods of extracting DNA from paraffin-embeddedtissues and the application of nest PCR]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,2011.28(4): p.795-9.
    [60]Eksioglu, E.A., Hepatitis C Virus' initial encounters: mechanisms of innate immunity.Front Biosci,2012.17: p.281-99.
    [61]Naggie, S., et al., Dysregulation of innate immunity in HCV genotype1IL28Bunfavorable genotype patients: Impaired viral kinetics and therapeutic response.Hepatology,2012.
    [62]Li, K., Regulation of interferon regulatory factor3-dependent innate immunity by theHCV NS3/4A protease. Methods Mol Biol,2009.510: p.211-26.
    [63]Evans, J.D. and C. Seeger, Cardif: a protein central to innate immunity is inactivated bythe HCV NS3serine protease. Hepatology,2006.43(3): p.615-7.
    [64]Ebihara, T., M. Matsumoto, and T. Seya, HCV and innate immunity. Uirusu,2008.58(1):p.19-26.
    [65]Folgori, A., et al., A T-cell HCV vaccine eliciting effective immunity against heterologousvirus challenge in chimpanzees. Nat Med,2006.12(2): p.190-7.
    [66]Takikawa, S., Y. Matsuura, and T. Miyamura,[The present studies of the development ofHCV vaccine]. Nihon Rinsho,2001.59(7): p.1379-83.
    [67]Zeng, R., et al., A novel combined vaccine candidate containing epitopes of HCV NS3,core and E1proteins induces multi-specific immune responses in BALB/c mice. AntiviralRes,2009.84(1): p.23-30.
    [68]Li, W., et al., Priming and stimulation of hepatitis C virus-specific CD4+and CD8+Tcells against HCV antigens NS4, NS5a or NS5b from HCV-naive individuals:implications for prophylactic vaccine. Int Immunol,2008.20(1): p.89-104.
    [69]Schlaphoff, V., et al., Functional and phenotypic characterization ofpeptide-vaccine-induced HCV-specific CD8+T cells in healthy individuals and chronichepatitis C patients. Vaccine,2007.25(37-38): p.6793-806.
    [70]Lauer, G.M. and R.T. Chung, Vaccine-induced T-cell responses against HCV: one steptaken, more to follow. Gastroenterology,2007.132(4): p.1626-8.
    [71]Eckels, D.D., MHC: function and implication on vaccine development. Vox Sang,2000.78Suppl2: p.265-7.
    [72]Eckels, D.D., P. Flomenberg, and J.C. Gill, Hepatitis C virus: models ofimmunopathogenesis and prophylaxis. Transfusion,1996.36(9): p.836-44.
    [73]Eckels, D.D., et al., Identification of antigenic escape variants in an immunodominantepitope of hepatitis C virus. Int Immunol,1999.11(4): p.577-83.
    [74]Eckels, D.D., et al., Epitopes of the NS3protein of hepatitis C virus: recognition inHLA-DR4transgenic mice. Immunol Cell Biol,2002.80(1): p.106-12.
    [75]Eckels, D.D., et al., Immunobiology of hepatitis C virus (HCV) infection: the role of CD4T cells in HCV infection. Immunol Rev,2000.174: p.90-7.
    [76]MacDonald, A.J., et al., CD4T helper type1and regulatory T cells induced against thesame epitopes on the core protein in hepatitis C virus-infected persons. J Infect Dis,2002.185(6): p.720-7.
    [77]Weiner A, Erickson AL, Kansopon J, Crawford K, Muchmore E, Hughes AL, HoughtonM, Walker CM. Persistent hepatitis C virus infection in a chimpanzee is associated withemergence of a cytotoxic T lymphocyte escape variant. Proc Natl Acad Sci USA1995;92:2755-2759.
    [78]Wilson, J.J., et al., Characterization of simple and complex hepatitis C virus quasispeciesby heteroduplex gel shift analysis: correlation with nucleotide sequencing. J Gen Virol,1995.76(Pt7): p.1763-71.
    [79]Nainan OV, Lu L, Gao FX, Meeks E, Robertson BH, Margolis HS. Selective transmissionof hepatitis C virus genotypes and quasispecies in humans and experimentally infectedchimpanzees. J Gen Virol2006;87:83-91.
    [80]Puig M, Mihalik K, Tilton JC, Williams O, Merchlinsky M, Connors M, Feinstone SM,Major ME. CD4+immune escape and subsequent T-cell failure following chimpanzeeimmunization against hepatitis C virus. Hepatology2006;44:736-745.
    [81]Bowen, D.G. and C.M. Walker, Mutational escape from CD8+T cell immunity: HCVevolution, from chimpanzees to man. J Exp Med,2005.201(11): p.1709-14.
    [82]Chang KM, Rehermann B, McHutchison JG, Pasquinelli C, Southwood S, Sette A,Chisari FV. Immunological significance of cytotoxic T lymphocyte epitope variants inpatients chronically infected by the hepatitis C virus. J Clin Invest1997;100:2376-2385.
    [83]Guglietta S, Garbuglia AR, Pacciani V, Scotta C, Perrone MP, Laurenti L, Spada E, MeleA, Capobianchi MR, Taliani G, Fol-gori A, Vitelli A, Ruggeri L, Nicosia A, Piccolella E,Del Porto P. Positive selection of cytotoxic T lymphocyte escape variants during acutehepatitis C virus infection. Eur J Immunol2005;35:2627-2637.
    [84]Cox AL, Mosbruger T, Mao Q, Liu Z, Wang XH, Yang HC, Sidney J, Sette A, Pardoll D,Thomas DL, Ray SC. Cellular immune selection with hepatitis C virus persistence inhumans. J Exp Med2005;201:1741-1752.
    [85]Tester I, Smyk-Pearson S, Wang P, Wertheimer A, Yao E, Lewinsohn DM, Tavis JE,Rosen HR. Immune evasion versus recovery after acute hepatitis C virus infection from ashared source. J Exp Med2005;201:1725-1731.
    [86]Timm J, Lauer GM, Kavanagh DG, Sheridan I, Kim AY, Lucas M, Pillay T, Ouchi K,Reyor LL, Schulze zur Wiesch J, Gandhi RT, Chung RT, Bhardwaj N, Klenerman P,Walker BD, Allen TM. CD8epitope escape and reversion in acute HCV infection. J ExpMed2004;200:1593-1604.
    [87]Pillai, V., et al., Clinical responders to antiviral therapy of chronic HCV infection showelevated antiviral CD4+and CD8+T-cell responses. J Viral Hepat,2007.14(5): p.318-29.
    [88]Moore CB, John M, James IR, Christiansen FT, Witt CS, Mallal SA. Evidence of HIV-1adaptation to HLA-restricted immune responses at a population level. Science2002;296:1439-1443.
    [89]Ray SC, Fanning L, Wang XH, Netski DM, Kenny-Walsh E, Thomas DL. Divergent andconvergent evolution after a common-source outbreak of hepatitis C virus. J Exp Med2005;201:1753-1759.
    [90]Gaudieri S, Rauch A, Park LP, Freitas E, Herrmann S, Jeffrey G, Cheng W, Pfafferott K,Naidoo K, Chapman R, Battegay M, Weber R, Telenti A, Furrer H, James I, Lucas M,Mallal SA. Evidence of viral adaptation to HLA class I-restricted immune pressure inchronic hepatitis C virus infection. J Virol2006;80:11094-11104.
    [91]Timm J, Li B, Daniels MG, Bhattacharya T, Reyor LL, Allgaier R, Kuntzen T, Fischer W,Nolan BE, Duncan J, Schulze Zur Wiesch J, Kim AY, Frahm N, Brander C, Chung RT,Lauer GM, Korber BT, Al len TM. Human leukocyte antigen-associated sequencepolymorphisms in hepatitis C virus reveal reproducible immune responses and constraintson viral evolution. Hepatology2007;46:339-349.
    [92]Leslie A, KavanaghD,Honeyborne I, Pfafferott K, Edwards C, Pillay T, etal.Transmission and accumulation of CD8+T cell escape variants drive negativeassociations between HIV polymorphisms and HLA. J Exp Med2005;201:891-902.
    [93]Altfeld M, Allen TM, Kalife ET, Frahm N, Addo MM, Mothe BR, et al. The majority ofcurrently circulating human immunodeficiency virus type1clade B viruses fail to primecytotoxic T-lymphocyte responses against an otherwise immunodominantHLA-A02-restricted epitope: implications for vaccine design. J Virol2005;79:5000-5005.
    [94]Trachtenberg E, Korber B, Sollars C, Kepler TB, Hraber PT, Hayes E, et al. Advantageof rareHLA supertype in HIV disease progression. NatMed2003;9:928-935.
    [95]Moore CB, John M, James IR, Christiansen FT, Witt CS, Mallal SA. Evidence of HIV-1adaptation to HLA-restricted immune responses at a population level. Science2002;296:1439-1443.
    [96]Ngandu, N.G., et al. CD8+T cell response to HIV type1subtype C is poorly predicted byknown epitope motifs. AIDS Res Hum Retroviruses,2007.23(8): p.1033-41.
    [97]Louzoun, Y., T. Vider, and M. Weigert, T-cell epitope repertoire as predicted from humanand viral genomes. Mol Immunol,2006.43(6): p.559-69.
    [98]Meister, G.E., et al. Two novel T cell epitope prediction algorithms based onMHC-binding motifs; comparison of predicted and published epitopes fromMycobacterium tuberculosis and HIV protein sequences. Vaccine,1995.13(6): p.581-91.
    1. Hepatitis C--global prevalence (update). Wkly Epidemiol Rec,2000.75(3): p.18-9.
    2. Chak, E., et al., Hepatitis C virus infection in USA: an estimate of true prevalence. LiverInt,2011.31(8): p.1090-101.
    3. Kimura M. Evolutionary rate at the molecular level. Nature1968;217:624-626.
    4. Simmonds P. Genetic diversity and evolution of hepatitis C virus--15years on. J GenVirol2004;85:3173-3188.
    5. Kao, J.H., et al., Quasispecies of hepatitis C virus and genetic drift of the hypervariableregion in chronic type C hepatitis. J Infect Dis,1995.172(1): p.261-4.
    6. Kim, M.J. and J.Y. Yoo, Inhibition of hepatitis C virus replication by IFN-mediatedISGylation of HCV-NS5A. J Immunol,2010.185(7): p.4311-8.
    7. Broering, R., et al., The interferon stimulated gene15functions as a proviral factor for thehepatitis C virus and as a regulator of the IFN response. Gut,2010.59(8): p.1111-9.
    8. Li K, Foy E, Ferreon JC, Nakamura M, Ferreon AC, Ikeda M, Ray SC, Gale M Jr, LemonSM. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of theToll-like receptor3adaptor protein TRIF. Proc Natl Acad Sci USA2005;102:2992-2997.
    9. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J.Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis Cvirus. Nature2005;437:1167-1172.
    10. Breiman A, Grandvaux N, Lin R, Ottone C, Akira S, Yoneyama M, Fujita T, Hiscott J,Meurs EF. Inhibition of RIG-I-dependent signaling to the interferon pathway duringhepatitis C virus expression and restoration of signaling by IKKepsilon. J Virol2005;79:3969-3978.
    11. Gong, G.Z., et al., Hepatitis C virus non-structural5A abrogates signal transducer andactivator of transcription-1nuclear translocation induced by IFN-alpha throughdephosphorylation. World J Gastroenterol,2007.13(30): p.4080-4.
    12. Taguchi, T., et al., Hepatitis C virus NS5A protein interacts with2',5'-oligoadenylatesynthetase and inhibits antiviral activity of IFN in an IFN sensitivity-determiningregion-independent manner. J Gen Virol,2004.85(Pt4): p.959-69.
    13. Foy, E., et al., Control of antiviral defenses through hepatitis C virus disruption of retinoicacid-inducible gene-I signaling. Proc Natl Acad Sci U S A,2005.102(8): p.2986-91.
    14. Khakoo, S.I., et al., HLA-And NK cell inhibitory receptor genes in resolving hepatitis Cvirus infection. Science,2004.305(5685): p.872-4.
    15. Rodrigues, A.F., et al., Down-regulation of CD81in human cells producing HCV-E1/E2retroVLPs. BMC Proc,2011.5Suppl8: p. P72.
    16. van Doorn, L.J., et al., Sequence evolution of the hypervariable region in the putativeenvelope region E2/NS1of hepatitis C virus is correlated with specific humoral immuneresponses. J Virol,1995.69(2): p.773-8.
    17. Kojima, M., et al., Influence of antibodies to the hypervariable region of E2/NS1glycoprotein on the selective replication of hepatitis C virus in chimpanzees. Virology,1994.204(2): p.665-72.
    18. Booth JC, Kumar U, Webster D, Monjardino J, Thomas HC. Comparison of the rate ofsequence variation in the hypervariable region of E2/NS1region of hepatitis C virus innormal and hypogammaglobulinemic patients. Hepatology1998;27:223-227.
    19. Christie JM, Chapel H, Chapman RW, Rosenberg WM. Immune selection and geneticsequence variation in core and envelope regions of hepatitis C virus. Hepatology1999;30:1037-1044.
    20. Ray SC, Mao Q, Lanford RE, Bassett S, Laeyendecker O, Wang YM, Thomas DL.Hypervariable region1sequence stability during hepatitis C virus replication inchimpanzees. J Virol2000;74:3058-3066.
    21. Scotta, C., et al., Influence of specific CD4+T cells and antibodies on evolution ofhypervariable region1during acute HCV infection. J Hepatol,2008.48(2): p.216-28.
    22. Diepolder, H.M., et al., Immunodominant CD4+T-cell epitope within nonstructuralprotein3in acute hepatitis C virus infection. J Virol,1997.71(8): p.6011-9.
    23. Ruys, T.A., et al., HCV-specific T-cell responses in injecting drug users: evidence forprevious exposure to HCV and a role for CD4+T cells focussing on nonstructural proteinsin viral clearance. J Viral Hepat,2008.15(6): p.409-20.
    24. Mehta, S.H., et al., Protection against persistence of hepatitis C. Lancet,2002.359(9316):p.1478-83.
    25. Shoukry, N.H., et al., Memory CD8+T cells are required for protection from persistenthepatitis C virus infection. J Exp Med,2003.197(12): p.1645-55.
    26. Eckels DD, Zhou H, Bian TH, Wang H. Identification of antigenic escape variants in animmunodominant epitope of hepatitis C virus. Int Immunol1999;11:577-583.
    27. Wang H, Eckels DD. Mutations in immunodominant T cell epitopes derived from thenonstructural3protein of hepatitis C virus have the potential for generating escapevariants that may have important consequences for T cell recognition. J Immunol1999;162:4177-4183.
    28. Puig M, Mihalik K, Tilton JC, Williams O, Merchlinsky M, Connors M, Feinstone SM,Major ME. CD4+immune escape and subsequent T-cell failure following chimpanzeeimmunization against hepatitis C virus. Hepatology2006;44:736-745.
    29. Shin, E.C., et al., The kinetics of hepatitis C virus-specific CD8T-cell responses in theblood mirror those in the liver in acute hepatitis C virus infection. J Virol,2008.82(19): p.9782-8.
    30. Gruener NH, Gerlach TJ, Jung MC, Diepolder HM, Schirren CA, Schraut WW, et al.Association of hepatitis C virus-specific CD8+T cells with viral clearance in acutehepatitis C. J Infect Dis2000;181:1528–36.
    31. Kuntzen, T., et al., Viral sequence evolution in acute hepatitis C virus infection. J Virol,2007.81(21): p.11658-68.
    32. Francavilla, V., et al., Subversion of effector CD8+T cell differentiation in acute hepatitisC virus infection: exploring the immunological mechanisms. Eur J Immunol,2004.34(2):p.427-37.
    33. Sobao, Y., et al., Visual demonstration of hepatitis C virus-specific memory CD8(+) T-cellexpansion in patients with acute hepatitis C. Hepatology,2001.33(1): p.287-94.
    34. Neumann-Haefelin, C., et al., Virological and immunological determinants of intrahepaticvirus-specific CD8+T-cell failure in chronic hepatitis C virus infection. Hepatology,2008.47(6): p.1824-36.
    35. Pircher, H., D. Moskophidis, U. Rohrer, K.Burki, H. Hengartner, and R.M. Zinkerna-gel.1990. Viral escape by selection of cyto-toxic T cell-resistant virus variants in vivo.Nature.346:629–633.
    36. Phillips, R.E., S. Rowland-Jones, D.F.Nixon, F.M. Gotch, J.P. Edwards, A.O.Ogunlesi,J.G. Elvin, J.A. Rothbard, C.R.Bangham, C.R. Rizza, et al.1991. Humanimmunodeficiency virus genetic variation that can escape cytotoxic T cell recognition.Nature.354:453–459.
    37. Van Baalen, C.A., et al., Kinetics of antiviral activity by human immunodeficiency virustype1-specific cytotoxic T lymphocytes (CD8+T cell) and rapid selection of CD8+T cellescape virus in vitro. J Virol,1998.72(8): p.6851-7.
    38. Borrow, P., et al., Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes(CD8+T cells) during primary infection demonstrated by rapid selection of CD8+T cellescape virus. Nat Med,1997.3(2): p.205-11.
    39. Allen, T.M., D.H. O’Connor, P. Jing, J.L. Dzuris, B.R. Mothe, T.U. Vogel, E. Dunphy,M.E. Liebl, C. Emerson, N. Wilson, et al.2000. Tat-specific cytotoxic T lymphocytesselect for SIV escape variants during resolution of primary viraemia. Nature.407:386–390.
    40. Goulder, P.J., R.E. Phillips, R.A. Colbert, S. McAdam, G. Ogg, M.A. Nowak, P.Giangrande, G. Luzzi, B. Morgan, A. Edwards, et al.1997. Late escape from animmunodominant cytotoxic T-lymphocyte response associated with progression to AIDS.Nat. Med.3:212–217.
    41. Shoukry, N.H., A.G. Cawthon, and C.M. Walker.2004. Cell-mediated immunity and theoutcome of hepatitis C virus infection. Annu. Rev. Microbiol.58:391–424.
    42. Weiner, A., A.L. Erickson, J. Kansopon, K. Crawford, E. Muchmore, A.L. Hughes, M.Houghton, and C.M. Walker.1995. Persistent hepatitis C virus infection in a chimpanzeeis associated with emergence of a cytotoxic T lymphocyte escape variant. Proc. Natl.Acad. Sci. USA.92:2755–2759.
    43. Erickson AL, Kimura Y, Igarashi S, Eichelberger J, Houghton M, Sidney J, McKinney D,Sette A, Hughes AL, Walker CM. The outcome of hepatitis C virus infection is predictedby escape mutations in epitopes targeted by cytotoxic T lymphocytes. Immunity2001;15:883-895.
    44. Lauer, G.M., et al., Full-breadth analysis of CD8+T-cell responses in acute hepatitis Cvirus infection and early therapy. J Virol,2005.79(20): p.12979-88.
    45. McGovern, B.H., et al., Acute hepatitis C virus infection in incarcerated injection drugusers. Clin Infect Dis,2006.42(12): p.1663-70.
    46. Uebelhoer, L., et al., Stable cytotoxic T cell escape mutation in hepatitis C virus is linkedto maintenance of viral fitness. PLoS Pathog,2008.4(9): p. e1000143.
    47. Guglietta S, Garbuglia AR, Pacciani V, Scotta C, Perrone MP, Laurenti L, Spada E,Mele A, Capobianchi MR, Taliani G, Folgori A, Vitelli A, Ruggeri L, Nicosia A,Piccolella E, Del Porto P. Positive selection of cytotoxic T lymphocyte escape variantsduring acute hepatitis C virus infection. Eur J Immunol2005;35:2627-2637.
    48. Cox AL, Mosbruger T, Mao Q, Liu Z, Wang XH, Yang HC, Sidney J, Sette A, Pardoll D,Thomas DL, Ray SC. Cellular immune selection with hepatitis C virus persistence inhumans. J Exp Med2005;201:1741-1752.
    49. Cox, A.L., et al., Comprehensive analyses of CD8+T cell responses during longitudinalstudy of acute human hepatitis C. Hepatology,2005.42(1): p.104-12.
    50. Timm J, Lauer GM, Kavanagh DG, Sheridan I, Kim AY, Lucas M, Pillay T, Ouchi K,Reyor LL, Schulze zur Wiesch J, Gandhi RT, Chung RT, Bhardwaj N, Klenerman P,Walker BD, Allen TM. CD8epitope escape and reversion in acute HCV infection. J ExpMed2004;200:1593-1604.
    51. Moore CB, John M, James IR, Christiansen FT, Witt CS, Mallal SA. Evidence of HIV-1adaptation to HLA-restricted immune responses at a population level. Science2002;296:1439-1443.
    52. Gaudieri S, Rauch A, Park LP, Freitas E, Herrmann S, Jeffrey G, Cheng W, Pfafferott K,Naidoo K, Chapman R, Battegay M, Weber R, Telenti A, Furrer H, James I, Lucas M,Mallal SA. Evidence of viral adaptation to HLA class I-restricted immune pressure inchronic hepatitis C virus infection. J Virol2006;80:11094-11104.
    53. Timm J, Li B, Daniels MG, Bhattacharya T, Reyor LL, Allgaier R, Kuntzen T, Fischer W,Nolan BE, Duncan J, Schulze Zur Wiesch J, Kim AY, Frahm N, Brander C, Chung RT,Lauer GM, Korber BT, Al len TM. Human leukocyte antigen associated sequencepolymorphisms in hepatitis C virus reveal reproducible immune responses and constraintson viral evolution. Hepatology2007;46:339-349.
    54. Ray, S.C., L. Fanning, X.-H. Wang, D.M.Netski, E. Kenny-Walsh, and D.L. Thomas.Divergent and convergent evolution after a common-source outbreak of hepatitis C virus.J. Exp. Med.201:1753–1759.
    55. Tester, I., S. Smyk-Pearson, P. Wang, A. Wertheimer, E. Yao, D.M. Lewinsohn, J.E. Tavis,and H.R. Rosen. Immune evasion versus recovery after acute hepatitis C virus infectionfrom a shared source. J. Exp. Med.201:1725–1731.
    56. Eckels, D.D., et al., Epitopes of the NS3protein of hepatitis C virus: recognition inHLA-DR4transgenic mice. Immunol Cell Biol,2002.80(1): p.106-12.
    57. Salloum, S., et al., Escape from HLA-B*08-restricted CD8T cells by hepatitis C virus isassociated with fitness costs. J Virol,2008.82(23): p.11803-12.
    58. Kurokohchi, K., et al., Use of recombinant protein to identify a motif-negative humancytotoxic T-cell epitope presented by HLA-A02in the hepatitis C virus NS3region. JVirol,1996.70(1): p.232-40.
    59. Neumann-Haefelin, C., et al., Dominant influence of an HLA-B27restricted CD8+T cellresponse in mediating HCV clearance and evolution. Hepatology,2006.43(3): p.563-72.
    60. Urbani, S., B. Amadei, P. Fisicaro, M. Pilli, G. Missale, A. Bertoletti, and C. Ferrari.2005.Heterologous T cell immunity in severe hepatitis C virus infection. J. Exp. Med.201:675–680.
    61. Meyer-Olson, D., N.H. Shoukry, K.W. Brady, H. Kim, D.P. Olson, K. Hartman, A.K.Shintani, C.M. Walker, and S.A. Kalams.2004. Limited T cell receptor diversity ofHCV-specific T cell responses is associated with CD8+T cell escape. J. Exp. Med.200:307–319.
    62. O'Connor, D.H., et al., A dominant role for CD8+-T-lymphocyte selection in simianimmunodeficiency virus sequence variation. J Virol,2004.78(24): p.14012-22.
    63. Fortgang, I.S., et al., Variation in simian immunodeficiency virus env V1region in simianAIDS-associated lymphoma. AIDS Res Hum Retroviruses,2001.17(5): p.459-65.
    64. Evans, D.T., et al., Virus-specific cytotoxic T-lymphocyte responses select for amino-acidvariation in simian immunodeficiency virus Env and Nef. Nat Med,1999.5(11): p.1270-6.
    65. Chayama K, Tsubota A, Kobayashi M, Okamoto K, Hashimoto M, Miyano Y, Koike H,Kobayashi M, Koida I, Arase Y, Saitoh S, Suzuki Y, Murashima N, Ikeda K, Kumada H.Pretreatment virus load and multiple amino acid substitutions in the interferonsensitivity-determining region predict the outcome of interferon treatment in patients withchronic genotype1b hepatitis C virus infection. Hepatology1997;25:745-749.
    66. Munoz de Rueda, P., et al., Mutations in E2-PePHD, NS5A-PKRBD, NS5A-ISDR, andNS5A-V3of hepatitis C virus genotype1and their relationships to pegylatedinterferon-ribavirin treatment responses. J Virol,2008.82(13): p.6644-53.
    67. Gale M Jr, Blakely CM, Kwieciszewski B, Tan SL, Dossett M, Tang NM, Korth MJ,Polyak SJ, Gretch DR, Katze MG. Control of PKR protein kinase by hepatitis C virusnonstructural5A protein: molecular mechanisms of kinase regulation. Mol Cell Biol1998;18:5208-5218.
    68. Aus dem Siepen M, Oniangue-Ndza C, Wiese M, Ross S, Roggendorf M, Viazov S.Interferon-alpha and ribavirin resistance of Huh7cells transfected with HCV subgenomicreplicon. Virus Res2007;125:109-113.
    69. Lutchman G, Danehower S, Song BC, Liang TJ, Hoofnagle JH, Thomson M, Ghany MG.Mutation rate of the hepatitis C virus NS5B in patients undergoing treatment withribavirin monotherapy. Gastroenterology2007;132:1757-1766.
    70. Young KC, Lindsay KL, Lee KJ, Liu WC, He JW, Milstein SL, Lai MM. Identification ofa ribavirin-resistant NS5B mutation of hepatitis C virus during ribavirin monotherapy.Hepatology2003;38:869-878.
    71. Hinrichsen H, Benhamou Y, Wedemeyer H, Reiser M, Sentjens RE, Calleja JL, Forns X,Erhardt A, Cronlein J, Chaves RL, Yong CL, Nehmiz G, Steinmann GG. Short-termantiviral efficacy of BILN2061, a hepatitis C virus serine protease inhibitor, in hepatitisC genotype1patients. Gastroenterology2004;127:1347-1355.
    72. Thibeault, D., et al., Sensitivity of NS3serine proteases from hepatitis C virus genotypes2and3to the inhibitor BILN2061. J Virol,2004.78(14): p.7352-9.
    73. Pawlotsky JM, Chevaliez S, McHutchison JG. The hepatitis C virus life cycle as a targetfor new antiviral therapies. Gastroenterology2007;132:1979-1998.
    74. Tsantrizos, Y.S., The design of a potent inhibitor of the hepatitis C virus NS3protease:BILN2061--from the NMR tube to the clinic. Biopolymers,2004.76(4): p.309-23.
    75. Lin, C., et al., In vitro studies of cross-resistance mutations against two hepatitis C virusserine protease inhibitors, VX-950and BILN2061. J Biol Chem,2005.280(44): p.36784-91.
    76. Kobayashi, M., et al., Reversion in vivo after inoculation of a molecular proviral DNAclone of simian immunodeficiency virus with a cytotoxic-T-lymphocyte escape mutation.J Virol,2005.79(17): p.11529-32.
    77. Peyerl, F.W., H.S. Bazick, M.H. Newberg, D.H. Barouch, J. Sodroski, and N.L. Letvin.
    2004. Fitness costs limit viral escape from cytotoxic T lymphocytes at a structurallyconstrained epitope. J. Virol.78:13901–13910.
    78. Allen, T.M., et al., Selection, transmission, and reversion of an antigen-processingcytotoxic T-lymphocyte escape mutation in human immunodeficiency virus type1infection. J Virol,2004.78(13): p.7069-78.
    79. Leslie, A.J., et al., HIV evolution: CD8+T cell escape mutation and reversion aftertransmission. Nat Med,2004.10(3): p.282-9.
    80. Kobayashi, M., et al., Reversion in vivo after inoculation of a molecular proviral DNAclone of simian immunodeficiency virus with a cytotoxic-T-lymphocyte escape mutation.J Virol,2005.79(17): p.11529-32.
    81. Crawford, H., et al., Compensatory mutation partially restores fitness and delaysreversion of escape mutation within the immunodominant HLA-B*5703-restricted Gagepitope in chronic human immunodeficiency virus type1infection. J Virol,2007.81(15):p.8346-51.
    82. Ammaranond, P., et al., A new variant cytotoxic T lymphocyte escape mutation inHLA-B27-positive individuals infected with HIV type1. AIDS Res Hum Retroviruses,2005.21(5): p.395-7.
    83. Martin, J.L., et al., Biochemical analysis of human immunodeficiency virus-1reversetranscriptase containing a mutation at position lysine263. J Biol Chem,1993.268(4): p.2565-70.
    84. Grambas S, Bennett MS, Hay AJ. Influence of amantadine resistance mutations on the pHregulatory function of the M2protein of influenza A viruses. Virology1992;191:541-549.
    85. Kurokohchi, K., et al., Use of recombinant protein to identify a motif-negative humancytotoxic T-cell epitope presented by HLA-A02in the hepatitis C virus NS3region. JVirol,1996.70(1): p.232-40.
    86. Altfeld, M., T.M. Allen, E.T. Kalife, N. Frahm, M.M. Addo, B.R. Mothe, A. Rathod, L.L.Reyor, J. Harlow, X.G. Yu, et al.2005. The majority of currently circulating humanimmunodeficiency virus type1clade B viruses fail to prime cytotoxic T-lymphocyteresponses against an other wise immunodominant HLA-A02-restricted epitope:implications for vaccine design. J. Virol.79:5000–5005.
    87. Leslie, A.J., K.J. Pfafferott, P. Chetty, R. Draenert, M.M. Addo, M. Feeney, Y. Tang, E.C.Holmes, T. Allen, J.G. Prado, et al.2004. HIV evolution: CD8+T cell escape mutationand reversion after transmission. Nat. Med.10:282–289.
    88. Yeh, W.W., et al., Compensatory substitutions restore normal core assembly in simianimmunodeficiency virus isolates with Gag epitope cytotoxic T-lymphocyte escapemutations. J Virol,2006.80(16): p.8168-77.
    89. Peyerl, F.W., et al., Use of molecular beacons for rapid, real-time, quantitative monitoringof cytotoxic T-lymphocyte epitope mutations in simian immunodeficiency virus. J ClinMicrobiol,2005.43(9): p.4773-9.
    90. Leslie, A., D. Kavanagh, I. Honeyborne, K. Pfafferott, C. Edwards, T. Pillay, L. Hilton, C.Thobakgale, D. Ramduth, R. Draenert, et al.2005. Transmission and accumulation ofCD8+T cell escape variants drive negative associations between HIV polymorphisms andHLA. J. Exp. Med.201:891–902.
    91. Seifert, U., H. Liermann, V. Racanelli, A. Halenius, M. Wiese, H. Wedemeyer, T. Ruppert,K. Rispeter, P. Henklein, A. Sijts, et al.2004. Hepatitis C virus mutation affectsproteasomal epitope processing. J. Clin. Invest.114:250–259.
    [1] Simmonds, P., Virology of hepatitis C virus. Clin Ther,1996.18Suppl B: p.9-36.
    [2] Miyanari, Y., et al., Hepatitis C virus non-structural proteins in the probable membranouscompartment function in viral genome replication. J Biol Chem,2003.278(50): p.50301-8.
    [3] Frick DN. The hepatitis C virus NS3protein: a model RNA helicase and potential drugtarget. Curr Issues Mol Biol2007;9:1-20.
    [4] Simmonds, P., The origin and evolution of hepatitis viruses in humans. J Gen Virol,2001.82(Pt4): p.693-712.
    [5] Boson, B., et al., A concerted action of hepatitis C virus p7and nonstructural protein2regulates core localization at the endoplasmic reticulum and virus assembly. PLoS Pathog,2011.7(7): p. e1002144.
    [6] Wozniak, A.L., et al., Intracellular proton conductance of the hepatitis C virus p7proteinand its contribution to infectious virus production. PLoS Pathog,2010.6(9): p. e1001087.
    [7] Tellinghuisen TL, Rice CM. Interaction between hepatitis C virus proteins and host cellfactors. Curr Opin Microbiol2002;5:419-427.
    [8] Xu Z, Choi J, Yen TS, Lu W, Strohecker A, Govindarajan S, Chien D, Selby MJ, Ou J.Synthesis of a novel hepatitis C virus protein by ribosomal frameshift. EMBO J2001;20:3840-3848.
    [9] Vargo, J., et al., Clinical specificity and sensitivity of a blood screening assay fordetection of HIV-1and HCV RNA. Transfusion,2002.42(7): p.876-85.
    [10]He, Y., S. Ferencik, and D. Luo,[Detection of replicative form of HCV RNA inperipheral blood leukocytes and its clinical significance]. Zhonghua Nei Ke Za Zhi,1995.34(7): p.459-62.
    [11]Kakumu, S.,[Clinical significance of measuring HCV-RNA levels in patients withchronic hepatitis C by IFN treatment, including combination therapy with ribavirin].Nihon Rinsho,2004.62Suppl7(Pt1): p.507-10.
    [12]Dusheiko, G., et al., Hepatitis C virus genotypes: an investigation of type-specificdifferences in geographic origin and disease. Hepatology,1994.19(1): p.13-8.
    [13]Farci, P., J. Bukh, and R.H. Purcell, The quasispecies of hepatitis C virus and the hostimmune response. Springer Semin Immunopathol,1997.19(1): p.5-26.
    [14]Kato, N., et al., Characterization of hypervariable regions in the putative envelope proteinof hepatitis C virus. Biochem Biophys Res Commun,1992.189(1): p.119-27.
    [15]Penin, F., et al., Conservation of the conformation and positive charges of hepatitis Cvirus E2envelope glycoprotein hypervariable region1points to a role in cell attachment.J Virol,2001.75(12): p.5703-10.
    [16]Hino, K., et al., Constrained genomic and conformational variability of the hypervariableregion1of hepatitis C virus in chronically infected patients. J Viral Hepat,2002.9(3): p.194-201.
    [17]Korenaga, M., et al., A possible role of hypervariable region1quasispecies in escape ofhepatitis C virus particles from neutralization. J Viral Hepat,2001.8(5): p.331-40.
    [18]Simmonds P, Bukh J, Combet C, et al. Consensus proposals for a unified system ofnomenclature of hepatitis C virus genotypes. Hepatology,2005,42(4):962-973.
    [19]Grenfel l BT, Pybus OG, Gog JR, Wood JL, Daly JM, Mumford JA, Holmes EC.Unifying the epidemiological and evolutionary dynamics of pathogens. Science2004;303:327-332.
    [20]Manzin, A., et al., Evolution of hypervariable region1of hepatitis C virus in primaryinfection. J Virol,1998.72(7): p.6271-6.
    [21]Farci P, Shimoda A, Coiana A, Diaz G, Peddis G, Melpolder JC, Strazzera A, Chien DY,Munoz SJ, Balestrieri A, Purcell RH, Alter HJ. The outcome of acute hepatitis Cpredicted by the evolution of the viral quasispecies. Science2000;288:339-344.
    [22]Farci P, Strazzera R, Alter HJ, Farci S, Degioannis D, Coiana A, Peddis G, Usai F, Serra G,Chessa L, Diaz G, Balestrieri A, Pur-cell RH. Early changes in hepatitis C viralquasispecies during Early changes in hepatitis C viral quasispecies during interferontherapy predict the therapeutic outcome. Proc Natl Acad Sci USA2002;99:3081-3086.
    [23]Chambers TJ, Fan X, Droll DA, Hembrador E, Slater T, Nickells MW, Dustin LB,Dibisceglie AM. Quasispecies heterogeneity within the E1/E2region as a pretreatmentvariable during pegylated interferon therapy of chronic hepatitis C virus infection. J Virol2005;79:3071-3083.
    [24]Davis, G.L., Hepatitis C virus genotypes and quasispecies. Am J Med,1999.107(6B): p.21S-26S.
    [25]Manzin, A., et al., Dominant role of host selective pressure in driving hepatitis C virusevolution in perinatal infection. J Virol,2000.74(9): p.4327-34.
    [26]Domingo, E., L. Menendez-Arias, and J.J. Holland, RNA virus fitness. Rev Med Virol,1997.7(2): p.87-96.
    [27]Domingo, E. and J.J. Holland, RNA virus mutations and fitness for survival. Annu RevMicrobiol,1997.51: p.151-78.
    [28]Amarapurkar, D., Natural history of hepatitis C virus infection. J Gastroenterol Hepatol,2000.15Suppl: p. E105-10.
    [29]Kuiken C, Yusim K, Boykin L, Richardson R. The Los Alamos hepatitis C sequencedatabase. Bioinformatics2005;21:379-384.
    [30]Tanaka, T.,[Comparison between HCV grouping by ELISA and genotyping by PCRmethod]. Nihon Rinsho,2004.62Suppl7(Pt1): p.231-5.
    [31]Simmonds P, Alberti A, Alter HJ, Bonino F, Bradley DW, Brechot C, Brouwer JT, ChanSW, Chayama K, Chen DS, Choo QL, Colombo M, Cuypers HTM, Date T, DusheikoGM&Esteban JI. A proposed system for the nomenclature of hepatitis C viral genotypes.Hepatology1994;19:1321–1324.
    [32]Simmonds P, Mellor J, Sakuldamrongpanich T, Nuchaprayoon C, Tanprasert S, HolmesEC&Smith DB. Evolutionary analysis of variants of hepatitis C virus found inSouth-East Asia: comparison with classifications based upon sequence similarity. Journalof General Virology1996;77(Pt12):3013–3024.
    [33]Chayama, K., Genotyping Hepatitis C Virus by Type-Specific Primers for PCR Based onNS5Region. Methods Mol Med,1999.19: p.165-173.
    [34]Widell A, Shev S, Mansson S, Zhang YY, Foberg U, Norkrans G, Fryden A, Weiland O,Kurkus J&Nordenfelt E. Genotyping of hepatitis C virus isolates by a modifiedpolymerase chain reaction assay using type specific primers: epidemiological applications.Journal of Medical Virology1994;44:272–279.
    [35]Ohno, T. and M. Mizokami, Genotyping by type-specific primers that can type HCVtypes1-6. Methods Mol Med,1999.19: p.159-64.
    [36]Haushofer AC, Berg J, Hauer R, Trubert-Exinger D, Stekel HG&Kessler HH.Genotyping of hepatitis C virus comparison of three assays. Journal of Clinical Virology2003;27:276–285.
    [37]Zheng X, Pang M, Chan A, Roberto A, Warner D&Yen Lieberman B. Direct comparisonof hepatitis C virus genotypes tested by INNO-LiPA HCV II and TRUGENE HCVgenotyping methods. Journal of Clinical Virology2003;28:214–216.
    [38]Furione M, Simoncini L, Gatti M, Baldanti F, Grazia Revello M&Gerna G. HCVgenotyping by three methods: analysis of discordant results based on sequencing. Journalof Clinical Virology1999;13:121–130.
    [39]Tanaka, T.,[Comparison between HCV grouping by ELISA and genotyping by PCRmethod]. Nihon Rinsho,2004.62Suppl7(Pt1): p.231-5.
    [40]Bullock GC, Bruns DE&Haverstick DM. Hepatitis C genotype determination bymelting curve analysis with a single set of fluorescence resonance energy transfer probes.Clinical Chemistry2002;48:2147–2154.
    [41]Fujigaki H, Takemura M, Takahashi K, Yamada Y, Fujii H, Wada H, Saito K, Ohnishi H&Seishima M. Genotyping of hepatitis C virus by melting curve analysis with SYBRGreen I. Annals of Clinical Biochemistry2004;41:130–132.
    [42]Simmonds, P., et al., Classification of hepatitis C virus into six major genotypes and aseries of subtypes by phylogenetic analysis of the NS-5region. J Gen Virol,1993.74(Pt11): p.2391-9.
    [43]Mondelli MU, Silini E. Clinical significance of hepatitis C virus genotypes. J Hepatol1999,31suppl1:65-70.
    [44]Stamenkovic G, Zerjav S, Velickovic ZM, et al. Distribution of HCV genotypes amongrisk groups in Serbia. Eur J Epidemiol,2000,16(10):949-954.
    [45]Jeannel D, Fretz C, Traore Y, et al. Evidence for high genetic diversity and long-termendemicity of hepatitis C virus genotypes1and2in West Africa. J Med Virol,1998,55(2):92-97.
    [46]Ruggieri A, Argentini C, Kouruma F, et al. Heterogeneity of hepatitis C virus genotype2variants in West Central, Africa (Guinea Conakry). J Gen Virol,1996,77(Pt9):2073-2076.
    [47]Ramia S, Eid-Fares J. Distribution of hepatitis C virus genotypes inthe Middle East. Int J Infect Dis,2006,10(4):272-277.
    [48]Zhong HP, Zhao W, Shen L. The epidemical and clinical significance of HCV genotype.World J Infect,2007,7(2):97-101.
    [49]Stamenkovic G, Zerjav S, Velickovic ZM, et al. Distribution of HCV genotypes amongrisk groups in Serbia. Eur J Epidemiol,16(10):949-954.
    [50]Kalinina, O., et al., Shift in predominating subtype of HCV from1b to3a in St.Petersburg mediated by increase in injecting drug use. J Med Virol,2001.65(3): p.517-24.
    [51]Nishise, Y., et al., Risk of hepatocellular carcinoma and secondary structure of hepatitis Cvirus (HCV) NS3protein amino-terminus, in patients infected with HCV subtype1b. JInfect Dis,2007.196(7): p.1006-9.
    [52]Portal I, Bourlière M, Halfon P, De Lédinghen V, et al. Retreatment with interferon andribavirin vs interferon alone according to viraemia in interferon responder-relapserhepatitis C patients: a prospective multicentre randomized controlled study. J Viral Hepat2003;10:215-223.
    [53]Yuen MF, Lai CL. Response to combined interferon and ribavirin is better in patientsinfected with hepatitis C virus genotype6than genotype1in Hong Kong. Intervirology2006;49:96-98.
    [54]Ogata, S., et al., Identification of hepatitis C virus (HCV) subtype1b strains that arehighly, or only weakly, associated with hepatocellular carcinoma on the basis of thesecondary structure of an amino-terminal portion of the HCV NS3protein. J ClinMicrobiol,2003.41(7): p.2835-41.
    [55]Zein NN, Persing DH, Czaja AJ. Viral genotypes as determinants of autoimmuneexpression in chronic hepatitis C. Mayo Clin Proc1999;74:454-460.
    [56]Knobler H, Schihmanter R, Zifroni A, Fenakel G, Schattner A. Increased risk of type2diabetes in noncirrhotic patients with chronic hepatitis C virus infection. Mayo Clin Proc2000;75:355-359.
    [57]Soma J, Saito T, Taguma Y, Chiba S, Sato H, Sugimura K, Ogawa S, Ito S. Highprevalence and adverse effect of hepatitis C virus infection in type II diabetic-relatednephropathy. J Am Soc Nephrol2000;11:690-699.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700