初中学生空间与图形认知技能获得的教学策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
认知技能是个体在认知领域解决问题的一种能力,与一般解决问题的能力相比,这种能力是问题解决者通过对问题情境的认知并运用概念、规则解决认知领域问题的能力。认知技能既包括利用习得概念、规则解决问题的能力,也包含对相关概念、规则情境适用性的认知监控能力。
     认知技能获得则从动态性的纵向层面来探讨认知技能的学习过程,指个体在特定领域的认知任务中从陈述性规则习得、陈述性规则程序化到程序化规则条件化的完整过程。对认知技能获得过程的研究有利于深刻理解认知技能的实质,有利于认知技能获得的教学设计。
     教学策略是教师知识结构的核心组成部分,是教师指向教学目标并适应学生学习需要的教学行为方式,教学策略是将教学理论转化为教学实践的桥梁。
     基于国内外已有研究,本研究提出了集学习过程、教学过程和认知技能获得阶段于一体的认知技能获得的生态化系统化的教学模型;综合认知负荷理论、建构主义学习理论、情境认知理论和迁移的ACT-R理论,提出并详细探讨了教学材料表征策略(数形分离、数形整合和目标任意)、练习材料的结构变异和问题生成策略以及条件认知和教学反馈策略分别对认知技能获得不同阶段学习的有效性。由此构成本研究的三项基本研究:
     研究一:通过初中数学空间与图形样例教学材料的数形分离与常规教学、数形分离与数形整合、目标确定与目标任意的教学表征策略的比较研究,探讨了其对陈述性规则获得过程(质的分析)和结果(量的分析)的影响。
     研究二:分别探讨练习材料的结构变异和问题生成表征策略对技能程序化的影响,我们既从量的层面也从质的层面探讨教学策略对认知技能熟练化的影响。
     研究三:从技能迁移的角度探讨条件认知和教学反馈策略对认知技能条件化的影响,在此阶段,学习者将自己习得概念、规则的运用指向课堂教学情境之外的生活化空间与图形问题,既强调技能在相似情境中的运用,也重视在不同情境中的运用。
     通过上述三个方面的探讨,本研究得出了如下结论:
     1.与传统数学空间与图形“讲授+练习”的教学程式相比,以样例表征的空间与图形教学材料,能更好地促进四边形相关概念、规则的学习。
     2.与数形分离的教学材料相比,数形整合的教学材料表征可以节省学生学习同样材料的时间,而且也能促进学生概念和规则的学习。
     3.在空间与图形问题解决中,目标任意的教学表征策略比目标确定的表征策略能更为有效地促进认知技能获得初期陈述性规则的习得,是对概念、规则学习以及思维灵活性培养的一种非常有效的教学策略。
     4.在认知技能获得的程序化阶段,与低变异的材料表征相比,高变异的材料表征能更有效促进认知技能由陈述性形态向程序性形态转化,这种促进效应对高成绩者学生群体显得更为明显和有效。
     5.与问题外加的教学策略相比,问题生成的教学策略训练能有效促进个体解决问题的能力,其中问题生成策略的训练对高成绩者的解题效应更为明显,而如何生成问题的训练则明显改善了低成绩者生成问题的表述方式。
     6.与低清晰的教学表征策略相比,以“如果/那么”规则表征的高清晰教学材料在四边形面积计算的远近迁移测验中均出现迁移效应,而且在远迁移测验中的迁移效应更为明显。
     7.在微量式、指错式、过量式和纠错式四种教学反馈策略中,纠错式反馈比其它三种反馈策略在远近迁移的测验中稳定地促进了被试的迁移成绩,是一种简便易行且非常有效的教学反馈策略;四种反馈策略中,微量式和指错式反馈策略效果最差。
     8.本研究构建的集学习过程、认知技能获得阶段及促进认知技能获得教学策略于一体的认知技能获得的教学模型是可行的、合理的。
     认知技能获得是学生学校学习的主要任务,认知技能获得的教学策略研究是教学心理学及教学有效性研究关注的永恒主题;认知技能获得过程及其教学策略探讨有利于洞察知识获得过程的实质,深刻理解现代知识分类的性质,为认知技能获得的教学设计、优化教学情境、促进高效率教与学提供理论支撑和方法指导。
     本研究的创新点:第一,提出了将学习过程、认知技能获得阶段及促进认知技能获得的教学策略整合于一体的认知技能获得的教学模型;第二,尝试从认知技能获得的全程研究促进技能获得的教学策略;第三,提出了阶段适用性和有效性的主策略,即教学材料表征策略、练习变异与问题生成策略以及条件认知与反馈策略,不同阶段的教学策略虽然难以截然分开,但它们有着特定阶段的技能促进功能;第四,探讨了促进认知技能迁移的条件化认知教学策略,这种策略既重视对问题情境条件的认知,又将问题情境条件与个体的产生式表征贮存联系起来;第五,系统探讨了初中数学空间与图形领域学生认知技能获得的教学策略促进效应,在国内的同类研究中,具有前沿性和探索性特点。
Cognitive skills are defined as the ability to solve problems in the cognitive domain. Compared with the general ability to solve problems, this ability is only confined in the cognitive domain where a solver, through his cognition of the problems situation, uses related concepts and rules to solve problems. Cognitive skills thus include not only those abilities which help a solver solve problems by using learned concepts and rules, but also those that help him monitor his cognition of the situation applicability.
     Acquisition of Cognitive Skills (ACS) refers to a whole process from learning the declarative rules, then to the proceduralization of declarative rules and last to the conditionalization of procedural rales.ACS pays its attention to the learning process of cognitive skills from a dynamic longitudinal level. The study of the whole process of ACS will help us deeply understand the nature of cognitive skills and thus be beneficial to the instructional design of ACS.
     Teaching strategies are the core of a teacher' knowledge structure , his teaching manner directing to the instructional objectives and his adaptation to meet students' learning needs. Teaching strategies serve as a bridge of transforming teaching theories into teaching practices.
     Based on studies of cognitive skills at home and abroad, the paper proposes a teaching model of ACS in which the leaning process, the teaching process and stages of ACS are integrated. The model also gives an expression to ecologic and systematic teaching views. This study synthesizes the theory of cognitive load, the theory of constructionist learning, the theory of situational cognition and the theory of the transfer of ACT-R and probes into the effectiveness of the representation strategies of teaching materials, such as numerical-graphical(N-G) split, N-G integration and goal-free; the effectiveness of the strategies of practice, such as the structural variance of practice materials and question-generating representation strategy; the effectiveness of the strategies of conditional cognition and of the teaching feedback, respectively, upon the three learning stages of declaration, procedure and conditionalization. Therefore, the study is composed of the following three sections :
     In Section One, through a comparative study between the traditional teaching style - "lectures plus practice" and teaching materials represented by the spatial and graphical worked examples , a comparative study between N-G split teaching materials and N-G integrated teaching materials and a comparative study between the goal-definite and goal-free strategies of teaching representation, we explore how new strategies—the spatial and graphical worked examples, N-G integration and the goal-free of strategies of teaching representation—produce an effect on the process (by a qualitative analysis)and the outcome (by a quantitative analysis)of acquisition of declarative rules.
     In Section Two, we inquire into the effect produced by the structural variance of practice materials and the question-generating representation strategy on the proceduralization of skills respectively. Here in this section we analyze the effect of teaching strategies on the mastery of cognitive skills both quantitatively and qualitatively.
     In Section Three, from the transferring perspective, the study discusses the effect produced by strategies of the conditional cognition and the teaching feedback on the conditionalization of cognitive skills. At this stage, learners apply their learned concepts and rules to solveing problems similar to or different from those in the classroom teaching.
     From the above-mentioned three sections of the thesis, inclusive of seven teaching experiments, we draw the following conclusions:
     1. Compared with the traditional teaching style - "lectures plus practice", the teaching materials represented by spatial and graphical worked examples can better promote students to learn the related concepts and rules .
     2. In comparison with N-G split teaching materials, N-G integrated teaching materials can spare the time in learning the same amount of materials. Furthermore, N-G integrated teaching materials promote students' learning concepts and rules more than N-G split teaching materials.
     3. In solving spatial and graphical problems, compared with the strategy of goal-definite teaching representation, the strategy of goal-free teaching representation is more effective for students to learn concepts and rules and cultivate the flexibility of thinking.
     4.In comparison with low-variance representation materials, teaching materials with high-variance representation promote cognitive skills transforming more effectively from the declarative state to the procedural state in the procedural stage of ACS. Furthermore, such promoting effects of classroom teaching on students with a high-score are more effective than the effects on students with a low-score.
     5. In comparison with the teaching strategy of additional-question, the teaching strategy of generating-question enables students to solve problems successfully. Thus trainings in generating questions improve students' ability in solving problems more effectively, especially for students with a high score. Besides, the training of how to generate questions (between§1 and§2 in Experiment 5) improves significantly the way of expression of how students with a low score generate questions.
     6. Compared with the strategy of low-distinct teaching representation, the strategy of high-distinct represented by 'If/Then' rules produces a positive transferring effect in near and far transfer. The effect is more obvious in far transfer directed to calculate the area of a quadrilateral.
     7. Compared with micro-feedback, error-pointed feedback and excessive feedback, error-correcting feedback is a more simple, convenient and easily accomplished teaching strategy, which can promote steadily students' scores in the close and far transfer. Among these four feedback strategies, micro-feedback and error-pointed feedback are the least accomplished.
     8. The teaching model of ACS brought up in this study, which integrates leaning process, stages of ACS and teaching strategies of how to improve ACS into a unity, is feasible and reasonable.
     ACS is the main task of students' classroom learning. Studies on the teaching strategies of ACS have long been and will still be the focus of researches in the field of instructional psychology and effective teaching. Exploration of the process and teaching strategies of ACS, as we stress in this study, will help us understand better the essence of the process of knowledge acquisition and the nature of knowledge classification. This exploration may also provide theoretical and methodological support to educators as they create and optimize the internal and external conditions of teaching situation for the instructional design of ACS.
     Compared with previous studies, this study goes further in these aspects:
     First, it brings up a teaching model of ACS which integrates leaning process, stages of ACS and teaching strategies of how to improve ACS into a unity. Second, it stresses the importance of improving teaching strategies of ACS by regarding the process of ACS as an entirety but not a combination of fragments. Third, it also addresses the stage-related characteristics of teaching strategies, meaning although it is impossible to treat teaching strategies used at different stages as distinctly separated from one another, each of them does play a different and special role in promoting ACS especially at its specific stage. Fourth, it discusses conditional cognitive teaching strategy which improves the transfer of cognitive skills not only by emphasizing the cognition of problem-solving conditions, but also by connecting problem-solving conditions to individuals' storage of production representation. Fifth, it systematically probes into the promoting effect on teaching strategies of junior school students' ACS in spatial and graphical field and thus possesses characteristics of pioneering and inquiring the same kind research at home.
引文
1.陈会钦.数学领域认知技巧的获得.心理学动态.1997,5(2).
    2.陈英和、仲宁宁等.数学应用题规则性研究的新进展.心理发展与教育.2003,19(4).
    3.邓铸、余嘉元.问题解决中对问题的外部表征和内部表征.心理学动态.2001,9(3).
    4.Eysenck,M.& Keane,M.T.,高定国、肖晓云译.认知心理学(第四版).上海:华东师范大学出版社,2004.
    5.冯忠良.结构化与定向化教学心理学原理.北京:北京师范大学出版社,1998.
    6.高民.智慧技能的一般教学模型和实验研究.应用心理学.1997,3(2).
    7.郭成、何晓燕、张大均.学业自我概念及其与学业成绩关系的研究述评.心理科学.2006,29(1).
    8.Glaser,R.现代教学心理学认知学习理论及其教育环境设计.心理科学.1997,20(3).
    9 Gagne,R.M.,皮连生、王映学、郑葳等译.学习的条件和教学论.上海:华东师范大学出版社,1999.
    10.R.M.加涅、L.J.布里格斯、W.W.韦杰著,皮连生、庞维国等译.教学设计原理.上海:华东师范大学出版社,1999.
    11.李亦菲、朱新明.对三种认知迁移理论的述评.心理发展与教育.2001,17(1).
    12.梁宁建.问题解决产生式规则解决物理学问题研究.心理科学.1995,18(2).
    13.梁宁建、俞海运等.中学生问题解决策略的基本特征研究.心理科学.2002,25(1).
    14.罗新兵.数形结合的解题研究:表征的视角.华东师范大学博士学位论文.2005.
    15.莫雷、刘丽虹.样例表面内容对问题解决类比迁移过程的影响.心理学报.1999,31(3).
    16.莫雷、唐雪峰.表面概貌对原理运用的影响的实验研究.心理学报.2000,32(4).
    17.皮连生.智育心理学.北京:人民教育出版社,1996.
    18.皮连生.学与教的心理学.上海:华东师范大学出版社,1997.
    19.任洁、莫雷.样例与运算性程序知识学习迁移关系的初步研究.心理学报.1999,31(4).
    20.Robertson S.Lan,张奇等译.问题解决心理学.北京:中国轻工业出版社,2004.
    21.舒华.心理与教育研究中的多因素实验设计.北京:北京师范大学出版社,1994.
    22.唐雪峰、莫雷.代数图式相似性对样例迁移中原理通达的影响.心理科学.2004,27(5).
    23.田学红、李亦菲.基于示例学习的认知技能获得的研究.心理科学.1999,22(6).
    24.王映学.“知识分类与目标导向教学”的实证研究.华东师范大学学报(教科版).1997,15(3).
    25.王映学.现代认知心理学的知识分类及其测量.内蒙古师范大学学报(哲社版).2005,34(4).
    26.王映学、张大均.认知技能获得的阶段及其教学意义.内蒙古师范大学学报(哲社版).2007,36(3).
    27.吴庆麟.认知教学心理学.上海:上海科学技术出版社,2000.
    28.谢琳.物理知识程序化的认知技能研究.华东师范大学硕士学位论文.2003.
    29.辛自强、俞国良.问题解决中策略的变化:一项微观发生研究.心理学报.2003,35(6).
    30.辛自强.问题解决中图式与策略的关系:来自表征复杂性模型的说明.心理科学.27(6).
    31.邢强、莫雷等.样例学习研究的发展及问题.心理科学进展.2003,11(2).
    32.许永勤、朱新明.关于样例学习中样例设计的若干研究.心理学动态.2000,8(2).
    33.杨治良.实验心理学.杭州:浙江教育出版社,1998.
    34.姚飞、张大均.应用题结构分析训练对提高小学生解题能力的实验研究.心理学报.1999,31(1).
    35.姚梅林.当代迁移研究的趋向.心理发展与教育.2000,16,(3).
    36.张春莉.样例和练习在促进解题迁移能力中的作用.心理学报.2001,33(2).
    37.张大均.教学心理学.重庆:西南师范大学出版社,1997.
    38.张大均.教学心理学研究.重庆:西南师范大学出版社,1999.
    39.张大均.论教学实施与监控的基本策略.西南师范大学学报(哲社版).1999,25(2).
    40.张大均.教与学的策略.北京:人民教育出版社,2003.
    41.张大均、陈旭等.解题策略训练对提高高中生数学应用题解题水平的影响.第九届全国心理学学术会议文摘选集,2001.
    42.张大均、王映学.教学心理学新视点.北京:人民教育出版社,2005.
    43.张庆林.高效率教学.北京:人民教育出版社,2002.
    44.朱新明、南宇珏等.通过样例和问题求解学习物理.心理科学.1994,17(2).
    45. Ackerman, P. L. Determinants of individual differences during skill acquisition;Cognitive abilities and information processing,Journal of Experimental Psychology: General. 1988,117:288-318.
    46. Anderson,J.R.Skill acquisition:Compilation of weak-method problem situations. Psychological Review. 1987,94:192-210.
    47. Anderson,J.R.Acquisition of cognitive skill.Psychological Review. 1982,89(4):369-406.
    48. Anderson,J.R.Problem solving and learning.American.Psychologist.2004,48(1):35-44.
    49. Anderson,J.R.& Fincham,J.M.etc.The role of examples and rules in the acquisition of a cognitive skill.Journal of Experimental Psychology:Learning,memory, and Cognition. 1997,23(4):932-945.
    50. Anderson,J.R.& Matessa,M.A.Production system theory of serial memory.Psychological Review. 1997,104(4):728-748.
    51. Anderson,J.R.,Bothell,D.,Byrne,M.D.etc.An integrated theory of the mind.Psychological Review.2004,111(4):1036-1060.
    52.Anderson,J.R.,Douglass,D.Tower of Hanoi:evidence for the cost of goal retrival. Journal of Experimental Psychology:Learning,memory,and Cognition.2001,27(6):1331-1346.
    53.Anderson,J.R.,Fincham J.M.,& Douglass S.Practice and retention:a unifying analysis.Journal of Experimental Psychology:Learning,memory,and Cognition 1999,25(5): 1120-11364.
    54.Anderson,J.R.Practice,working memory.and the ACT skill acquisition:a comment on Carlson,Sullllllivan,and Schneider.Journal of Experimental Psychology: Learning, memory,and Cognition. 1989,15(3):527-530.
    55.Anderson,K.C.& Leinhardt,G.Maps as representations:expert novice comparison of projection understanding.Cognition and Instruction.2002,20(3):283-321.
    56. Anderson. J.R.Rules of the Mind.Hillsdale ,NJ:Erlbaum,1993.
    57.Anderson,J.R.& Fincham J.M.Acquisition of procedural skills from examples.Journal of Experimental Psychology:Learning,memory,and Cognition. 1994,20(6): 1322-1340.
    58.Bilsky,L.H.,Blachman,S.,Chi C.etc.Comprehension strategies in math problem and story contexts.Cognition and Instruction.1986,3(2):109-126.
    59.Blessing,S.B.& Anderson.J.R.How people learn to skip steps.Journal of Experimental Psychology:Learning,memory,and Cognition. 1996,22(3):576-598.
    60.Blessing,S.B.& Ross,B.H.Content effects in problem categorization and problem solving.Journal of Experimental Psychology:Learning,memory,and Cognition. 1996, 22(3): 792-810.
    61.Brown,A.L.& Kane,M.J.Preschool children can learn to transfer:learning to learn and learning from example.Cognitive Psychology.1988,20(4):493-523.
    
    62.Bruer,J.T.Schools for thought. 1993,A Bradford Book The MIT Press,CM:London,England.
    
    63.Carey,S.Cognitive science and science education.American Psychologist. 1986, 41(10): 1123-1130.
    64.Carlson,R.,Chandler,P.& Sweller,J.Learning and understanding science instructional material.Journal of Educational Psychology.2003,95(3),629-640.
    65.Carroll,W.M.Using worked example as an instructional support in the algebra classroom.Journal of Educational Psychology. 1994,86(3):360-367.
    66.Catrambone,R.Improving examples to improve transfer to novel problems. Mem. Cogn.1994b,22(5):606-615.
    67.Catrambone,R.Generalising solution procedures learned from examples.Journal of Experimental Psychology:Learning,memory,and Cognition. 1996,22(4): 1020-1031.
    68.Catrambone,R.& Holyoak,K.J.Overcoming contextual limitations on problem-solving transfer. Journal of Experimental Psychology:Learning,memory,and Cognition. 1989, 13(6): 1147-1156.
    69.Chandler,P.& Sweller,J.Cognitive load theory and the format of instruction. Cognition and Instruction,1991,8(4):293-332.
    70.Chi,M.T.H.Constructing self-explanations and scaffolded explanations in tutoring.Applied Cognitive Psychology.1996,10:33-49.
    71.Chi,M.T.H.,Bossok,M.,etc.Self-explanations:how students study and use examples in learning to solve problems.Cognitive Science.1989,15:145-182.
    72.Cognition and Technology Group at Vanderbilt.Anchored instruction and its relationship to situated cognition.Educ. Res.1990,19(5):2-10.
    73.Cooper,G.& Sweller,J.Effects of schema acquisition and rule automation on mathematical problems-solving transfer.Journal of Educational Psychology.1987,79(4):347-362.
    74.Fernandez,C.,Yoshida,M.& Stigler,J.W.Learning mathematics from classroom instruction:on relating lessons to pupils' interpretations.Journal of Learning Science.1992,2(4):333-365.
    75.Frensch,P.A.Transfer of composed knowledge in a multistep serial task.Journal of Experimental Psychology:Learning,memory,and Cognition. 1991,17(5):997-1016.
    76.Gagne,E.D.Yekovich,C.W.& Yekovich,K.R.The Cognitive Psychology of School Learning(2~(nd) ed).New York,NY:Harper Collins College Publishers, 1993.
    77.Gagne,R.M.Leaminghierarchies.Educational Psychologist. 1968,6:1-9(b).
    
    78.Gagne,R.M.The conditions of learning and theory of instruction.CBS College Publishing, 1985.
    79.Gagne,R.M.& Dick,W.Instructional psychology.Annual Review of Psychology. 1983, 34:261-295.
    80.Gagne,R.M.,Briggs,L.J.,& Wagger,W.W.Principles of instructional design. Holt Rinehart and Winston,Inc.,1992.
    81.Gagne,R.M.& Rohwer,W.D.Instructional psychology.Annual Review of Psychology. 1969, 381-418.
    
    82.Gick,M.& Holyoak,K.J.Analogical problems-solving. Cognitive Psychology. 1980,15:1-38.
    83.Gick,M.Problems-solving strategies.Educational Psychologist. 1986,21(1&2):99-120.
    84.Glasser,R.Advances in instructional psychology(Vol.1).Lawrence Erlbaum Associates, Inc., 1978.
    85.Glasser.R.Advances in instructional psychology(Vol.2).,Lawrence Erlbaum Associates,Inc., 1982.
    86.Glasser,R.Advances in instructional psychology(Vol.3). Lawrence Erlbaum Associates,Inc., 1987.
    87.Glaser,R.& Bassok,M.Learning theory and the study of instruction. Annual Review of Psychology. 1989,40:631 -666.
    
    88.Glaser,R.& Resnick,L.B.Instructional psychology.Annual Review of Psychology. 1972, 207-270.
    89.Hillerbrand,E.Cognitive difference between experts and novices:implications for group supervision.Journal of Counseling and Development.1989,67(5):293-296.
    90.Holyoak,K.J.,Koh,K. Surface and structural similarity in analogical transfer.Mem.Cogn. 1987,15(4):332-40.
    91.Holyoak,K.J.,Junn,E-N.,& Billman,D.O.Development of analogical problem-solving skill.Child Development. 1984,55:2042-2055.
    92.Kalyuga,S.,Chandler,P.& Sweller,J.Learner experience and efficiency of instructional guidance.Educational Psychology.2001,21(1):5-21.
    93.Kester,L.,Kirschner,P.A.& van Merrieboer,J.The management of cognitive load during complex cognitive skill acquisition by means of computer-simulated problem soiving. British Journal of Educational Psychology.2005,75:71-85.
    94.Lampert,M.When the problem is not the question and the solution is not the answer: mathematical knowing and teaching.Am.Educ.Res.1990,27(1):293.
    95.Lee,F.J.,& Anderson,J.R.Does learning a complex task have to be complex?A study in learning decomposition.Cognitive Psychology,2001,42:267-316.
    96.Marcus,N.,Cooper,M.& Sweller J.Understanding instructions. Journal of Educational Psychology,1996,88(1):49-63.
    97.Mayer,R.E.Educational Psychology:A Cognitive Approach.Little,Brown and Company (Canada)Limited.,1987.
    
    98.Mckeachie,W.J.Instructional psychology.Annual Review of Psychology.1974,161-188.
    99.McNeil,N.M.& Alibali,M.W.Learning mathematics from procedural instruction:externally imposed goals influence what is learned. Journal of Educational Psychology, 2000, 92(4)734-744.
    100.Novick,L.R.,Holyoak,K.J.Mathematical problem solving by analogy. Journal of Experimental Psychology:Learning,memory,and Cognition. 1991,17(3):398-415.
    
    101.Novick,L.R.Representational transfer in problem-solving.Psychological Science. 1990, 128-132.
    102 .Novick,L.R.Analogical transfer,problem similarity,and expertise.Journal of Experimental Psychology:Learning,memory,and Cognition. 1988,14(3):510-520.
    103.Owen,E.& Sweller J.What do students learn while solving mathematics problems?Journal of Educational Psychology,1985,77(3),272-284.
    104.Paas,F.,Renkl,A.& Sweller,J.Cognitive load theory and instructional design:recent development. American Psychologist.2003,38(1):1-4.
    105.Paas,G.W.C.& van Merrienboer,J.J.G.Variability of worked examples and transfer of geometrical problem-solving skills:A cognitive load approach.Journal of Educational Psychology, 1994,86:122-133.
    106.Pennington,N.,Nicolich,R.,& Rahm,J.Transfer of between cognitive subskills:is knowledge use specific?Cognitive Psychology.1995,28:175-224.
    107.Phye,G.D.Problem-solving instruction and problem-solving transfer:the correspondence issue. Journal of Educational Psychology,2001,93(3):571-578.
    108.Pintrch,P.R.,Cross,D.R.,etc.Instructional psychology.Annual Review of Psychology. 1986, 37: 611-651.
    109.Rehder,B.Interference between cognitive skills. Journal of Experimental Psychology: Learning,memory,and Cognition.2001,27(2):451-469.
    
    110.Resnick,L.B.Developing mathematical knowledge.American Psychologist. 1989,44(2): 162-169.
    
    111.Resnick,L.B.Instructional psychology.Annual Review of Psychology. 1981,32:659-704.
    112.Rohani,A.T.& Sweller,J.Guidance during mathematical problem solving. Journal of Educational Psychology,1988,80(4):424-436.
    113.Ross,B.& Kenndy,R.Generalizing from the the use of earlier examples in problems solving. Journal of Experimental Psychology:Learning,memory,and Cognition.1990,16(1):42-55.
    114.Ross,B.Distinguishing types of superficial similarities:different effects on the access and use of earlier problems.Journal of Experimental Psychology:Learning,memory,and Cognition. 1989,15(3):456-468.
    115.Ross,B.This is like that:the use of earlier problems and the separation of similarity effects. Journal of Experimental Psychology:Learning,memory,and Cognition. 1987,13:629-639.
    116.Ross,B.Remindings and their effects in learning a cognitive skill.Cognitive Psychology. 1984,16:371-416.
    117.Singley,M.K.& Anderson,J.R.The transfer of cognitive skill.Cambridge,MA:Harford University Press, 1989.
    118.Snow,R.E.& Swanson,J.Instructional psychology:aptitude,adaptation,and assessment. Annual Review of Psychology. 1992,43:583-626.
    119.Sugrue,B.A theory-based framework for assessing domain-specific problem solving ability. Educational Measurementlssues and Practice.1995,14(3):29-36.
    120.Sweller,J.& Cooper,G. The use of worked examples as a substitute for problems solving in learning algebra.Cognition and.Instruction.1985,2(1):59-89.
    121.Sweller,J.Cognitive load during problem solving: effects on learning.Cognitive Science. 1988,12(2):257-285.
    122.Sweller,J.Cognitive technology:some procedures for facilitating learning and problem solving in mathematics and science. Journal of Educational Psychology. 1989, 81(4), 457-466.
    123.Sweller.J. When problem solving is superior to studing worked examples.Journal of Educational Psychology,2001,93(3):579-588.
    124.Sweller,J.Cognitive load during problem solving:Effects on learning.Cognitive Science, 1988,12:257-285.
    125.Sweller,J.& Chandler,P.Evidence for cognitive load theory.Cognition and Instruction, 1991,8(4):351-362.
    126.Sweller,J.& Chandler,P.Why some material is difficult to learn.Cognition and Instruction, 1994,12(3), 185-233.
    127.Sweller,J.& Cooper,G.The use of worked examples as a substitute for problem solving in learning algebra. Cognition and Instruction,1985,2(1):59-89.
    128.Sweller,J.,van Merrie"nboer,J.J.G.& Paas,F.Cognitive architecture and instructional design. Educational Psychology Review.1998,10(3):251-296.
    129.Sweller,J.The effect of task complexity and sequence on rule learning and problem solving.British Journal of Educational Psychology.1976,67(4):553-558.
    130.Tuovinen,J.E.& Sweller,J.A comparison of cognitive load associated with discovery learning and worked examples.Journal of Educational Psychology.1999,91(2):334-341.
    131.vanMerrienboer,J.J.G.,Kirschner,P.A.& Kester,L.Taking the load of a learner's mind: Instructional design for complex learning.Educational Psychologist.2003,38(1):5-13.
    132.VanLehn,K.Cognitive skill acquisition.Annual Review of Psychology. 1996,47:513-539.
    133.VanLehn,K.,Jones,R.M.& Chi,M.T.H.A model of the self-explanation effect.The Journal of the Learning Sciences.1992,2(1):l-59.
    134.VanLehn,K.Rule-learning events in the acquisition of a complex skill :an evaluation of Cascade.The Journal of the Learning Sciences. 1999,8(1):71-125.
    135.Voss,J.F.,Wiley,J.& Carretero,M.Acquiring intellectual skills.Annual review of psychology.1995,46:155-181.
    136.Ward,M.,& Sweller,J.Structuring effective worked examples.Cognition and Instruction, 1990,7(1):l-39.
    137.West,C.K.,Farmer,J.A.& Wolff,P.M.Instructional Design.Allyn & Bacon:A Division of Simon & Schuster,Inc.1991.
    138.Willingham,D.B.,Nissen,M.J.& Bullemer,P.On the development of procedural knowledge. Journal of Experimental Psychology:Learning,memory,and Cognition.1989,15(6):1047-1060.
    139.Wittrock,M.C.& Lumsdaine,A.A. Instructional psychology.Annual Review of Psychology. 1977,28:417-459.
    140.Wittrock,M.C.& Farley,F.The future of educational psychology. Lawrence Erlbaum Associates,Inc, 1989.
    141.Woltz,D.J.,Bell,B-G.,etc.Memory for order of operations in the acquisition and transfer of sequential cognitive skills.Journal of Experimental Psychology:Learning,memory,and Cognition. 1996,22(2):438-457.
    142.Woltz,D.J.,Gardner,M.K.& Bell,B.G.Negative transfer errors in sequential cognitive skills:strong-but-wrong sequence application.Journal of Experimental Psychology: Learning, memory,and Cognition.2000,26(3):601-625.
    
    143.Woolfolk,A.Educational psychology.Higher Education Press,2003.
    144.Zhang,J. The nature of external representations in problem solving.Cognitive Science,1997,21(2):179-217.
    145.Zhu,X.& Simon,H.A.1987.Learning mathematicas from examples and by doing. Cognition and Instruction.4(3):137-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700