密码对的使用与基因组进化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
密码子水平的生物信息学分析是研究基因组进化、蛋白质功能以及遗传和环境相互作用等课题中的一个重要环节。已知同义密码子的使用是非随机的。正如密码子的使用一样,两个紧邻的密码子,即密码对的使用也是高度偏好的,这种偏置现象在原核和真核生物中都广泛存在。为了探寻基因组中密码对使用的进化约束,本文分析了不同进化水平生物基因组密码对使用的规律,主要研究结果如下:
     1.以10种真核、60种细菌和40种古菌生物基因组为样本,分析了编码序列中密码对和基因间序列中三联体对的相对模式数随频数的分布(DNM),验证了这种分布符合Γ(α,β)分布;通过研究Γ(α,β)分布的形状参数α值,发现其与生物基因组进化存在明显的相关性;编码序列与基因间序列的进化方式截然不同。对编码序列,从古菌、细菌到真核生物α值逐渐增大,即α值将生物分成三类:古菌,细菌,真核生物。对基因间序列,α值将生物分成两类:一类是细菌,另一类是古菌和真核生物。这个结果显示密码对上下文关系包含了生物进化的信息,暗示真核生物、细菌和古菌在调节基因组一级结构进化压力方面存在基本区别。
     2.提出了一种以密码对使用偏好性和密码对中二核苷酸频率分别构建系统发育树的基因组相似性分析方法。发现以40种模式生物基因组中密码对的二核苷酸频率构建的系统发育树,明显将生物按进化分成三类,即细菌,古菌,真核生物;用密码对使用偏好性为指标构建的系统发育树与基于密码对中二核苷酸频率的系统发育树基本一致。结果表明反映生命进化信息的密码对中二核苷酸组分是密码对偏好的决定因素之一。
     3.分析了基因组组分极其偏向的厌氧性粘菌和立克次氏体基因组中密码对的使用。发现它们前导链与滞后链密码对的使用偏好性存在差异。这表明密码对的搭配受到链的特异性影响。这些特性可能包括:基因方向性偏好、密码子使用偏好、密码子的前后文关系等。因此,造成以上两物种DNA双链间密码对使用不对称的原因可能是DNA链特异的突变偏好性和在复制、转录、翻译水平上的自然选择约束。
     4.鉴于伽玛分布的形状参数α值与基因组进化存在相关性,首先,以5种真核、15种细菌和10种古菌生物基因组为样本,对密码对使用偏好性指标,r与密码对随基因组进化的指标α之间作相关性分析,发现部分密码对的r值与α值之间有显著的线性关系。其次,分析了密码子第三位点与紧邻密码子第一位点的二核苷酸(cP3cA1)使用,结果表明这两个位点二核苷酸使用有显著差异。最后,分析了三类生物中密码对的偏好与稀有模式,发现它们都有各自偏好与稀有的密码对模式。以上结果进一步肯定了密码对的使用与基因组进化存在相关性。
     5.全面分析了厌氧性粘菌(Anaeromyxobacter_dehalogenans_2N-C)基因组中密码对的使用,发现其密码对的使用有很强的偏置,在全基因组中有5.2%的密码对模式是缺失的。分析结果表明其密码对的偏好性至少可能是三个方面的压力的结果:基因组局部及整体的GC含量,密码对中二核苷酸的组分,二肽的保守水平。
Codon analysis and its application in bioinformatics and evolutionary studies are important issues for investigating the genome evolution,protein function and interaction between genetics and environment.It is well known that synonymous codon usage is non-random.Codon-pair usage,like codon usage,has also been found to be highly biased. The vast majority of prokaryotic and eukaryotic species have a non-random codon-pair usage.In this dissertation,in order to demonstrate possible evolutionary constraints that shape codon-pair context,we investigated the codon-pair usage in different evolutionary level genomes of organisms.The main contributions are summarized as follows:
     1.The distributions of numbers of modes(DNM) of codon-pairs in protein coding sequences(CDSs) and the frequency of base triplet pairs in intergenic sequences(IGSs) are analyzed in 110 fully sequenced genomes.We propose that these distributions are in accordance with a gamma distribution.By studying the shape parameterαvalue of gamma distribution a distinct relation between theαvalue and the genome evolution is obtained.The modes of evolution for protein coding sequences and intergenic sequences are significantly different.For codon-pairs in CDSs,theαvalue increases in the order Archaea, Bacteria,and Eukaryota,and divides the species into three evolutionary groups,Archaea, Bacteria and Eukaryota.For triplet pairs in IGSs,on the other hand,theαvalue classifies the species into two groups,one is Bacteria and the other is Archaea and Eukaryota.The findings indicate that the codon-pair contexts contain biologic evolution information,and suggest the existence of fundamental differences of evolutional constraints imposed on CDSs and IGSs among Archaea,Bacteria,and Eukaryota.
     2.Based on the codon-pairs usage,a method of similarity analysis of genomes,which could be used to construct phylogenetic trees using the codon-pair usage bias and the dinucleotide frequencies within codon-pairs,is proposed.A phylogenetic tree that is constructed using the dinucleotides frequencies within codon-pairs in 40 mode organisms shows that the organisms are apparently divided into three evolutionary groups,Bacteria, Archaea,and Eukaryota.Another phylogenetic tree constructed using the index reflecting codon-pair usage bias is consistent with the phylogenetic tree constructed based on the dinucleotides frequencies within codon-pairs.Our results indicate that the component of dinucleotides within codon-pairs that reflects information of life evolution is one of the determinants of codon-pair bias.
     3.The patterns of codon-pair usage in the genomes of Rickettsia_bellii and Anaeromyxobacter_dehalogenans_2CP-C that have extremely biased genomic compositions are analyzed.The results show significant differences of codon-pair usage bias between the leading and the lagging strands,suggesting that codon-pairing is influenced by strand-specific features.The strand-specific features may include the biased codon usage, gene orientation bias,context-dependent codon bias etc.Therefore,asymmetry of codon-pair usage between DNA double strands in above two genomes seems to be the result of strand-specific mutational biases and natural selection probably acting at the levels of replication,transcription and translation.
     4.In view of the value of the shape parameterαof gamma distribution is related with genome evolution,firstly,the linear regression between the r values of codon-pair and the parameterαvalues of gamma distribution is analysed in ten archaea,fifteen bacteria and five eukaryotes genomes.The results show that two parameters have a significant linear correlation for part of codon-pairs.Secondly,the usage of dinucleotides composed of the third position nucleotide and the first position nucleotide(cP3cA1) within codon-pair is analyzed,and the result indicates that the usage of cP3cA1 is significant biased.Finally,the modes of preferred and rejected codon-pairs are analyzed in three domains of life,and it is found that the modes of preferred and rejected codon-pairs are different from three domains. The above results confirm again that codon-pair usage is associated with genome evolution.
     5.The codon-pair usage is analyzed in the genome of Anaeromyxobacter_ dehalogenans_2N-C.It is found that the codon-pair usage is highly biased,and about 5.2% modes of codon-piars are absent in the genome.Our analysis shows that the pattern of codon-paring in the genome could be the result of at least three different forces:(ⅰ) the local and total genome GC content,(ⅱ) composition of dinucleotides of codon-pair,and(ⅲ) the level of dipeptides conservation.
引文
[1] Yamao, F., Andachi, Y., Muto, A., Ikemura, T., Osawa, S. Levels of tRNAs in bacterial cells as affected by amino acid usage in proteins. Nucl Acids Res., 1991,19: 6119-6122.
    
    [2] Ikemura, T., Wada, K. Evident diversity of codon usage patterns of human genes with respect to chromosome banding patterns and chromosome numbers; relation between nucleotide sequence data and cytogenetic data. Nucl Acids Res., 1991, 19: 4333-4339.
    [3] Nakamura, Y, Gojobori, T., Ikemura, T. Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucl Acids Res., 2000, 28: 292.
    [4] Gladitz, J., Shen, K., Antalis, P., Hu, F.Z., et al. Codon usage comparison of novel genes in clinical isolates of Haemophilus influenzae. Nucl Acids Res., 2005, 33: 3644-3658.
    [5] Carbone, A., Kepes, R, Zinovyev, A. Codon Bias Signatures, Organization of Microorganisms in Codon Space, and Lifestyle. Mol. Biol. Evol., 2005, 22: 547-561.
    [6] Morton, B.R., Wright, S.I. Selective Constraints on Codon Usage of Nuclear Genes from Arabidopsis thaliana. Mol. Biol. Evol, 2007, 24: 122 -129.
    [7] Schattner, P., Diekhans, M. Regions of extreme synonymous codon selection in mammalian genes. Nucl Acids Res., 2006, 34: 1700-1710.
    [8] Sato, T., Terabe, M., Watanabe, H., Gojobori, T., et al. Codon and Base Biases after the Initiation Codon of the Open Reading Frames in the Escherichia coli Genome and Their Influence on the Translation Efficiency. J. Biochem., 2001, 129: 851-860.
    [9] Rouwendal, G.J.A., Mendes, O., Wolbert, E.J.H., et al. Enhanced expression in tobacco of the gene encoding green fluorescent protein by modification of its codon usage. Plant Mol Biol, 1997, 33: 989-999.
    [10] Chen, G.F.T., Inouye, M. Role of the AGA/AGG codons, the rarest codons in global gene expression in Escherichia coli. Genes & Development, 1994, 8: 2641-2652.
    
    [11] Collins, R.F., Roberts, M., Phoenix, D.A. Codon bias in Escherichia coli may modulate translation initiation. Biochemical Society Transactions, 1995,23: S 76.
    
    [12] Craigen, W.J., Cook, R.G., Tate, W.P., Caskey, C.T. Bacterial peptide chain release factors: Conserved primary structure and possible frameshift regulation of release factor 2. Proceedings of The National Academy of Sciences of The United States of America, 1985, 82: 3616-3620.
    [13] Croux, C., Garcia, J.L. Reconstruction and expression of the autolytic gene from Costridium aetobutylicum ATCC-824 in Escherichia-coli. FEMS Microbiology Letters, 1992,95:13-20.
    [14] Curran, J.F. Decoding with the A-I wobble pair is inefficient. Nucleic Acids Research, 1995, 23: 683-688.
    [15] Eyre-Walker, A. The distance between Escherichia coli genes is related to gene expression levels. Journal of Bacteriology, 1995,177: 5368-5369.
    [16] Dong, H.J., Nilsson, L., Kurland, C.G. Gratuitous overexpression of genes in Escherichia coli leads to growth-inhibition and ribosome destruction. Journal of Bacteriology, 1995, 177: 1497-1504.
    [17] Eikmanns, B.J. Identification, sequence analysis, and expression of a Corynebacteriumglutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triose phosphate isomerase. Journal of Bacteriology, 1992,174: 6076-6086.
    [18] de Smit, M.H., Duin, J., Knippenberg, P.H., Eijk, H.G. CCC.UGA: a new site of ribosomal frameshifting in Escherichia coli. Gene, 1994, 143: 43- 47.
    [19] Deschavanne, P., Filipski, J. Correlation of GC content with replication timing and repair mechanisms in weakly expressed Escherichia coli genes. Nucleic Acids Research, 1995, 23: 1350-1353.
    [20] Ellis, J., Griffin, H., Morrison, D., Johnson, A.M. Analysis of dinucleotide frequency and codon usage in the phylum Apicomplexa. Gene, 1993, 126: 163-170.
    [21] D'onofrio, G., Bernardi, G. A universal compositional correlation among codon positions. Gene, 1992,110:81-88.
    [22] Elton, B., Russell, G.J., Subak-Sharpe, J. Doublet frequencies and codon weighting in the DNA of Escherichia coli. Journal of Molecular Evolution, 1976, 8: 117-135.
    [23] Ohno, S. Universal rule for coding sequence construction: TA/GC deficiency-TG/CT excess. Proc. Natl. Acad. Sci USA, 1988, 85: 9630-9634.
    [24] Karlin, S., Mrazek, J. What drives codon choices in human genes?. Journal of Molecular Biology,1996,262:459-472.
    [25]Curran,J.F.,Yarus,M.Rates of AA-tRNA selection at 29 sense codons in vivo.Journal of Molecular Biology,1998,209:65-77.
    [26]Karlin,S.,Campbell,A.M.,Mrazek,J.Comparative DNA analysis across diverse genomes.Annu Rev Genetics,1998,32:185-225.
    [27]石秀凡,黄京飞,柳树群等.人类基因同义密码子偏好的特征以及与基因GC含量的关系.生物化学与生物物理进展,2002,29:411-414.
    [28]Rodriguez-Trelles,F.,Tarrio,R.,Ayala,F.J.Switch in codon bias and increased rotes of Amino Acid substitution in t he Drosophila saltan species group.Genetics,1999,153:339-350.
    [29]Moriyama,E.N.,Powell,J.R.Gene length and codon usage bias in Drosophila melanogaster,Saccharomy cescerevisiae and Escherichia coli.Nucl Acids Res.,1998,26:3188-3193.
    [30]Moriyama,E.N.,Powell,JR.Codon usage bias and tRNA abundance in Drosophil.J Mol Evol,1997,45:514-523.
    [31]Moszer,I.,Rocha,E.P.C.,Danchin,A.Codon usage and lateral gene transfer in Bacillus subtilis.Current Opinion in Microbiology,1999,2:524-528.
    [32]顾万君,马建民,周童等.不同结构的蛋白编码基因的密码子偏好性研究.生物物理学报,2002,18:81-86.
    [33]石秀凡,黄京飞,梁宠荣等.人类基因中同义密码子的偏好与密码子反密码子间的结合强度密切相关吗?.科学通报,2000,45:2520-2525.
    [34]Morton,B.R.Selection on t he codon bias of chloroplast and cyanelle genes in different plant and algal ineages.J Mol Evol,1998,46:449-459.
    [35]Ma,J.,Zhou,T.,Gu,W.,et al.Cluster analysis of the codon use fequency of MHC genes from different species.Biosystems,2002,65:199-207.
    [36]Romero,H.,Zavala,A.,Musto,H.Compositional pressure and translational selection determine codon usage in the extremely GC-poor unicellular eukaryote Entamoeba histolytica,Gene,2000,242:307-311.
    [37]Pan,A.,Dutta,C.,Das,J.Codon usage in highly expressed genes of Haemophillus influenzae and Mycobacterium tuberculosis:translational selection versus mutational bias.Gene,1998,215:405-413.
    [38] Andersson, G.E., Sharp, P.M. Codon usage in the Mycobacterium tuberculosis complex. Microbiology, 1996, 142: 915-925.
    [39] Sharp, P.M., Li, W.H. Codon usage in regulatory genes in Escherichia coli does not reflect selection for 'rare'codons. Nucleic Acids Res., 1986,14: 7737-7749.
    [40] Gauy, M., Gautier, C. Codon usage in bacteria: correlation with gene expression. Nucleic Acids Res., 1982, 10: 7055-7075.
    [41] Nei, M., Kumar, S. Molecular Evolution and Phylogenetics. New York: Oxford University Press Inc. 2000.
    [42] Ikemura, T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli system. Journal of Molecular Biology, 1981, 151: 389-409.
    [43] Ikemura, T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons of its protein genes. Journal of Molecular Biology, 1981, 146: 1-21.
    [44] Ikemura, T. Correlation between the abundance of yeast tRNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. Journal of Molecular Biology, 1982, 158: 573-597.
    [45] Ikemura, T., Ozeki, H. Codon usage and transfer RNA contents: organism specific codon choice patterns in reference to the isoacceptor contents. Cold Spring Harbor Symposium Quantitative Biology, 1982,47: 1087-1097.
    [46] Ikemura, T. Codon usage and tRNA content in unicellular and multicellular organisms. Mol BiolEvol, 1985,2:12-34.
    [47] McHardy, A.C., Puhler, A., Kalinowski, J., et al. Comparing expression level-dependent features in codon usage with protein abundance: an analysis of 'predictive proteomics'. Proteomics, 2004,4: 46-58.
    [48] Cohen, B., Skiena, S. Natural selection and algorithmic design of mRNA. J Comput Biol, 2003,10: 419-432.
    [49] Precup, J., Parker, J. Missense misreading of asparagine codons as a function of codon identity and context. J Biol Chem 1987, 262: 11351-11355.
    [50] Precup, J., Ulrich, A.K., Roopnarine, O., Parker, J. Context specific misreading of phenylalanine codons. Mol Gen Genet, 1989,218: 397- 401.
    [51] Curran, J.F., Poole, E.S., Tate, W.P., Gross, B.L. Selection of aminoacyltRNAs at sense codons: the size of the tRNA variable loop determines whether the immediate 3' nucleotide to the codon has a context effect. Nucleic Acids Res, 1995, 23: 4104-4108.
    [52] Shpaer, E.G. Constrains on codon context in Escherichia coli genes. Their possible role in modulating the efficiency of translation. J Mol Biol, 1986, 188: 555-564.
    [53] Gouy, M. Codon contexts in enterobacterial and coliphage genes. Mol Biol Evol, 1987, 4: 426-444.
    [54] Yams, M., Folley, L.S. Sense codons are found in specific contexts. J Mol Biol 1985, 182:529-540.
    [55] Buckingham, R.H. Codon context and protein synthesis: enhancements of the genetic code. Biochimie, 1994,76:351-354.
    [56] Carrier, M.J., Buckingham, R.H. An effect of codon context on the mistranslation of UGU codons in vitro. J Mol Biol, 1984, 175: 29-38.
    [57] Murgola, E.J., Pagel, F.T., Hijazi, K.A. Codon context effects in missense suppression. J Mol Biol, 1984, 175: 19-27.
    [58] Fuglsang, A. Patterns of context-dependent codon biases. Biochemical and Biophysical Research Communications, 2003, 304: 86-90.
    [59] Tate, W.P., Poole, E.S., Dalphin, M.E., Major, L.L., Crawford, D.J.G., Mannering, S.A. The translational stop signa|: Codon with a context, or extended factor recognition element?. Biochimie, 1996, 78: 945-952.
    [60] Zhang, J., Gu, B.H., Shi, X.F., Liu, C.Q. Relationship between the context base usage of codons and protein structure in Escherchia coli genes. Acta Biophysica Sinica, 2001, 17: 174-179.
    [61] Shi, X.F., Huang, J.F., Liu, S.Q., Liu, C.Q. The features of synonymous codon bias and GC-content relationship in human genes. Prog. Biochem. Biophys., 2002, 19: 411-414.
    [62] Zhang, J., Gu, B.H., Shi, X.F., Liu, S.Q., Liu, C.Q. Relationship between the context base usage of codons and protein structure in human genes. Acta Biophysica Sinica, 2000, 16: 770-774.
    [63] Sorensen, M.A, Kurland, C.G., Pedersen, S. Codon usage determine translation rate in Escherichia coli. J Mol Biol, 1989,207: 365-377.
    [64] Smith, D., and Yarus, M. tRNA-tRNA interactions within cellular ribosomes. Proc. Natl. Acad. Sci U. S. A., 1989, 86: 4397-4401
    [65] Barrell, B.G., Bankier, A.T., Drouin, J. A different genetic code in human mitochondria. Nature, 1979,282:189-194.
    
    [66] Woese, C.R. The genetic code. New York: Harper and Row, 1967: 2.
    [67] Crick, F.H.C. The origin of the genetic code. Journal of Molecular Biology, 1968, 38: 367-379.
    [68] Wang, L., Schultz, P.G. Expanding the genetic code. Angew Chem Int Ed Engl, 2004, 44: 34-66.
    [69] Srinivasan, G., James, C.M., Krzycki, J.A. Pyrrolysineen coded by UAG in Archaea: charging of a UAG decoding specialized tRNA. Science, 2002, 296:1459-1462.
    [70] Leinfelder, W., Zehelein, Berthelot, M.A., et al.Gene for anovel tRNA species that accepts L2 serine and cotranslationally inserts selenocysteine. Nature, 1988, 331: 721-725.
    [71] Xie, J., Schultz, P.G. An expanding enetic code. Methods, 2005, 36: 227-238.
    [72] Taki, M., Matsushita, J., Sisido, M. Expanding the genetic code in a mammaliancellline by the introduction of four 2 base codon P anticodon pairs.Chembiochem, 2006, 7: 425-428.
    [73] Cavalcanti, A.R., Landweber, L.F.Genetic code.Curr Biol, 2004,14:147.
    [74] Anderson, J.C., Wu, N., Santoro, S.W., et al. An expanded genetic code with a functional quadruplet codon. Proc Natl Acad Sc, USA, 2004,101: 7566-7571.
    [75] Berg, O.G., Silva, P.J. Codon bias in Escherichia coli: the influence of codon context on mutation and selection. Nucleic Acids Res., 1977, 25: 397-404.
    [76] Fedorov, A., Saxonov, S., Gilbert, W. Regularities of context-dependent codon bias in eukaryotic genes. Nucleic Acids Res., 2002, 30: 1192-1197.
    [77] Mcvean, G.A.T., Hurst, G.D.D. Evolutionary lability of context-dependent codon bias in bacteria. J Mol Evol, 2000, 50: 264-275.
    [78] Jukes, T.H., Bhushan, V. Silent nucleotide substitutions and G + C content of some mitochondrial and bacterial genes. J Mol Evol, 1986,24: 864-875.
    [79] Sueoka, N. Directional mutation pressure, selective constraints, and genetic equilibria. J Mol Evol, 1992,34:95-114.
    [80] Kolaskar A.S., and Reddy, B.V.B. Contextual constraints on codon pair usage: structural and biological implications. J Biomol Struc Dyn, 1986, 3: 725-738.
    [81] Mishima, Y., Kaizu, H., Kominami, R. Pairing of DNA fragments containing (GGA:TCC)_n repeats and rromotion by high mobility group protein 1 and histone H1*. Journal of Biological Chemistry, 1997, 272: 26578-26584.
    [82] Folley, L.S. and Yarus, M. Codon contexts from weakly expressed genes reduce expression in vivoJ. Mol. Biol, 1989, 209: 359-378.
    [83] Gutman, G.A., Hatfield, G.W. Nonrandom utilization of codon pairs in Escherichia coli, Proc. Natl. Acad. Sci. USA, 1989, 86: 3699-3703.
    [84] Irwin, B., Heck, J.D., Hatfield, G.W. Codon pair utilization biases influence translational elongation step times. J. Biol. Chem, 1995, 270: 22801-22806.
    [85] Gurvich, O.L., Baranov, P.V., Gesteland, R.F., Atkins, J.F. Expression levels Influence Ribosomal Frameshifting at the Tandem Rare Arginine Codons AGG AGG and AGA AGA in Escherichia coli. Journal of Bacteriology, 2005, 187: 4023-4032.
    [86] Boycheva, S., Chkodrov, G., Ivanov, I. Codon pairs in the genome of Escherichia coli. 2003, 19: 987-998.
    [87] Buchan, J.R., Aucott, L.S., Stansfield, I. tRNA properties help shape codon pair preferences in open reading frames. Nucleic Acids Res, 2006, 34: 1015-1027.
    [88] Moura, G., Pinheiro, M., Silva, R., Miranda, Isabel., et al. Comparative context analysis of codon pairs on an ORFeome scale. Genome Biology, 2005, 6: R28
    [89] Li, C, Yu, X.Q., Helal, N. Similarity analysis of DNA sequences based on codon usage. Chemical Physics Letters, 2008,459: 172-174.
    [90] Chen, S.L., Lee, W., Hottes, A.K., Shapiro, L., McAdams, H.H. Codon usage between genomes is constrained by genome-wide mutational processes. Proc. Natl. Acad. Sci. USA, 2004,101:3480-3485.
    [91] Yang, Z.H., Nielsen, R. Mutation-selection models of codon substitution and their use to estimate selective strengths on codon usage. Mol. Biol. Evol., 2008, 25: 568-579.
    [92] Delport, W., Scheffler, K., Seoighe, C. Models of coding sequence evolution. Brief Bioinform, 2009,10: 97-109.
    [93] Rodrigue, N., Lartillot, N. and H. Philippe. Bayesian comparisons of codon substitution models. Genetics, 2008,180: 1579-1591.
    [94] Jansen, R., Bussemaker, H.J., Gerstein, M. Revisiting the codon adaptation index from a whole-genome perspective: analyzing the relationship between gene expression and codon occurrence in yeast using a variety of models. Nucleic Acids Res., 2003, 31: 2242-2251.
    [95] Ingvarsson, P.K. Gene expression and protein length influence codon usage and rates of sequence evolution in Populus tremula. Mol. Biol. Evol, 2007,24: 836-844.
    [96] Williams, I., Richardson, J., Starkey, A., Stansfield, I. Genome-wide prediction of stop codon readthrough during translation in the yeast Saccharomyces cerevisiae. Nucleic Acids Res., 2004, 32: 6605-6616.
    [97] Friedman, R., Hughes, A.L. Codon volatility as an indicator of positive selection: data from eukaryotic genome comparisons. Mol. Biol. Evol, 2005, 22: 542-546.
    [98] Kegler-Ebo, D.M., Docktor, C.M., DiMaio, D. Codon cassette mutagenesis: a general method to insert or replace individual codons by using universal mutagenic cassettes. Nucleic Acids Res., 1994,22: 1593-1599.
    [99] Murray, E.E., Lotzer, J., Eberle, M. Codon usage in plant genes. Nucleic Acids Res., 1989, 17:477-498.
    
    [100] Holm, L. Codon usage and gene expression. Nucleic Acids Res., 1986, 14: 3075-3087.
    [101] Dagan, T., Graur, D. The comparative method rules! codon volatility cannot detect positive darwinian selection using a single genome sequence. Mol. Biol. Evol., 2005, 22: 496-500.
    [102] Das, S., Paul, S., Chatterjee, S., Dutta, C. Codon and Amino Acid Usage in Two Major Human Pathogens of Genus Bartonella — ptimization Between Replicational- Transcriptional Selection, Translational Control and Cost Minimization. DNA Res, 2005,12: 91-102.
    [103] Supek, F., Vlahovicek, K. INCA: synonymous codon usage analysis and clustering by means of self-organizing map. Bioinformatics, 2004,20: 2329-2330.
    [104] Arizono, K., Osada, Y., Kuroda, Y. DNA Repair Gene hOGG1 Codon 326 and XRCC1 Codon 399 Polymorphisms and Bladder Cancer Risk in a Japanese Population. Jpn. J. Clin. Oncol, 2008, 38: 186-191.
    [105] Nakamura, Y., Gojobori, T., Ikemura, T. Codon usage tabulated from the international DNA sequence databases. Nucleic Acids Res., 1998, 26: 334.
    [106] Bao, L., Gu, H., Dunn, K.A., Bielawski, J.P. Likelihood-based clustering (LiBaC) for codon models, a method for grouping sites according to similarities in the underlying process of evolution. Mol. Biol Evol, 2008, 25: 1995-2007.
    [107] Schadt, E., Lange, K. Codon and rate variation models in molecular phylogeny. Mol. Biol. Evol, 2002, 19: 1534-1549.
    [108] Jacinto-Loeza, E., Vivanco-Dominguez, S., Guarneros, G., Hernandez-Sanchez, J. Minigene-like inhibition of protein synthesis mediated by hungry codons near the start codon. Nucleic Acids Res., 2008, 36: 4233-4241.
    [109] Ji, X.M., Neumann, A.S., Sturgis, E.M., Adler-Storthz, K., Dahlstrom, K.R., Schiller, J.T., Wei, Q.Y., Li, GJ. p53 codon 72 polymorphism associated with risk of human papillomavirus-associated squamous cell carcinoma of the oropharynx in never-smokers. Carcinogenesis, 2008,29: 875- 879.
    [110] Reis, M., Wernisch, L., Sawa, R. Unexpected correlations between gene expression and codon usage bias from microarray data for the whole Escherichia coli K-12 genome. Nucleic Acids Res., 2003, 31: 6976- 6985.
    [111] Snel, B., Bork, P., Huynen, M.A. Genome phylogeny based on gene content. Nat Genet, 1999,21:108-110.
    [112] Henz, S.R., Huson, D.H., Auch, A.F., Nieselt-Struwe, K., Schuster, S.C. Whole-genome prokaryotic phylogeny. Bioinformatics, 2005,21: 2329-2335.
    [113] Yao, X.H., Ye, Q.G., Fritsch, P.W., Cruz, B.C., Huang, H.W. Phylogeny of Sinojackia (Styracaceae) Based on DNA Sequence and Microsatellite Data: Implications for taxonomy and conservation. Ann. Bot., 2008, 101: 651- 659.
    [114] Gorecki, P., Tiuryn, J. Inferring phylogeny from whole genomes. Bioinformatics, 2007, 23: ell6-el22.
    [115] Gibb, G.C., Kardailsky, O., Kimball, R.T., Braun, E.L., Penny, David. Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations. Mol. Biol. Evol, 2007, 24: 269-280.
    [116] Belda, E., Moya, A., Silva, F.J. Genome rearrangement distances and gene order phylogeny in γ-proteobacteria.Mol.Biol.Evol.,2005,22:1456-1467.
    [117]Khuri,S.,Bakker,F.T.,Dunwell,J.M.Phylogeny,function,and evolution of the cupins,a structurally conserved,functionally diverse superfamily of proteins.Mol.Biol.Evol.,2001,18:593-605.
    [118]Soltis,P.S.,Soltis,D.E.,Wolf,P.G.,Nickrent,D.L.,Chaw,S.M.,Chapman,R.L.The phylogeny of land plants inferred from 18S rDNA sequences:pushing the limits of rDNA signal?.Mol.Biol.Evol.,1999,16:1774-1784.
    [119]Regier,J.C.,Shultz,J.W.Molecular phylogeny of arthropods and the significance of the cambrian "explosion" for molecular systematics.Integr.Comp.Biol.,1998,38:918-928.
    [120]Wethington,A.R.,Lydeard,C.A molecular phylogeny of physidae(gastropoda:basommatophora) based on mitochondrial DNA sequences.J.Mollus.Stud,2007,73:241-257.
    [121]Clark,T.G,Iorio,M.D.,Griffiths,R.C.Bayesian logistic regression using a perfect phylogeny.Biostat.,2007,8:32-52.
    [122]Keane,T.M.,Naughton,T.J.,Travers,S.A.A.,McInerney,J.O.,McCormack,G.P.DPRml:distributed phylogeny reconstruction by maximum likelihood.Bioinformatics,2005,21:969- 974.
    [123]Moura,G.,Pinheiro,M.,Arrais,J.,Gomes.A.C.,Carreto,L.,et al.Large scale comparative codon-pair context analysis unveils general rules that fine-tune evolution of mRNA primary structure.PLoS ONE,2007,2:e847.
    [124]Tats,A.,Tenson,T.,Remm,M.Preferred and avoided codon pairs in three domains of life.BMC Genomics,2008,9:463.
    [125]Woese,C.R.,Fox,G.E.Phylogenetic structure of the prokaryotic domain:the primary kingdoms.Proc Natl Acad Sci USA,1977,74:5088-5090.
    [126]方开泰,许建伦.统计分布[M].北京:科学出版社,1987,331-332.
    [127]数学手册编写组.数学手册[M].北京:高等教育出版社,1979.
    [128]李春喜,王志和,王文林.生物统计学(第二版)[M].北京:科学出版社,2000.
    [129]杜荣骞.生物统计学(第一版)[M].北京:高等教育出版社,1992.
    [130]Andersson,S.G.E.,Kurland,C.G.Codon preferences in free living microorganisms.Microbiol Rev,1990,54:198-210.
    [131]Kurland,C.G.Major codon preference:theme and variation.Biochem Soc Trans,1993,21:841-845.
    [132]Sharp,P.M.,Matassi,G.Codon usage and genome evolution.Curr Opin GenetDev,1994,4:851-860.
    [133]Cheng,L.,Goldman,E.Absence of effect of varying Thr-Leu codon pairs on protein synthesis in a T7 system.Biochemistry,2001,40:6102-6106.
    [134]Robinson,M.,Lilley,R.,Little,S.,Emtage,J.S.,Yarranton,G.,Stephens,P.,Millican,A.,Eaton,M.,Humphreys,G.Codon usage can affect efficiency of translation of genes in Escherichia coli.Nucleic Acids Res,1984,12:6663-6671.
    [135]Stenstr(o|¨)m,C.M.,Jin,H.N.,Major,L.L.,Tate,W.P.,Isaksson,L.A.Codon bias at the 3'-side of the initiation codon is correlated with translation initiation efficiency in Escherichia coli.Gene,2001,263:273-284.
    [136]Buckingham,R.H.,Grosjean,H.The accuracy of mRNA-tRNA recognition.In:Kirkwood TBL,Rosenberger RF,Galas DJ.,editors.Accuracy in Molecular Processes:Its Control and Relevance to Living Systems.London:Chapman and Hall,1986.pp.83-126.
    [137]Tate,W.P.,Poole,E.S.,Mannering,S.A.Hidden infidelities of the translational stop signal.Nucleic Acid Res,1996,52:293-335.
    [138]Ernesto,I.,Gonzalez,V.,and Isaksson,L.A.A codon window in mRNA downstream of the initiation codon where NGG codons give strongly reduced gene expression in Escherichia coli.Nucleic Acids Res,2004,32:5198-5205.
    [139]Efrain,Z.R.,Luis,C.V.,Serafin,V.D.,et al.Efficient expression of gene variants that harbour AGA codons next to the initiation codon.Nucleic Acids Res,2007,35:5966-5974.
    [140]Skophammer,R.G.,Herbold,C.W.,Rivera,M.C.,Servin,J.A.,Lake,J.A.Evidence that the Root of the Tree of Life Is Not within the Archaea.Molecular Biology and Evolution,2006,23:1648-1651.
    [141]Li,W.,Fang,W.,Ling,L.,Wang,J.H.,Xuan,Z.Y.,Chen,R.S.Phylogeny based on whole genome as inferred from complete information set analysis.J Biol Phys,2002,28:439-447.
    [142]王树林,王戟,陈火旺,张鼎兴.k-长DNA子序列频数分布研究.生物物理学报,2006,22:177-196.
    [143]Kurtz,S.,Narechania,A.,Stein,J.,Ware,D.A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes.BMC Genomics,2008,9:517.
    [144]Roma,F.,Ramirez-Pastor,A.J.,Riccardo,J.L.Configurational entropy in k-mer adsorption.Langmuir,2000,16:9406-9409.
    [145]北京大学生命科学学院编写组.生命科学导论[M].北京:高等教育出版社,2000,151-177.
    [146]Purvis,I.J.,Bettany,A.J.,Santiago,T.C.,Coggins,J.R.,Duncan,K.,Eason,R.,Brown,A.J.The efficiency of folding of some proteins is increased by controlled rates of translation in vivo.J Mol Biol,1987,193:413-417.
    [147]Rothman,J.E.Polypeptide chain binding proteins:catalysts of protein folding and related processes in cells.Cell,1989,59:591-601.
    [148]Yusupov,M.M.,Yusupova,G.Z.,Baucom,A.,Lieberman,K.,Earnest,T.N.,Cate,J.H.,Noller,H.F.Crystal structure of the ribosome at 5.5 A resolution.Science,2001,292:883-896.
    [149]Hsieh,L.C.,Luo,L.F.,Ji,F.M.Minimal model for genome evolution and growth.Physical Review Letters,2003,90:1-4.
    [150]冯立芹,李宏.基因组中开阅读框架长度的分布模型与基因组进化.生物物理学报,2004,20:375-381.
    [151]Saito,R.,Tomita,M.Computer analyses of complete genomes suggest that some archaebacteria employ both eukaryotic and eubacterial mechanisms in translation initiation.Gene,1999,238:79-83.
    [152]Takeuchi,F.,Futamura,Y.,Yoshikur,H.,Yamamoto,K.Statistics of trinucleotides in coding sequences and evolution.J.Theor.Biol.2003,222:139-149.
    [153]Wang,F,P.,Li,H.Codon-pair usage and genome evolution.Gene,433:8-15.
    [154]王芳平,李宏.密码对的使用与基因组进化.生物物理学报,2007,23:176-184.
    [155]Nakashima,H.,Nishikawa,K.,Ooi,T.Differences in dinucleotide frequencies of human,yeast,and Escherichia coli genes.DNA Res,1997,4:185-192.
    [156]Hooper,S.D.,Berg,O.G.Detection of genes with atypical nucleotide sequence in microbial genomes.J Mol Evol,2002,54:365-375.
    [157]Campbell,A.,Mrazek,J.,Karlin,S.Genome signature comparisons among prokaryote, plasmid, and mitochondrial DNA. Proc Natl Acad Sci USA, 1999, 96: 9184-9189.
    [158] Woese, C.R., Kandler, O., Wheelis, M.L. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA, 1990, 87: 4576-4579.
    [159] Avery, O.T., Macleod, C.M., Mccarty, M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus Type 111. J. Exp. Med, 1944, 79:137-158.
    [160] Poole, E.S., Major, L.L., Mannering, S.A. Translational termination in Escherichia coli: three bases following the stop codon crosslink to release factor 2 and affect the decoding efficiency of UGA-containing signals. Nucl Acid Res, 1998, 26: 954-960.
    [161] Niu, D.K., Lin, K., Zhang, D. Strand compositional asymmetries of nuclear DNA in eukaryotes. J Mol Evol, 2003, 57: 325-334.
    [162] Min, X.J., Hickey, D.A. DNA Asymmetric Strand Bias Affects the Amino Acid Composition of Mitochondrial Proteins. DNA Research, 2007, 14: 201-206.
    [163] Majewski, J. Dependence of mutational asymmetry on gene-expression levels in the human genome. Am J Hum Genet, 2003, 73: 688-692.
    [164] Kjeldsen, E., Mollerup, S., Thomsen, B., Bonven, B.J., et al. Sequence-dependent effect of camptothecin on human topoisomerase I DNA cleavage. Journal of molecular biology, 1988, 202: 333-342.
    [165] Wu, Y., Hickey, R.J., Lawlor, K., Wills, P., Yu, E, et al. A 17S form of DNA polymerase from mouse cells mediates the in vitro replication of polyomavirus DNA. J Cell Biochem, 1994, 54: 32-46.
    [166] Simoncsits, A., Tjornhammar, M.L., Wang, S., Pongor, S. Isolation of altered specificity mutants of the single-chain 434 repressor that recognize asymmetric DNA sequences containing the TTAA and TTAC subsites. Nucleic Acids Res., 1999, 27: 3474-3480.
    [167] Cyril, M., Sanders, O.V., Kovalevskiy, D.S., Andrey, A.L., Michail, N.I., Alfred, A.A. Papillomavirus El helicase assembly maintains an asymmetric state in the absence of DNA and nucleotide cofactors. Nucleic Acids Res., 2007, 35: 6451- 6457.
    [168] Bruce, W.B, Melvin, I.S., Eric, L. The basis of high resolution separation of small DNAs by asymmetric-voltage field inversion electrophoresis and its application to DNA sequencing gels. Nucleic Acids Res., 1990, 18: 1481-1487.
    [169] Hays, S., Rye, S.Y., David, E., Wemmer, M.A., Quesada, R.P., et al. Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and applications. Nucleic Acids Res., 1992, 20: 2803-2812.
    [170] Bishop, K.D., Borer, P.N., Huang, Y.Q., Lane, M. Actinomycin D induced DNase I hypersensitivity and asymmetric structure transmission in a DNA' hexadecamer. Nucleic Acids Res., 1991,19:871-875.
    [171] Humbert, O., Salama, N.R. The Helicobacter pylori HpyAXII restriction-modification system limits exogenous DNA uptake by targeting GTAC sites but shows asymmetric conservation of the DNA methyltransferase and restriction endonuclease components. Nucleic Acids Res., 2008, 36: 6893-6906.
    [172] Bengtsson, M, Karlsson, H.J., Westman, G, Kubista, M. A new minor groove binding asymmetric cyanine reporter dye for real-time PCR. Nucleic Acids Res., 2003, 31: e45.
    [173] Sewitz, S., Crellin, P., Chalmers, R. The positive and negative regulation of Tn10 transposition by IHF is mediated by structurally asymmetric transposon arms. Nucleic Acids Res., 2003, 31: 5868-5876.
    [174] Fu, Y.L., Xu, L., Xu, B., Yang, L., Ling, Q.H., Wang, H., Huang, H. Genetic interactions between leaf polarity-controlling genes and ASYMMETRIC LEAVES1 and 2 in Arabidopsis leaf patterning. Plant Cell Physiol, 2007,48: 724-735.
    [175] Nedbal, M.A., Flynn, J.J. Do the combined effects of the asymmetric process of replication and DNA damage from oxygen radicals produce a mutation-rate signature in the mitochondrial genome?. Mol. Biol. Evol, 1998,15: 219-223.
    [176] Ross, E.D., Den, R.B., Hardwidge, P.R., Maher, L.J. Improved quantitation of DNA curvature using ligation ladders. Nucleic Acids Res., 1999,27: 4135-4142.
    [177] Tabler, M., Homann, ML, Tzortzakaki, S., Sczakiel, G. A three-nucleotide helix I is sufficient for full activity of a hammerhead ribozyme: advantages of an asymmetric design. Nucleic Acids Res., 1994, 22: 3958-3965.
    [178] Fujii, T., Ohta, M., Kono, M., Hoshina, S., Fukuhara, K., Tsuruoka, M. Rapid detection of the gene of Legionella pneumophila using the fluorescence polarization with the asymmetric PCR. Nucleic Acids Symp Ser, 1999,42: 59-60.
    [179] An, G., Lee, S., Kim, S.H., Kim, S.R. Molecular genetics using T-DNA in rice. Plant Cell Physiol., 2005,46: 14-22.
    [180] Catto, L.E., Ganguly, S., Milsom, S.E., Welsh, A.J., Halford, S.E. Protein assembly and DNA looping by the FokI restriction endonuclease. Nucleic Acids Res., 2006, 34: 1711-1720.
    [181] Lim, Y.C., Lee, E., Lee, J., Oh, S., Kim, S. Down-regulation of asymmetric arginine mMethylation during replicative and H_2O_2-induced premature senescence in WI-38 human diploid fibroblasts. J. Biochem., 2008,144: 523-529.
    [182] Kingston, I.J., Gormley, N.A., Halford, S.E. DNA supercoiling enables the Type IIS restriction enzyme BspMI to recognise the relative orientation of two DNA sequences. Nucleic Acids Res., 2003, 31: 5221-5228.
    [183] Kaya, H., Sato, S., Tabata, S., Kobayashi, Y., Iwabuchi, M., Araki, T. hosoba toge toge, a syndrome caused by a large chromosomal deletion associated with a T-DNA insertion in Arabidopsis. Plant Cell Physiol, 2000,41: 1055-1066.
    [184] Kinoshita, K., Kikuchi, Y., Sasakura, Y, Suzuki, M., Fujii-Kuriyama, Y, Sogawa, K. Altered DNA binding specificity of Arnt by selection of partner bHLH-PAS proteins. Nucleic Acids Res., 2004, 32: 3169-3179.
    [185] McDonald, R. J., Kahn, J.D., Maher, L.James. DNA bending by bHLH charge variants Nucleic Acids Res., 2006, 34: 4846-4856.
    [186] Goodwin, K.D., Long, E.C., Georgiadis, M.M. A host-guest approach for determining drug-DNA interactions: an example using netropsin. Nucleic Acids Res., 2005, 33: 4106- 4116.
    [187] Ennifar, E., Meyer. J.E.W., Buchholz, F., Stewart, A.F., Suck, D. Crystal structure of a wild-type Cre recombinase-loxP synapse reveals a novel spacer conformation suggesting an alternative mechanism for DNA cleavage activation. Nucleic Acids Res., 2003, 31: 5449-5460.
    [188] Ihara, T., Kitamura, Y, Okada, K., Tazaki, M., Jyo, A. Asymmetric cooperativity in tandem hybridization of the DNA conjugates bearing chiral metal complexes. Nucleic Acids Symp Ser, 2005,49: 229-230.
    [189]Tari,L.W.,Secco,A.S.Base-pair opening and spermine binding-B-DNA features displayed in the crystal structure of a gal operon fragment:implications for protein-DNA recognition.Nucleic Acids Res.,1995,23:2065-2073.
    [190]Lobry,J.R.Asymmetric substitution patterns in the two DNA strands of bacteria.Mol Biol Evol,1996,13:660-665.
    [191]Grigoriev,A.Analyzing genomes with cumulative skew diagrams.Nucl Acids Res,1998,26:2286-2290.
    [192]Mrazek,J.,Karlin,S.Strand compositional asymmetry in bacterial and large viral genomes.Proc Natl Acod Sci USA,1998,95:3720-3725.
    [193]Rochu,E.P.C.,Danchin,A.,Viari,A.Universal replication biases in bacteria.Mol Microbiol,1999,32:11-16.
    [194]Tillier,E.R.,Collins,R.A.The contribution of replication orientation,gene direction,and signal sequences to base-composition asymmetries in bacterial genomes.J Mol Evol,2000,50:249-257.
    [195]McLean,M.J.,Wolfe,K.H.,Devine,K.M.Base compositional skews,replication orientation and gene orientation in 12 prokaryote genomes.J Mol Evol,1998,47:691-696.
    [196]Lopez,P.,Phillipe,H.Composition strand asymmetries in prokaryotic genomes mutational bias and biased gene orientation.Life Sci,2001,324:201-208.
    [197]Lobry,J.R.,Sueoka,N.Asymmetric directional mutation pressure in bacteria.Genome Biol,2002,3:1-14.
    [198]Fumoto,M.,Miyazaki,S.,Sugawara,H.Genome Information Broker(GIB):data retrieval and comparative analysis system for completed microbial genomes and more.Nucleic Acids Res,2002,30:66-68.
    [199]Mackiewicz,P.,Gierlik,A.,Kowalczuk,M.,Dudek,M.R.,et al.How does replication-associated mutational pressure influence amino acid composition of protein.Genome Res,1999,9:409-416.
    [200]Romero,H.,Zavala,A.,Musto,H.Codon usage in Chlamydia trachomatis the result of strand-specific mutational biases and complex pattern of selective forces.Nucl Acids Res,2000,28:2084-2090.
    [201]包其郁,杨焕明.原核生物基因组DNA链组成的非对称性.微生物学报,2002,42: 755-758.
    [202] Santis, L.P.D., Garcia, C.L., Balajee, A.S., et al. Transcription coupled repair efficiency determines the cell cycle progression and apoptosis after UV exposure in hamster cells. Mutat Res, 2001,485: 121-132.
    [203] Francino, M.P., Chao, L., Riley, M.A., et al. Asmmetries generated by transcription-coupled repair in enterobacterial genes. Science, 1996, 272: 107-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700