基于钯基合金薄膜的光纤氢气传感器建模分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业化的发展,氢气传感器在国防、军事及民用中均表现出强烈的需求。但是目前的各种氢气传感器都还存在着这样或者那样的缺点,无法满足各种实际需求。光纤传感器以其特有高安全性和高抗干扰性成为氢气传感器领域中最具应用前景的一类传感器。本论文针对光纤氢气传感器的研究现状以及存在的问题,主要以钯基薄膜反射式光纤氢气传感器为对象,在传感器机理、传感器关键技术、高重复性氢气传感器样机研制、快速型氢气传感器样机研制等方面进行了以下研究:
     (1)提出了基于光学矩阵的薄膜反射模型。该模型解决了薄膜折射率、薄膜厚度、基底材料折射率、入射光波波长等因素对薄膜反射率的影响。
     (2)提出了钯基合金薄膜中氢原子扩散模型。该模型建立了薄膜中氢原子浓度与扩散时间、薄膜厚度等因素的关系。通过仿真分析得出传感器的响应时间与薄膜厚度的平方呈正比。
     (3)基于对现有薄膜微观实验现象的观察,提出了用于解释薄膜失效的氢气泡模型。该模型阐明了脱层高度,薄膜折射率、薄膜厚度、基底材料折射率、入射光波波长等因素对传感器重复性的影响。
     (4)建立了光纤束的反射耦合模型,通过仿真计算研究了发送光纤芯径,接收光纤芯径,反射距离,光纤数值孔径等参数对薄膜反射率的影响。讨论了适合光纤氢气传感器的最佳反射距离。
     (5)为了提高氢气传感器的精度,本文分析了光电二极管工作原理,设计了基于T型网络的前置放大电路,减小了输出偏置电压。采用小波变换方法设计了基于Matlab的滤波程序,有效地消除噪声的影响,提高了传感器的信噪比。
     (6)在对钯基薄膜型传感器失效机理深入分析的基础上,首次阐明了掺杂抑制破裂的原理。并以密度泛函理论作为工具,提出了面向氢气传感器的钯基合金掺杂方法。通过该方法设计了高重复性的PdY合金薄膜材料并制作了传感器样机。样机试验结果表明,钯钇合金薄膜的确能够提高传感器的重复性。同时,实验还表明,新制薄膜的通氢老化处理有利于提高传感器的重复性。老化后的传感器零点漂移和氢气点漂移均小于0.2%,具有较好的实用价值。
     (7)最后,根据钯基合金薄膜中氢原子扩散模型的分析结果,提出了基于超薄纳米膜的快速型氢气传感器。实验结果表明,10nm的Pd/PdY的复合膜氢气传感器具有良好的时间特性。最快响应时间和恢复时间分别只有6秒和8秒(4%H2)。一个通、放氢循环时间不超过16秒。这和目前报道的其他类型光纤氢气传感器相比,具有明显的优越性。
With the industrial development, hydrogen sensors become very popular in the defense,military and civilian field. Unfortunately, existing hydrogen sensors have some disadvantageand can not satisfy actual demand. Due to the high safty and anti-interference, the fiberoptic sensor is a most application prospect sensor type in the hydrogen detecting field.Considering the problems in the research of hydrogen sensors, this thesis focuses on thesensing mechanism of the material, sensor design, the development of the high repeatabilityhydrogen sensor and the fast hydrogen sensor. The main work as follows:
     (1) A reflected model of films basd on optic matrix is proposed. It shows how therefractive index, thickness, substrate material and the wavelength of the incident lightinfluence the reflectivity of the film.
     (2) A hydrogen atomic diffusion model in the films is proposed. It shows therelationships between the concentration of hydrogen atoms and the diffusion time, the filmthickness.The response time of sensors is proportional to the square of the film thicknessaccording to the results of the simulation analysis.
     (3) A hydrogen bubble model is proposed to explaim the failure of films, according tothe micro-observation to the film. It shows how the delamination height, refractive index,thickness, substrate material, the incident light wavelength influence the repeatability of thefilm.
     (4)A reflection coupled model of the optical fiber bundle is proposed. The simulationstudy shows the influence of the transmission fiber core diameter, receiver fiber core diameter,reflective distance and numerical aperture on the reflectivity of films. Coupling model isverified by experiments. The optimum reflection distance is discussed for the reflected-typedfiber hydrogen sensor.
     (5) To improve the accuracy of the hydrogen sensor, this thesis analyzes the principle ofphotodiodes, designs a preamplifier circuit based on the T-network to eliminate the outputoffset voltage, a matlab filtering procedures based on wavelet transform method to eliminatethe influence of noise and improve the SNR of sensors.
     (6)According to the deeply analysis of films failure mechanism, the thesis first-ly explain the principle of the crack inhibited by doping in Pd and proposes a doping methodof the Pd-based alloy film based on DFT theory for hydrogen sensing. By using this method, ahigh repeatability hydrogen sensor prototype is fabricated and tested.The experimental resultsshow that the PdY alloy film can improve the repeatability of hydrogen sensors and theH-induce aging treatment can imporove the repeatability of new films. The drifts of the zeropoints and hydrogen points are smaller than0.2%after aging treatment. The sensors have ahigh practical value.
     (7)According to the analysis results of hydrogen atoms diffusion model in films, a fasthydrogen sensor based on ultrathin nano-film is proposed and tested. The experimental resultsshow that the10nm Pd/PdY composite film has a fast response performance. The shortestresponse time and recovery time is6s and8s for4%H2. A loading/unloading cycle is notmore than16s. Compared with other fiber hydrogen sensors reported, it possesses obviouslysuperiority.
引文
[1]Safety Standard for Hydrogen and Hydrogen Systems, Guidelines for Hydrogen SystemsDesign, Materials Selection, Operations, Storage, and Transportation, NSS1740.16, Office ofSafety and Mission Assurance, Washington,DC,20546,1997
    [2]马涛.国外氢能源经济发展现状及对我国的启示,节能技术,2008,(04):324-746.
    [3]毛宗强,世界各国加快氢能源市场化步伐——记第18届世界氢能大会(WHEC2010),中外能源,2010,(07):29-34.
    [4]世界首座氢能发电站在意大利建成投产,电力技术,2010,(Z2):132
    [5]Xiaotong Wei, Tao Wei, Hai Xiao,Y.S. Lin,Nano-structure Pd-long period fiber gratingsintegrated optical sensor for hydrogen detection, sensors actuators B,2008,(134):687-693
    [6]X.Bevenot, A.Trouillet, C.Veillas, H. Gagnaire, M. Clement,Hydrogen leak detection usingan optical fibre sensor for aeospace application. sensors actuators B,2000,(67):57-67
    [7]M. Aleixandre, P. Corredera, M. L. Hernanz, J. Gutierrez-Monreal,Devlopment of fiberoptic hydrogen for testing nuclear waste repositories. sensors actuators B,2005,(107):113-120
    [8]沈耀雄,池凤东.氢气的来源、危害与消除.舰船防化,1995,(01):1-7.
    [9]谢子殿,梁柱.基于氢传感器的管道泄漏检测仪电路设计.中国仪器仪表,2009,(11):71-4.
    [10]Hübert T, Boon-Brett L, Black G, et al. Hydrogen sensors–A review. Sensors andActuators B: Chemical,2011,157(2):329-352.
    [11]Minghong Yang, Yan Sun, Dongsheng Zhang,Desheng Jiang, Using Pd/WO3compositethin films as sensing materials for optical fiber hydrogen sensors, Sensors and Actuators B:Chemical,2010,143(2):750-753.
    [12]Minghong Yang, Hongliang Liu, Dongsheng Zhang, Xinling Tong, Hydrogen sensingperformance comparison of Pd layer and Pd/WO3composite thin film coated onside-polished single-and multimode fibers, Sensors and Actuators B: Chemical,2010,149(1):161-164.
    [13]Cui Lu-jun, Shang Hui-chao, Zhang Gang, Zhao Ze-xiang, and ZHOU Jun, Optical fiberhydrogen sensor based on light reflection anda palladium-sliver thin film, OptoelectronicsLetters,2011,7(4):249-252
    [14]Zhen Yang, Min Zhang,Yanbiao Liao, et al., Extrinsic Fabry–Perot interferometric opticalfiber hydrogen detection system, Applied Optics,2010,49(15):2736-2740
    [15]Zhen Yang, Xiujuan Yu, Xiaohui Chu, et al., Pd-Ag film coated cascaded long periodgratings for hydrogen gas sensing,21st International Conference on Optical Fiber Sensors,Proc. of SPIE,2011,Vol.7753,:77539R-1-77539R-4
    [16]Zhen Yang, Min Zhang,Yanbiao Liao, et al., Extrinsic Fabry–Perot interferometric opticalfiber hydrogen detection system, Applied Optics,2010,49(15):2736-2740
    [17]Min Wang, Ying Feng, Palladium–silver thin film for hydrogen sensing, Sensors andActuators B: Chemical,2007,123(1):101-106.
    [18]彭伟斌,吴德隆,布喇格光栅光纤氢浓度传感器的研究,压电与声光,2004,27(2):95-97
    [19]杜善义,张晓晶,陈吉安等,光纤氢传感技术的研究现状及其应用前景,宇航学报,2004,25(4):466-472
    [20]周业成,陈吉安,张晓晶等,基于MEMS工艺的光强调制型光纤氢传感器,仪表技术与传感器,2006,5:1-5
    [21]赵羽,刘永智,具有消逝场结构的光纤氢气传感器,2006,43(10):61-65
    [22]胡建东,拉锥光纤表面等离子共振氢敏传感器研究与实验,浙江大学,2005
    [23]张凡,刘建胜,李铮,光纤氢传感器,遥测遥控,2001,22(2):59-64
    [24]Butler MA. Optical fiber hydrogen sensor. Appl Phys Lett,1984,45(10):1007-1009
    [25]Farahi F, Leilabady P A, Jones J D and Jackson D A. Fibre Optic InterferometerHydrogen Sensor,4th International conference on Optical Fiber Sensors (OFS), Tokyo,1986:1272130
    [26]Tabib-Azar M, Sutapun B, Petrick R, et al. Highly sensitive hydrogen sensors usingpalladium coated fiber optics with exposed cores and evanescent field interactions. Sensorsand Actuators B: Chemical,1999,56(1–2):158-163.
    [27]Villatoro J., Diez A., Cruz J. L., et al. Highly sensitive optical hydrogen sensor usingcircular Pd-coated singlemode tapered fibre. Electronics Letters.2001,37(16):1011-1012
    [28]D. Zalvidea,A.D'iez, J.L. Cruz,Hydrogen sensor based on a palladium-coated fiber-typerwith improved time-response, sensors actuators B: Chemical,2006,114(1):268–274
    [29]Sekimoto S, Nakagawa H, Okazaki S, et al. A fiber-optic evanescent-wave hydrogen gassensor using palladium-supported tungsten oxide. Sensors and Actuators B (Chemical).2000,66(1):142-145
    [30]Luna-Moreno D, Monzón-Hernández D, Villatoro J, et al. Optical fiber hydrogen sensorbased on core diameter mismatch and annealed Pd–Au thin films. Sensors and Actuators B:Chemical,2007,125(1):66-71
    [31]Sutapun B, Tabib-Azar M, Kazemi A. Pd-coated elastooptic fiber optic Bragg gratingsensors for multiplexed hydrogen sensing. Sensors and Actuators B (Chemical).1999, B60(1):27-34
    [32]Peng Y T, Tang Y, Sirkis J S. Characterization of hydrogen sensors based on palladiumelectroplated fiber bragg gratings (FBG). Proceedings of SPIE, vol.3670,1999.42-53
    [33]A. Trouillet, E. Marin, C. Veillas, Fibre gratings for hydrogen sensing, Mesa. Sci. Technol.2006,17(1):1124–1128.
    [34]Chuen-Lin Tien, Hong-Wei Chen, Wen-Fung Liu, et al., Hydrogen sensor based onside-polished fiber Bragg gratings coatedwith thin palladium film, Thin Solid Films,2008,516(1):5360–5363
    [35]Butler M A, Fiber optic sensor for hydrogen concentrations near the explosive limit,Journal of the Electrochemical Society,1991,138(9): L46-47
    [36]Kazemi A. A., Larson D. B., Wuestling M. D. Fiber optic hydrogen detection system.Proceedings of SPIE, vol.3860,1999.507-515
    [37]Jung C, Saaski E, McCrae D. Fiber optic hydrogen sensor. Proceedings of SPIE,vol.3489,1998.9-15
    [38]K.Gleeson, E. Lewis, Comparison of Palladium Thin Films used in a Transmission BasedOptical Fibre Hydrogen Sensor,2008, Proc. of SPIE Vol.7004:700433-1-700433-1-4
    [39]K. Gleeson, Elfed Lewis, Hydrogen detection using a transmission based optical fibresensor in the VIS spectrum,2007, Proceedings of SPIE Vol.6619:66191I-1-66191I-4
    [40]Jose A. Garcia, A. Mandelis, Study of the thin-film Palladium/hydrogen system by anoptical transmittance method,1996, Rev. Sci. Instrum.67(11):3981-3983
    [41]Kalli K., Othonos A., Christofides C. Characterization of reflectivity inversion, α-andβ-phase transitions and nanostructure formation in hydrogen activated thin Pd films on siliconbased substrates. Journal of Applied Physics,2002,91(6):3829.
    [42]Christopher Lowrie, Susan Earles, M. de Fernandez, Hydrogen Sensor using opticalreflectance from porous silicon with a palladium thin film, Proc. of SPIE Vol.6898:689818-1-689818-7
    [43]Yi Liu, You-ping Chen, Han Song, and Gang Zhang,modeling analysis and experimentalstudy on the optical fiber hydrogen sensor based on Pd-Y alloy thin film,Review of ScienceInstruments,2012,83(7):705001-1-705001-5
    [44]Zhao Z, Carpenter MA, Xia H, et al. All-optical hydrogen sensor based on a high alloycontent palladium thin film. Sensors and Actuators B: Chemical,2006,113(1):532-538.
    [45] K Wyrzykowskit, A RodzikS and B Baranowski,Optical transmission and reflection ofPdH, thin films,1989,J. Phys.: Condens. Matter1:2269-2277
    [46]Yeon-Gwan Lee, Sang-Oh Park, Dae-Hyun Kim, Characteristics of Reflection-typeOptical Fiber Sensor System using One Grating Panel, Proc. of SPIE Vol.7292:72923H-1-72923H-8
    [47]Bévenot X, Trouillet A, Veillas C, et al. Surface plasmon resonance hydrogen sensorusing an optical fibre. Measurement Science and Technology,2002,13(1):118.
    [48]Bévenot X, Trouillet A, Veillas C, et al. Hydrogen leak detection using an optical fibresensor for aerospace applications. Sensors and Actuators B: Chemical,2000,67(1):57-67
    [49]Kerstin Schroeder, Wolfgang Ecke, Reinhardt Willsch, Optical fiber Bragg gratinghydrogen sensor based on evanescent-field interaction with palladium thin-film transducer,Optics and Lasers in Engineering,2009,47(1):1018–1022
    [50]Hu J. D., Jiang M., Lin Z. L.,,Novel technology for depositing a Pd-Ag alloy film on atapered optical fibre for hydrogen sensing, Journal Of Optics A-Pure And Applied Optics,2005,10:593-598
    [51]K.Scharnagl,M. Eriksson, A. Karthigeyan, et al., Hydrogen detection at highconcentrations with stabilized palladium, Sensors and Actuators B: Chemical,2001,78(1):138-143.
    [52]Z. Zhao, Y. Sevryugina, M. A. Carpenter, All-Optical Hydrogen-Sensing Materials Basedon Tailored Palladium Alloy Thin Films,Anal. Chem.2004,76:6321-6326
    [53] Z. Zhao, M. A. Carpenter,Annealing enhanced hydrogen absorption in nanocrystallinePd/Au sensing films,Journal Of Applied Physics,2005,97:124301-1-124301-7
    [54] Zhouying Zhao, Mark Knight, Sumit Kumar, et al., Humidity effects on Pd/Au-basedall-optical hydrogen sensors,Sensors and Actuators B: Chemical,2008,129(1):726–733
    [55]Donato Luna-Moreno, David Monzón-Hernández, Effect of the Pd–Au thin filmthickness uniformity on the performance of an optical fiber hydrogen sensor, Applied SurfaceScience,2007,253(1):8615–8619
    [56] D. Luna-Moreno, D. Monzón-Hernández, Dalia Martínez,Effect of the Pd-Au thin filmdeposition technique on optical fiber hydrogen sensor response time,RIAO/OPTILAS,2007,1294-1299
    [57] David Monzón-Hernández, Donato Luna-Moreno, Dalia Martínez-Escobar, Fastresponse fiber optic hydrogen sensor based on palladium and gold nano-layers, Sensors andActuators B,2009,136:562–566
    [58]Matsuyama N, Okazaki S, Nakagawa H, et al. Response kinetics of a fiber-optic gassensor using Pt/WO3thin film to hydrogen. Thin Solid Films,2009,517(16):4650-4653.
    [59]T. Xua, M. P. Zach, Self-assembled monolayer-enhanced hydrogen sensing with ultrathinpalladium films, Applied Physics Letters2005,86:203104-1-203104-3
    [60] Yugang Sun, H. Hau Wang, High-Performance, Flexible Hydrogen Sensors That UseCarbon Nanotubes Decorated with Palladium Nanoparticles,2007,19:2818–2823
    [61]Wicke E, Brodowsky H, Züchner H. Hydrogen in Metals II:Hydrogen in palladium andpalladium alloys. Berlin: Springer/Heidelberg.1978:73-155.
    [62]F.A. Lewis, The Palladium Hydrogen System, Academic Press, NY,1967
    [63]F. A. Lewis, The Palladium-Hydrogen System, Platinum Metals Rev.,1982,26,(l),20-27
    [64]F. A. LEWIS, The Palladium-Hydrogen System:Structures Near Phase Transition AndCritical Points, Int. J. Hydrogen Energy,1995,20(7):587-592
    [65]F. A. LEWIS, Hydrogen In Palladium And Palladium Alloys, Int. J. Hydrogen Energy,1996,21(6):461-464
    [66]A. G. Knapton, Palladium Alloys for Hydrogen Diffusion Membranes: A Review Of HighPermeability Materials, Platinum Metals Rev.,1977,21,(2),44-50
    [67]P.A.P. Nascente, S.S. Maluf, L.M.P. Pinheiro, Structure, morphology, and composition ofnanometric Pd films deposited by dc magnetron sputtering on Cu, Ag, and Au foils, MaterialsScience and Engineering A,2006,432:303–307
    [68]R. Delmelle, G. Bamba, J. Proost, In-situ monitoring of hydride formation in Pd thin filmsystems, International Jurnal Of Hydrogen Energy,2010,35:9888-9892
    [69]R. Du′s, R. Nowakowski, E. Nowicka, Chemical and structural components of workfunction changes in the process of palladium hydride formation within thin Pd film, Journal ofAlloys and Compounds,2005,404–406:284–287
    [70]T. Kobiela, R. DusH,STM/AFM studies of the catalytic reaction of oxygen withhydrogen on the surface of thin palladium film,2001,Vacuum63:267-276
    [71]Shucheng Xu, Parveen Sood, M. L. Liu, et al., First-principles study of hydrogenpermeation in palladium-gold alloys, Applied Physics Letters,2011,99:181901-1-181901-4
    [72]Nobuki Ozawa, Nelson B. Arboleda Jr., Hiroshi Nakanishi,First principles study ofhydrogen atom adsorption and diffusion on Pd3Ag(111) surface and in its subsurface,SurfaceScience,2008,602:859–863
    [73]Emmanouil E. Lioudakis, Andreas Othonos, Ellipsometry on optically thin palladiumfilms on silicon-based substrate: effects of low concentration of hydrogen, OpticalEngineering,2005,44(2):023802-1-023802-4
    [74]方容川,固体光谱学,合肥:中国科技技术大学出版社,2003
    [75] Marvin J. Weber, Handbook Of Optical Materials, Washington D.C: CRC PRESS,2002
    [76] R. Gremaud,Gonzalez-Silveira M., Pivak Y., et al., hydrogenography of PdHx thin films:influence of H-induced stress relaxation processes, Acta Materialia,2009,57(4):1209-1219
    [77]Faria J B. A theoretical analysis of the bifurcated fiber bundle displacement sensor. IEEETransactions on Instrumentation and Measurement.1998,47(3):742-747
    [78]王林涛,李开成,张健梅,低噪声光电检测电路的设计和噪声估算,武汉理工大学学报·信息与管理工程版,2001,23(3):16-18
    [79]王立刚,张殿元,低噪声光电检测电路的研究与设计,电测与仪表,2007,44(8):63-67
    [80]陈张玮,李玉和,李庆祥等,光电探测器前级放大电路设计与研究,电测与仪表,2005,42(6):32-35
    [81]胡涛,司汉英,光电探测器前置放大电路设计与研究,光电技术应用,2010,25(1):52-56
    [82]宋涛,张斌,罗倩倩,光电转换电路的设计与优化,光电技术应用,2010,25(6):46-48
    [83]管敏杰,赵冬娥,基于PIN型光电转换电路的噪声研究,电子测试,2012,2:35-39
    [84]王立刚,建天成,牟海维等,基于光电二极管检测电路的噪声分析与电路设计,大庆石油学院学报,2009,32(2):88-92
    [85]Jerald Graeme,Photodiode amplifiers and OP AMP solutions,McGraw-Hill,New York,1996
    [86] Kohn W., Sham L. J.,Self-Consistent Equations Including Exchange and CorrelationEffects, Physical Review,1965,140(4): A1133–A1138
    [87]徐光宪,黎乐民,量子化学.第二版.北京:科学出版社,2008
    [88]韩汝琦,黄昆,固体物理学,北京:高等教育出版社,1998
    [89] K. Yoshimura, S. Nakano, S. Uchinashi, et al., A hydrogen sensor based on Mg–Pd alloythin film, Measurement Science and Technology,2007,18:3335–3338

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700