基于ANSYSFE-SAFE的穿孔机主传动轴疲劳寿命预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年,随着我国经济的迅猛发展,国内钢材供不应求。钢铁企业在不断扩建的同时,开足马力拼设备以追求产量最大化。在此背景下,重型轧机尤其是穿孔机的主传动轴及万向接轴断裂事故时有发生。基于上述问题,本文对某集团公司无缝穿孔机主传动轴及万向接轴的疲劳强度及疲劳寿命进行了研究。
     首先,使用ANSYS有限元分析软件对主传动轴和万向接进行了静强度分析。建模时采用ANSYS直接建模。根据传动轴及万向接轴的实际支撑和所受扭矩对其施加了约束和扭矩载荷。分析与讨论了主传动轴及万向接轴在920MPa扭矩载荷作用下的应力结果值和应力分布规律,同时找到了其静强度薄弱区域。更重要的是,单位载荷的静强度分析应力结果是疲劳分析的必要基础数据,它涵盖传动轴及万向接轴应力分布状况及特征。
     其次,疲劳强度分析另一个重要环节就是疲劳计算中使用的扭矩载荷谱。冲击扭矩载荷时间历程是影响穿孔机主传动轴及万向接轴疲劳强度及疲劳寿命的重要因素。所以,本文实测了不同工况下传动轴的扭矩载荷时间历程,并使用雨流计数法和概率统计法对实测扭矩载荷时间历程进行载荷谱编制。编制后的扭矩载荷谱更加逼近主传动轴及万向接轴的实际载荷,因此,穿孔机主传动轴及万向接轴的疲劳分析更加准确。
     最后,本文基于疲劳分析理论,将单位载荷静强度分析应力结果和编制的扭矩载荷谱导入ANSYS FE-SAFE疲劳分析软件中计算了主传动轴及万向接轴的疲劳强度,并预测了疲劳寿命。预测得到的穿孔机主传动轴及万向接轴的疲劳寿命与企业实际使用的主传动轴及万向接轴寿命基本相一致,证明此疲劳分析方法和疲劳寿命预测法是切实可行的。
     为了实时监测穿孔机主传动轴及万向接轴的扭矩载荷值并统计出造成主传动轴及万向接轴疲劳的载荷谱,更为了实时监测其疲劳交变应力及其对应的疲劳循环次数从而算出主传动轴的剩余疲劳寿命,本文设计了一套长期在线监测主传动轴扭矩载荷的扭矩传感器。由于此扭矩传感器避免了直接在传动轴上粘贴电阻应变片的诸多缺点(如,现场安装时间仓促、环境恶劣、尤其是无法实施长期牢固粘贴应变片所进行的加热与保温及密封等工艺措施)所以,其具有安装方便、测量准确、可提前标定、并可长期使用等特点。由于实验条件有限,本文没能用实验的方法标定此扭矩传感器,而是使用ANSYS软件对其进行静力学分析,得出其应力应变关系与实测应力应变数值相一致的结论,证明其设计合理。
In recent years, with the rapid development of our economy, the domestic steel demandexceeds supply. Steel enterprises in the continuous expansion, while pursuing mega-destroyerspell equipment to maximize yield. Heavy mill main transmission shaft and universal pickshaft fracture accidents occur frequently. Based on the above-mentioned problems, to onegroup company seamless perforation shaft and universal pick axis machine of fatiguestrength and fatigue life was studied.
     First, the use of ANSYS finite element analysis software Lord transmission shaft and theuniversal connect static strength analysis. Using ANSYS direct modeling when modeling.According to pick up the shaft and universal shaft to the actual support and torque imposesconstraints and torque load. Analyzes and discusses main transmission shaft and universalpick shaft in920MPa torque load stress results value and the stress distribution law, alsofound its static intensity weak area. More importantly, the unit load of static strength analysisof the stress the result is fatigue analysis, it covers basic data necessary shaft and universalpick shaft stress distribution conditions and characteristics.
     Secondly, fatigue strength analysis another important link is fatigue used in computingthe torque load spectrum. Impact torque load time process is the effect of axial shaft anduniversal after Lord fatigue strength and fatigue life of important factor. Therefore, the papermeasured under the conditions of different transmission torque load time course, and use rainflow count method and probability statistics measured torque load time compiled the courseload spectrum. Prepare the torque load spectrum after Lord closer to pick up the shaft anduniversal shaft actual load, guarantee the correctness of the fatigue analysis.
     Finally, based on the fatigue analysis theory, the static strength analysis unit load stressresults and prepare torque load spectrum import ANSYS software that monitors FE-fatigueanalysis of main shaft and universal calculated the fatigue strength pick shaft, and forecast thefatigue life. Forecasting the shaft and get punched machine the fatigue life of universal pickshaft with enterprise of the actual use of shaft and universal pick shaft Lord consistent lifebasic that this fatigue analysis method and the fatigue life prediction method is feasible.
     In order to monitor real-time transmission shaft torque load and statistics a cause offatigue load spectrum transmission shaft, real-time calculation perforation pick axis machineand universal residual lifetime, this paper designed a set of long-term on-line monitoringtorque transmission shaft torque sensor. And of the sensor using ANSYS software, the staticsanalysis, obtains the stress-strain relationship with measured stress strain numerical consistentconclusion.
引文
[1]于立群.阶梯轴几何参数及平均应力对其疲劳寿命的影响[D].甘肃:兰州理工大学2008.
    [2] RitehieR.O.Suresh5.Some considerations on fatigue crack closure at near thresholdstress intensities due to fracture surface morphology[J].Metallurgical Transations,1981,13A:937~40.
    [3]乔冬冬.宝钢5000厚板轧机主传动系统扭振及动态强度分析[D].北京:燕山大学2005:2~10.
    [4]姚卫星.结构疲劳寿命分析[M].北京:国防科技大学出版社,2003.
    [5]徐灏.疲劳强度[M].北京:国防工业出版社,1988.
    [6]尹双增.断裂、损伤理论及应用[M].北京:清华大学出版社,1992.
    [7] ANSYS公司北京办事处.FE-SAFE User Manual[M].2003,T008(1-15).
    [8]赵少汴,王忠保.抗疲劳设计—方法与数据[M].机械工业出版社,1997.
    [9]高镇同.疲劳应用统计学[M].北京:国防科技大学出版社,2003.
    [10]徐灏.机械设计手册[M].北京:机械工业出版社,1991.
    [11]程远存.6Mo5Cr4VZ钢传动轴强度与疲劳寿命分析[D].湖北:武汉理工大学,2010.
    [12]王学颜,宋广惠.结构疲劳强度设计与失效分析[M].北京:兵器工业出版社,1992.
    [13]秦远珍,梁勇.规范谱编制技术的研究及应用[J].贵航飞机设计研究所.2006:36~38
    [14]朱涛,林晓斌.基于实测载荷谱的车身焊点疲劳寿命分析[C].第五届中国CAE工程分析技术年会.
    [15] Smith R A,Cooper J F. Theoretical Prediction of the Fatigue Life of Shear Spot Welds[J]. Fatigue of Welded Structures,1988,12(3):65-72.
    [16] David Ensor,Chris Cook, Marc Birties. Optimizing Simulation and Test Techniques forEfficient Vehicle Durability Design and Development [J]. SAE,2005.
    [17] Laird C.,Smith G.C.Crack ProPagation in high stress fatigue[J].PhilosoPhicalMechanics,1962,3:81~97.
    [18]林晓斌.机械产品的一体化抗疲劳设计[J].CAD/CAM与制造业信息化,2004,1:29~30.
    [19]阎楚良.高置信度中值疲劳载荷谱编制原理与专家系统[D].北京:北京航空航天大学,1999.
    [20]张曙光.高速列车转向架载荷谱测试与建立方法的研究[J].中国科学,2003,38(11):1805~1814.
    [21]汤清洪,马吉胜,贾长治.扭力轴多工况二维随机疲劳载荷谱的编制[J].振动与冲击,2007,26(2):12~13.
    [22]姜年朝,谢勤伟,戴勇等.基于FE—SAFE的直升机桨毂疲劳寿命分析[J].第三届中国航空学会青年科技论坛,2003,38(11):1805~1814.
    [23]姜年朝.ANSYS和ANSYS/FESAFE软件的工程碰用及实例[M].南京:河海大学出版社,2006.
    [24] Cacko J. Simultaneous Computer Simulation of Operational Random Processes andContinual Rain2flow Counting[J]. Int.J. Fatigue,1992,(14):183~188.
    [25]吕文阁,谢庆华,袁清珂等.随机载荷下轴结构疲劳寿命分析[J].机床与液压,2009,37(5):23~24.
    [26]刘安中,李友荣,王志刚等.12800轧机万向联轴器十字轴断裂事故分析[J].重型机械,2002,(1):35~37.
    [27]李海锋,徐致让,李全国.滑块式万向接轴强度分析[J].制造业信息化,2008,(9):135~137.
    [28]郁勇,张自武,王水山.小H型钢万向接轴断裂分析及改进[J].中原工学院学报,2006,17(2):56~58.
    [29]李年居.中板四轧机万向接轴叉头失效分析及设计[J].江苏冶金,2003,31(1):29~31.
    [30]刘安中,李友荣.轧机主传动万向接轴随机疲劳设计[J].武汉科技大学学报,2008,31(1):32~36.
    [31]郭靖.风力发电机组轴系扭矩测试系统的研究与应用[D].新疆:新疆大学,2007.
    [32]尚德广,王大康,李明.基于临界面法的缺口件多轴疲劳寿命预测[J].机械强度,2003,25(2):212~214.
    [33]毛健.特大跨钢桁系杆拱桥有关问题研究[D].重庆:重庆交通大学,2009.
    [34]李学光.扭力轴加载有限元分析与寿命计算[D].吉林:长春理工大学,2008.
    [35]钱尼君.麦弗逊悬架系统动力学分析及其疲劳寿命预测研究[D].江西:南昌大学,2008.
    [36] Anon. Fatigue resistance [J].Advanced Materials and Processes,1990,137:89~94.
    [37] ESDU IHS. Endurance of high-strength steels[J]. Issued August,2004:27~29.
    [38]刘莺.R2轧机主传动系统有限元分析[D].武汉:武汉科技大学,2007.
    [39]汤宏海.四辊可逆式轧机机架疲劳寿命分析[D].武汉:武汉科技大学,2009.
    [40]文俊.穿孔机预应力机架有限元分析[D].武汉:武汉科技大学,2008.
    [41]贺文涛.ZR轧机关键传动部件的非线性有限元分析[D].武汉:武汉科技大学,2006.
    [42]杨爽.CRH3型高速动车组转向架抗疲劳能力研究[D].吉林:大连交通大学,2009.
    [43]苏禾.随机疲劳载荷谱[J].辽宁机械,1984.10:11~12.
    [44]李颖.核主泵叶轮非定常流场及疲劳寿命可靠性分析[D].上海:上海交通大学,2009.
    [45]杨庆乐.基于ANSYS/FE-SAFE的强夯机臂架疲劳寿命分析[D].吉林:大连理工大学,2009.
    [46]董文婧.安装误差对轴疲劳寿命的影响[D].甘肃:兰州理工大学,2010.
    [47] Fe-safe user manual,Fe-safe5.3
    [48]黄祥声.起重机金属结构故障可视化技术研究[D].武汉:武汉理工大学,2008.
    [49]赵亮.基于光纤通讯的远程温度监测系统研制[D].黑龙江:哈尔滨工业大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700