近红外光谱技术在多组分检测及模式识别中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过近红外光谱技术结合化学计量学手段分别对食品、饲料和复合肥等多组分含量的快速检测以及模型识别判别分析进行了较为深入的方法研究。文中所建立的方法成功应用于产品分析和质量控制,发挥了近红外光谱技术快速、准确和实用的优势。同时,化学计量学方法在具体问题的解决中,也得到发展。由于产品中成分复杂,相互干扰严重,用于分析的近红外光谱吸光度差异通常很小、信号弱、吸收峰之间混叠,且谱峰宽。以致于找不到待测组分不受任何干扰的特征峰,使对产品中多组分同时定量和识别分析较为困难。为此,提出了PLS,KPLS, PLS-BP, GRNN和ELMAN方法建立线性和非线性多组分定量模型和PCA-马氏距离建立模式识别模型,本文的主要研究内容如下:
     1、偏最小二乘近红外光谱技术在多组分分析中的应用与研究
     本文建立了近红外光谱PLS法对瘦肉7种脂肪酸含量测定的方法,在建立PLS模性时,需对采集的原始光谱进行数学处理,以过滤噪音、提高信噪比。实验表明,光散射是影响近红外光谱的主要因素。同时,PLS提取主成分时,因其能同时将因变量矩阵和自变量矩阵用主成分表示,可以有效地降维,消除自变量间可能存在的复共线关系,而明显改善数据结果的可靠性和准确度。本研究还用核函数建立以复合肥中N、P2O5、K 2O三组分为对象的KPLS非线性多组分模型,KPLS通过非线性映射到高维数空间提取了光谱中掩藏的非线性信息。相对于PLS线性体系,KPLS对多组分的含量预测准确度和相关性都有提高。尤其对P2O5、K2O含量的预测提高更明显。
     2、偏最小二乘与BP神经网络用于近红外光谱技术多组分定量分析研究
     为解决BP网络过拟合、以及学习速度慢等问题,用PLS对输入BP网络的光谱数据进行压缩,建立了PLS-BP法同时测定饲料中水分、灰分、蛋白质、磷四组分含量和饲料中四种氨基酸含量的方法。与BP法比较,PLS-BP输入网络的数据减少,大大提高运算速度和减少训练次数,模型的预测精度也好于BP模型。本研究还提出了用PLS提取光谱X和组分Y的主成分及权重,解决近红外光谱BP模型隐含层节点数,输入和输出层初始权值凭经验选取问题。建立了以土豆中粗纤维、淀粉、蛋白质三种营养组分含量的PLS-BP近红外光谱多组分预测模型,这种经PLS和BP组合的网络较BP网络改进了训练效果,使得运算速度加快,网络达到最优,精度也更高。这一研究对近红外光谱BP网络结构的建立,具有一定的理论和指导意义。
     3、偏最小二乘与广义回归神经网络用于近红外光谱技术多组分定量分析研究
     提出了将GRNN方法引入近红外光谱多组分分析中,用PLS对输入网络的光谱数据进行压缩,建立了饲料中水溶性氯化物、粗纤维、脂肪三组分含量测定方法。PLS-GRNN与BP、GRNN网络进行比较,PLS-GRNN, GRNN模型训练步数要明显少于BP网络,训练时间也短。PLS-GRNN要比GRNN和BP网络的预测精度和拟合性能更好。应用该法还成功预测了南丰蜜桔总糖、总酸含量,这一研究为近红外光谱多组分分析提供了一种新的途径。
     4、基于Elman神经网络的近红外光谱技术多组分定量分析研究
     发展了Elman网络与近红外光谱分析技术的结合,提出把具有动态信息处理能力的Elman网络模型引入近红外光谱多组分分析中,经PLS压缩提取主成分,加入内部反馈信号,增加了Elman网络本身处理动态信息的能力,使得Elman网络在节点结构更简单,从而提高了建模和预测速度。在饲料苯丙氨酸、赖氨酸、酪氨酸和胱氨酸四组分含量测定中,对BP和Elman网络进行了比较,在BP和Elman两模型学习误差相同,Elman网络拟和残差平均值MRE也不如BP模型下,Elman网络网络预报精度却高。说明ELman网络对动态系统具有适应时变特性的能力。应用该法还成功预测了鲜乳中脂肪、蛋白质、乳糖含量,表明Elman神经网络是一种新颖、可靠的预测方法。这为同时测定近红外光重叠的多组分动态非线性体系提供了新的途径。
     5、近红外光谱技术联用PCA-马氏距离对掺假乳的鉴别
     以PCA-马氏距离近红外光谱法建立了巴氏杀菌乳和复原乳、鲜乳和分别掺有植物奶油、乳清粉假乳的判别分析模型。确立了最佳建模条件,对掺假复原乳0.50%-100%,植物奶油0.50%-10%,乳清粉0.20%-3.3%的样品判别成功率达100%。为鉴别掺有植物奶油和乳清粉的假乳探索了一个新方法。
This thesis focuses on in-depth investigation into the analytic method of using a combination of near infrared spectroscopy (NIRS) with chemometric techniques to achieve rapid determination and pattern recognition analysis of multi-component content in foods, feedstuff and compound fertilizer. Methods established in the thesis have been successfully applied to product analysis and quality control, fully utilizing the rapid, accurate and practical advantages of near infrared spectroscopy. Through specific problem solving, chemometrics methods have also been further developed. Due to complicated product composition and serious interference between product components, absorbance difference used during near infrared spectroscopy was usually small, the signal was weak, and absorbance peak were each overlapped and wide. No un-interfered feature peak could be identified for the testing component, which made it very difficult to conduct multi-component quantitative analysis and pattern recognition analysis in product. Therefore, this paper proposed using several methods including PLS, KPLS, PLS-BP, GRNN and Elman methods to establish linear and nonlinear multi-component models and build pattern recognition model using PCA-Mahalanobis Distance. Main contributions made by this thesis are summarized below.
     1、Investigation of multi-component quantitative analysis and its applications using PLS near infrared spectroscopy
     This paper established a method of applying NIRS with Partial Least Squares (PLS) to analyze concentration of 7 fatty acids found in pork. Before building a PLS model, collected raw spectrum need to be processed first, using mathematical techniques such as noise filtering and increasing signal-to-noise. Experiments indicated that light scattering was the main factor influencing NIRS. When using the PLS method to extract main components, main components can be represented using variable matrix and argument matrix simultaneously. This can effectively reduce dimensionality, avoid possible overlap relationship between independent variables, and thus improve the reliability and accuracy of results. Kernel function was introduced to establish KPLS (Kernel Partial Least Square) nonlinear multi-component model for N, P2O5, K 2O in compound fertilizer, KPLS model was able to extract nonlinear information hidden in the spectroscopy via reflection of inner nonlinear algorithms to high dimensionality space. Comparing to PLS linear system, KPLS was able to improve forecasting relevance and accuracy when analyzing for multi-component, especially for P2O5 and K 2O.
     2、Investigation of combined use of PLS and BP neural network in NIRS quantitative analysis of multi-component substances
     In order to solve problems such as slow learning, and network over-fitting when implementing BP neural network, a new method PLS-BP method was established by introducing PLS to compress spectroscopy data being entered into BP neural network. This PLS-BP method was then applied to simultaneously determine moisture, ash, protein and phosphorus content, as well as the four types of amino acid content in feedstuff. Comparing to the BP method, PLS-BP method greatly enhanced operation speed and reduced training time by fewer input data. In addition, the prediction results based on PLS-BP model would also be more precise than those based on BP model. This study also initiated the method of extracting main factors and weight of spectroscopy X and component Y by PLS. This method is able to solve the problem that the number of implied layers, weight initialization of input layer and output layer were selected only by experience. In this thesis, a PLS-BP prediction model was also established based on determination of fibre, starch and protein, the three main nutrients found in potato. The combined use of PLS and BP networks in the PLS-BP model was able to improve training effect, increase operation speed, enhance precision. This research has theoretical contribution as well as practical implications to the establishment of NIRS BP network
     3、Using partial least squares and general regression neural network for NIRS multi-component quantitative analysis
     In this part of the thesis, the GRNN method was innovatively introduced into NIRS multi-component analysis. PLS was used to compress NIRS before taken as inputs of GRNN, this established the method for determination of chlorine, fibre, fat content in feedstuff. Comparing PLS-GRNN with BP and GRNN network, training steps and time for PLS-GRNN and GRNN network was significantly fewer than BP network. PLS-GRNN had better prediction precision and better fitting than GRNN and BP network. Applications of this method have successfully predicted contents of total sugar and acid in Nanfeng Orange. This research provided a new way for NIRS multi-component quantitative analysis.
     4、Investigation of use of Elman neural network in NIRS multi-component quantitative analysis
     This thesis proposed a combination of Elman neural network with NIRS techniques by introducing Elman neural network, which have dynamic information processing ability, into NIRS multi-component analysis. After PLS compression of original spectra data and addition of internal simple feedback signal, the ability of Elman network to process dynamic information have been enhanced. This simplifies nodal structure of Elman network and thus increased model building and forecasting speed. During determination of phenylalanine (Phe), lysine (Lys), tyrosine (Tyr), cystine (Cys) content in feedstuff, although BP and Elman model had the same of training speed, MRE of Elman neural network worse than BP network, but MRE had high prediction precision. This result showed that Elman neural network has accommodating ability in response to dynamic system. The applications of this method have also successfully predicted content of fat, protein, lactose and total solid in fresh milk, which showed the Elman neural network was a novel and reliable prediction method, which suggested Elman neural network is a new way for advanced determination of multi-component with overlapping NIRS in a dynamic nonlinear system.
     5、Identification of adulterated milk by using PCA-Mahalanobis Distance and NIRS
     Pattern recognition analysis models were built for pasteurized milk and reconstituted milk, fresh milk and adulterated milk for vegetable cream, and whey powder based on PCA-Mahalanobis Distance and NIRS. The optimal conditions were defined for these models, and accurate discrimination for adulterated reconstituted milk, vegetable cream,, and whey powder with concentrations between 0.50%-100%,0.50%-10%,0.20%-3.3%, respectively achieved 100%. This brings a new method for discrimination of adulterated milk that has been mixed with whey powder and vegetable cream.
引文
1. Pennekamp C W, Bots M L, Kappelle L J. The Value of Near-Infrared Spectroscopy Measured Cerebral Oximetry During Carotid Endarterectomy in Perioperative Stroke Prevention[J]. European Journal of Vascular and Endovascular Surgery,2009,38(5): 539-545
    2. Shao X G, Wang W, Hou Z Y, Cai W S. A new regression method based on independent component analysis[J]. Talanta,2006,69:676-680
    3. Li Q B, Li L, Zhang G J. A nonlinear model for calibration of blood glucose noninvasive measurement using near infrared spectroscopy[J]. Infrared Physics & Technology,2010,53(5):410-417
    4. Falla F S, Larini C, Roux G A, Quina F H, Moro L F, Nascimento C A. Characterization of crude petroleum by NIR[J]. Journal of Petroleum Science and Engineering,2006,51:127-137
    5. Roman M B, Ravilya Z S, Ekaterina I L. Gasoline classification using near infrared (NIR) spectroscopy data:Comparison of multivariate techniques[J]. Analytica Chimica Acta,2010,671(1-2):27-35
    6. Gary W, Small. Chemometrics and near-infrared spectroscopy:Avoiding the pitfalls[J]. Trends in Analytical Chemistry,2006,25(11):1057-1066
    7. Siripatrawana U, Makinob Y, Kawagoeb Y, Oshitab S. Near infrared spectroscopy integrated with chemometrics for rapid detection of E. coli ATCC 25922 and E. coli K12[J]. Sensors and Actuators B:Chemical,2010,148(7):366-370
    8. Maria F P, Grece M G, Rosenira S C, Luiz S, Jose G A, Leonardo S G Determination of biodiesel content when blended with mineral diesel fuel using infrared spectroscopy and multivariate calibration[J]. Microchemical Journal,2006, 82:201-206
    9. Florindo G, Joao L, Helena C, Manfred S. Application of near infrared spectroscopy and multivariate data analysis for the evaluation of glue lines of untreated and copper azole treated laminated timber before and after ageing[J]. Polymer Degradation and Stability,2009,94(7):1061-1071
    10. Luypaert J, Heuerding S, Massart D L, Vander H Y. Direct orthogonal signal correction as data pretreatment in the classification of clinical lots of creams from near infrared spectroscopy data[J]. Analytica Chimica Acta,2007,582:181-189
    11. Thomas T U, Harald S, Rainer G J, Bernard L. Usefulness of near-infrared spectroscopy to determine biological and chemical soil properties:Importance of sample pre-treatment[J]. Soil Biology and Biochemistry,2008,40(5):1178-1188
    12. Marcelo B, Antonio C P, Jordi M. Monitoring alcoholic fermentation by joint use of soft and hard modelling methods[J]. Analytica Chimica Acta,2006,556:364-373
    13. Pascal C, Serge W, Michel U. Combined wavelet transform-artificial neural network use in tablet active content determination by near-infrared spectroscopy[J]. Analytica Chimica Acta,2007,591(2):219-224
    14. Zhang Y, Cong Q, Xie Y F, Yang J X, Zhao B.Quantitative analysis of routine chemical constituents in tobacco by near-infrared spectroscopy and support vector machine[J]. Talanta,2008,71(4):1408-1413
    15. Jasper G T, Natalia P R, Paul R. Armstrong Prediction of maize seed attributes using a rapid single kernel near infrared instrument[J]. Journal of Cereal Scienc,2009,50(3): 381-387
    16. Vardi M, Nini A.Near-infrared Spectroscopy for Evaluation of Peripheral Vascular Disease. A Systematic Review of Literature[J]. European Journal of Vascular and Endovascular Surgery,2008,35(1):68-74
    17. Jing M, Cai W S, Shao X G. Multiblock partial least squares regression based on wavelet transform for quantitative analysis of near infrared spectra[J]. Chemometrics and Intelligent Laboratory Systems,2010,100(1):22-27
    18. Zhu X G, Shan Y, Li G Y, Huang A M, Zhang Z Y. Prediction of wood property in Chinese Fir based on visible/near-infrared spectroscopy and least square-support vector machine[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,74(2):344-348
    19. Choudharya R, Mahesha S, Paliwala J, Jayas D S. Identification of wheat classes using wavelet features from near infrared hyperspectral images of bulk samples[J]. Biosystems Engineering,2009,102(2):115-127
    20. Liu F, He Y, Wang L. Comparison of calibrations for the determination of soluble solids content and pH of rice vinegars using visible and short-wave near infrared spectroscopy[J]. Analytica Chimica Acta,2008,610(2):196-204
    21. Deaville E R, Humphries D J, Givens D I. Prediction of apparent digestibility and energy value from in vitro digestion techniques and near infrared reflectance spectroscopy and of chemical composition by near infrared reflectance spectroscopy[J]. Animal Feed Science and Technology,2009,149(1-2):114-124
    22. Marco B, Friederike P, Franz K. Estimating deoxynivalenol contents of wheat samples containing different levels of Fusarium-damaged kernels by diffuse reflectance spectrometry and partial least square regression[J]. International Journal of Food Microbiology,2010,142(3):370-374
    23. Rohman A, Che M Y. Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil[J]. Food Research International,2010, 43(3):886-892
    24. 袁洪福,陆婉珍.现代光谱分析中常用的化学计量学方法[J].现代科学仪器,1998,5(6):6-9
    25. 袁洪福,陆婉珍.近红外光谱分析技术正在快速进入石油化工领域[J].石油炼制与化工,1998,29(9):47-50
    26. 袁洪福,龙义成,徐广通.近红外光谱仪的研制[J].分析化学,1999,27(5):608-614
    27. 陆婉珍,袁洪福,徐广通.现代近红外光谱分析技术[M].北京:中国石化出版社,2001
    28. Wold S. Chemometri-Kemi Och Tillampad Matematik. Year-Book of Swedish Natural Science Research Courncil[M]. Stockholm,1974:200-206
    29. 梁逸曾.白灰黑复杂多组分分析体系及其化学计量学算法[M].长沙:湖南科学技术出版社,1996
    30. Ruben M M, Teodoro S K, Michele D C. Monitoring of fatty acid composition in virgin olive oil by Fourier transformed infrared spectroscopy coupled with partial least squares[J]. Food Chemistry,2009,114(4):1549-1554
    31. Wesley I J, Larroque O, Osborne B G. Measurement of Gliadin and Glutenin Content of Flour by NIR Spectroscopy[J]. Journal of Cereal Science,2001,34:125-133
    32. Cozzolino D, Kwiatkowski M J, Dambergs R G. Analysis of elements in wine using near infrared spectroscopy and partial least squares regression[J]. Talanta,2008,74(4): 711-716
    33. Ruben M M, Teodoro S K, Michele D C. Monitoring of fatty acid composition in virgin olive oil by Fourier transformed infrared spectroscopy coupled with partial least squares[J]. Food Chemistry,2009,114(4):1549-1554
    34. Rumelhart D E, Mcclellant J L. Parallel distributed processing:explorations in the microstructure of cognition[M]. MIT Press, Cambridge M A,1986
    35. Hopfield J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proc. Natl. Acad. Sci.,1982,79 (11):2554-2566
    36. Hopfield J J, Tank D W. Computation of decisions in optimization problem[J]. Bio. Cybern,1985,52(1):141-153
    37. 郑君里,杨行骏.人工神经网络[M].北京:高等教育出版社,1992
    38. 张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1992
    39. 胡守仁.神经网络应用技术[M].长沙:国际科技大学出版社,1993
    40. 程相君.神经网络及其应用[M].北京:国防工业出版社,1995
    41. 邓勃,莫华.人工神经网络及其在分析化学中的应用[J].分析试验室,1995,14(5):85-87
    42. 陈念贻,钦佩,陈瑞亮.模式识别方法在化学化工中的应用[M].北京:科学出版社,2000
    43. 方开泰.实用多元统计方法[M].上海:华东师范大学出版社,1989
    44. Massart D L, Kaufman L. The Interpretation of Analytical Chemical Data by Use of Cluster Analysis[M]. Wiley, New York,1983
    45. 林少宫,袁蒲佳,申鼎煊.多元统计分析及计算程序[M].武汉:华中工学院出版社,1987
    46. 倪永年.化学计量学在分析化学中的应用[M].北京:科学出版社,2004
    47. Choudhary R, Mahesh S, Paliwal J. Identification of wheat classes using wavelet features from near infrared hyperspectral images of bulk samples[J]. Biosystems Engineering,2009,102(2):115-127
    48. Paul W, Paul G, Glen F, Marena M. Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis[J]. Analytica Chimica Acta,2009,653(2):121-130
    49. Xie L J, Ying Y B, Ying T J. Classification of tomatoes with different genotypes by visible and short-wave near-infrared spectroscopy with least-squares support vector machines and other chemometrics[J]. Journal of Food Engineering,2009,94(10): 34-39
    50. Roman M B, Ravilya Z S. Motor oil classification by base stock and viscosity based on near infrared (NIR) spectroscopy data[J]. Fuel,2008,87(12):2745-2752
    51. Dasa K, Jan M, Branko B, Jan P. Classification of Slovak white wines using artificial neural networks and discriminant techniques[J]. Food Chemistry,2009,112(4): 1046-1052
    52. Tsenkova R, Atanassova S, Itoh K, Ozaki Y, Toyoda K. Near infrared spectroscopy for biomonitoring:cow milk composition measurement in a spectral region from 1,100 to 2,400 nanometers[J]. J. Anim. Sci.,2000,78:515-522
    53. 王丽杰,郭建英,徐可欣.对牛奶成分近红外光谱分析方法的研究[J].哈尔滨理工大学学报,2004,9(5):36-38
    54. 王云,徐可欣,常敏.近红外光谱技术检测牛奶中脂肪及蛋白质含量校正模型的建立[J].光学仪器,2006,28(3):3-7
    55 Armenta S, Garrigues S, Guardia M. Determination of edible oil parameters by near infraredspectrometry[J]. Analytica Chimica Acta,2007,596(2):330-337
    56. LiuY, YingY. Comparison of the HPLC method and FT-NIR analysis for quantification of glucose, fructose, and sucrose in intact apple fruits[J]. Agric Food Chem.,2006,54(8):2810-2815
    57. Schulz H, Engelhardt U H, Wegent A. Application of near-infrared reflectance spectroscopy to the simultaneous prediction of alkaloids and phenolic substances in green tea leaves[J]. Agric Food Chem.,1999,47(12):5064-5067
    58. Cen H Y, Bao Y D, He Y. Visible and near infrared spectroscopy for rapid detection of citric and tartaric acids in orange juice[J]. Journal of Food Engineering,2007,82(2): 253-260
    59. 刘魁武,成芳,林宏建,孙通,许凯, 胡雷秀,应义斌,徐惠荣.可见/近红外光谱检测冷鲜猪肉中的脂肪蛋白质和水分含量[J].光谱学与光谱分析,2009,29(1):102-105
    60. Hoving A H, Vedder H W, Merks J W. Perspective of NIRS measure -ments early post mortem for prediction of pork quality[J]. Meat Science,2005,69:4-10
    61. 包春芳,刘彤,王彬,赵羚志,任玉林.近红外光谱-偏最小二乘法非破坏分析酱油的主要成分[J].吉林大学学报(理学版),2009,47(2):362-366
    62. Huck C W, Abel G, Popp M, Bonn G K. Comparative analysis of naphthodianthrone and phloroglucine derivatives in St. John's Wort extracts by near infrared spectros-copy[J], liquid chromatography and capillary electrophoresis,2006,580(2):223-230
    63. Gonzalez M I, Hernandez J M, Barros F N. Use of NIRS technology with a remote reflectance fibre-optic probe for predicting major components in bee pollen[J]. Talanta,2007,72(15):998-1003
    64. Wu J G., Shi C H. Prediction of grain weight, brown rice weight and amylose content in single rice grains using near-infrared reflectance spectroscopy[J]. Field Crops Research,2004,87 (1):13-21
    65. Kavdir I, Lu R, Ariana D, Ngouajio M. Visible and near-infrared spectroscopy for nondestructive quality assessment of pickling cucumbers[J]. Postharvest Biology and Technology,2007,44(2):165-174
    66. Takahashi,Masakuzu,Hajikaetal. Near Infrared Spectroscopy[C]:The Future Wave,6th Proc.Int.Conf.. Chinchester, UK:NIR Publication,1996,494-497
    67. Iben E B, Jorgensen B M. Rapid Assessment of Quality Parameters for Frozen Cod Using Near Infrared Spectroscopy[J]. Lebensm.Wiss. Technol.,1998,31:648-652
    68. 陈兰珍,薛晓锋,陈芳,赵静,叶志华,钟艳萍.蜂蜜中还原糖组分测定的近红外光谱应用研究[J].食品科学,2009,30(8):147-150
    69. 陈文杰,谭小力,王竹云.用傅立叶变换近红外光谱仪测定油菜种子品质指标的研究[J],陕西农业科学,2002,8:6-9
    70. Moreno P R, Lodder R A, Purushothaman K R. Detection of Lipid Pool, Thin Fibrous Cap, and Inflammatory Cells in Human Aortic Atherosclerotic Plaques by Near Infrared Spectroscopy[J]. Circulation,2002,105:923-927
    71. Kasemsumran S D, Murayama Y P, Huehne K, Ozaki M Y. Simultaneous determi-nation of human serum albumin, gammaglobulin, and glucose in a phosphate buffer solution by near-infrared spectroscopy with moving window partial least-squares regression[J]. Analyst,2003,128(12):1471-1474
    72. Yano T, Matsushige, Suehara H, Nakano K Y. Measurement of the concentrations of glucose and lactic acid in peritoneal dialysis solutions using near-infrared spectroscopy[J]. Biosci Bioeng.,2000,90(5):540-544
    73. Soller B R, Cingo N, Puyana J C. Simultaneous measurement of hepatic tissue pH, venous oxygen saturation and hemoglobin by near infrared spectroscopy[J]. Shock, 2001,15(2):106-111
    74. 徐可,相玉红,代荫梅,张卓勇.近红外光谱技术结合主成分分析法用于子宫内膜癌的诊断[J].高等学校化学学报,2009,30(8):1543-1547
    75. Deblasi R A, Ferrari M, Natali A. Gasparetto Noninvasive measurement of forearm blood flow and oxygen consumption by Near Infrared Spectroscopy[J]. J. Appl Physiol,1994,76:1388-1396
    76. Mireille C P, Van B, Willy N J, Colier M, Wevers R A. Performance of Near Infrared Spectroscopy in measuring local 02 consumption and blood flow in skeletal muscle[J]. J Appl Physiol,2001,90:511-518
    77. Joaqui'n F, Michael G, Allen A. Near-infrared spectroscopy (NIRS) in cognitive neuroscience of the primate brain[J]. NeuroImage,2005,26:215-220
    78. Zhao L Z, Dou Y, Mi H. Non-destructive determination of metronidazole powder by using artificial neural networks on short-wavelength NIR spectroscopy [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2007, 66(4-5):1327-1332
    79. Dou Y, Qu N, Wang B. Simultaneous determination of two active components in compound aspirin tablets using principal component artificial neural networks (PC-ANNs) on NIR spectroscopy[J]. Eur. J. Pharm Sci.,2007,7:34-38
    80. Blanco M, Alcala M. Simultaneous quantitation of five active principles in a pharmaceutical preparation:development and validation of a near infrared spectros-copic method[J]. Eur. J. Pharm Sci.,2006,27(2-3):280-286
    81. Inesbaer, Robert G, Pierre M. NIR analysis of cellulose and lactose—Application to ecstasy tablet analysis[J]. Forensic Science International,2007,167(2-3):234-241
    82. Smith T N, Pesti G M, Bakalli R I, Kilburn J, Edwards H M. The use of Near Infrared reflectance Spectroscopy to predict the moisture, nitrogen, calcium, total phosphorus, gross energy and phytate phosphorus contents of broiler excreta[J]. Poult Sci,2001, 80:314-319
    83. Reeves J B. Near-versus mid-Infrared diffuse reflectance Spectroscopy for determin-ation of minerals in dried poultry manure[J]. Poult. Sci.,2001,80:1437-1443
    84. Reeves J B,Van K J. Near Infrared Spectroscopic determination of Carbon, Total Nitrogen, and Ammonium-N in Dairy Manures[J]. J. Dairy Sci,2000,83:1829-1836
    85. Mouazen A M, Karoui R, De Baerdemaeker J, Ramon H. Characterization of Soil Water Content Using Measured Visible and Near Infrared Spectra[J]. Soil Sci.,2006, 70:1295-1302
    86. Chang C W, You C F, Huang C Y, Lee T Q. Rapid determination of chemical and physical properties in marine sediments using a near-infrared reflectance spectroscopic technique[J]. Applied Geochemistry,2005,20(9):1637-1647
    87. Mouazen A M, Maleki M R, De Baerdemaeker J, Ramon H. On-line measurement of some selected soil properties using a VIS-NIR sensor[J]. Soil and Tillage Research, 2007,93(1):13-27
    88. 何勇,李晓丽,邵咏妮.基于主成分分析和神经网络的近红外光谱苹果品种鉴别方法研究[J].光谱学与光谱分析,2006,26(5):850-854
    89. 李晓丽,胡兴越,何勇.基于主成分和多类判别分析的可见—可见红外光谱水蜜桃品种鉴别新方法[J].红外与毫米波学报,2006,25(6):418-421
    90. Fu X P, Ying Y B, ZhouY, Xu H R. Application of Probabilistic Neural Networks in QualitativeAnalysis of Near Infrared Spectra:Determination of Producing Areaand Variety of Loquats[J]. Analytica Chimica Acta,2006,52(8):521-525
    91. Bochereau L, Beurgine P A. Method of prodiction by combining data analysis and neural network;application to prediction of apple quality using near infrared spectroscopy[J]. Journal of Agricultural Engineering Research,1992,51:207-216
    92. Scotter C N, Legrand A. Near Infrared Reflectance Spectrometry[J]. Postharvest Biology and Technology,2000,19:245-252
    93. 何勇,冯水娟,李晓丽.应用近红外光谱快速鉴别酸奶品种的研究[J].光谱学与光谱分析,2006,26(11):2021-2023
    94. 黄敏,何勇,岑海燕.应用可见-近红外光谱技术快速无损鉴别婴幼儿奶粉品种[J].光谱学与光谱分析,2007,27(5):916-920
    95. 周晶,孙素琴,李拥军,周群.近红外光谱和聚类分析法无损快速鉴别不同辅料奶粉[J].光谱学与光谱分析,2009,29(1):110-113
    96. Liu L, Cozzolino D, Cynkar W U, Dambergs R G, Janik L, Oneill B K, Colby C B, Gishen M. Preliminary study on the application of visible-near infrared spectroscopy and chemometrics to classify Riesling wines from different countries[J]. Food Chemistry,2007,7:712-715
    97. Xie L J, Ying Y B, Ying T J, Yu H Y, Fu X P. Discrimination of transgenic tomatoes based on visible/near-infraredspectra[J]. Analytica Chimica Acta,2007,58(4): 379-384
    98. 陈永明,林萍,何勇.基于遗传算法的近红外光谱橄榄油产地鉴别方法研究[J].光谱学与光谱分析,2009,29(3):671-674
    99. 王艳艳,何勇,邵咏妮.基于可见-近红外光谱的咖啡品牌鉴别研究[J].光谱学与光谱分析,2007,27(4):702-707
    100. 王晶娟,张贵君,周群,孙素琴.近红外光谱和聚类分析法无损快速鉴别小儿抽风散[J].光谱学与光谱分析,2008,28(2):327-330
    101. 邓波,周玉荣,刘志宏FT-NIR与主成分分析在中药贝母鉴别和聚类中的应用研究[J].光谱实验室,2006,23(5):1104-1106
    102. 刘荔荔,李力,邢旺兴.不同种丹参药材的近红外漫反射光谱模式识别法鉴别[J].药学服务与研究,2002,3(2):127-131
    103. 孙素琴,汤俊明,袁子民.道地山药红外指纹图谱和聚类分析的鉴别研究[J].光谱学与光谱分析,2003,23(2):259-261
    104. 徐永群,孙素琴,周群.红外光谱与人工神经网络相结合识别、野生黄芩和粘毛黄芩[J].光谱学与光谱分析,2002,22(6):946-949
    105. 史春香,杨悦武,郭治听.近红外技术鉴别黄芪产地[J].光谱学与光谱分析,2006,18(1):19-22
    106. 钟蕾,朱斌,宓鹤鸣.近红外漫反射光谱聚类分析用于血竭的鉴别[J].理化检验 —化学分册,2004,40(1):9-11
    107. 范积平,张柳瑛,张贞良.不同产地大黄药材的近红外漫反射光谱法鉴别[J].Journal of Pharmaceutical Practice,2005,23(3):148-151
    108. 任瑞雪,李伟,任玉林.多变量统计分类技术进行芦丁质量控制的研究[J].数理医药学杂志,2000,13(1):75-77
    109. 冯新泸,史永刚.近红外光谱及其在石油产品分析中的应用[M].北京:中国石化出版社,2002
    110. 张军,姜黎,陈哲,余谦,梁静秋,王京华.基于近红外光谱技术成品汽油分类方法的研究[J].光谱学与光谱分析,2010,30(10):2654-2657
    111. 张其可,戴连奎.基于近红外光谱的汽油牌号快速识别[J].化工自动化及仪表,2005,32(4):53-57
    112. Cozzolino D, Kwiatkowski M J, Dambergs R G, Cynkar W U, Janik L J, Gishen M. Analysis of elements in wine using near infrared spectroscopy and partial least squares regression[J]. Talanta,2008,74(4):711-716
    113. Kim Y, Singh M, Sandra E K.Near-infrared spectroscopic analysis of macronutrients and energy in homogenized meals[J]. Food Chemistry,2007,105(3):1248-1255
    114. 段焰青,王家俊,杨涛FT-NIR光谱法定量分析烟草薄片中5种化学成分[J].激光与红外,2007,37(10):1058-1061
    115. 吴国萍,相秉仁.近红外光谱法非破坏性同时测定海洛因、O6单乙酰吗啡、乙酰可待因[J].分析化学,2007,35(4):552-554
    116. 刘敏轩,王赟文,韩建国.高粱籽粒中多酚类物质的傅立叶变换近红外光谱分析[J].分析化学,2009,37(9):1275-1280
    117. 刘名扬,赵景红,王洪艳.偏最小二乘-近红外透射光谱法用于秦皮中多组分测定的研究[J].检验检疫科学,2008,18(1):21-23
    118. Wold S, Kettanelr W N, Skagerber B. Nonlinear PLS modeling[J]. chemometrics and Laboratory Systems,1989,7:53-65
    119. Nicole K, Anne L B, Gerhard T. enalized Partial Least Squares with applications to B-spline transformations and functional data[J]. Chemometrics and Intelligent Laboratory Systems,2008,94(1):60-69
    120. Li L, Cheng Y B, Ustin S, Hu X T, Riano D. Retrieval of vegetation equivalent water thickness from reflectance using genetic algorithm (GA)-partial least squares (PLS) regression [J]. Advances in Space Research,2008,41(11):1755-1763
    121. Losada B, Garcia P R, Alvarez C, Cachaldora P. The prediction of apparent metabolisable energy content of oil seeds and oil seed by-products for poultry from its chemical components, in vitro analysis or near-infrared reflectance spectroscopy[J]. Animal Feed Science and Technology,2010,160(1-2):62-72
    122. Rosipal R, Trejo L J. Kernel partial least squares regression in reproducing kernel Hilbert space[J]. Journall of Machine Learning Research,2001,2:97-123
    123. Gao L,Ren S.Simulataneous spectrophotometric determination of four by the kernel least squares method[J].chemometrics and intelligent laboratory systems,1999,45: 87-93
    124. 杨辉华,覃锋,申永祥,宋昊鲲,罗国安klsomap-PLS非线性建模方法及其在近红外光谱分析中的应用[J].光谱学与光谱分析,2008,28(10):149-150
    125. 郝惠敏,乔聪明,汤晓君,刘君华.核偏最小二乘特征提取在混合气体FTIR光谱定量分析中的应用[J].红外与毫米波学报,2009,28(2):115-118
    126. Emma S H, Anthon D W, Stephen J H. Quantitative Fourier TransformInfrared Spectroscopy of Binary Mixture of Fatty Acid Ester Using Partial Least Squares Regression[J]. Anal. Chim. Acta,1997,337:191-199
    127. Pizarro C, Esteban D I, Nistal J A, Gonzalez M S. Influence of Data Pre-Processing on the Quantitative Determination of the Ash Content andLipids in Roasted Coffee by Near Infrared Spectra[J]. Anal. Chim. Acta,2004,509:217-227
    128. 罗香,刘波平,张小林,李桂生,秦华俊.偏最小二乘近红外光谱法测定瘦肉脂肪酸组成的研究[J].分析试验室,2007,26(10):25-29
    129. Zhang L, Zhang L M, Li Y, Wang J D. Orthogonal Signal Correction Used For Noise Elimination Of Open Path Fourier Transform Infrared Spectra[J]. J. Environ. Sci.& Health,2005, A40:1690-1669
    130. Jing M, Cai W S, Shao X G. Multiblock partial least squares regression based on wavelet transform for quantitative analysis of near infrared spectra[J]. Chemometrics and Intelligent Laboratory Systems,2010,100(1):22-27
    131. 刘芳,王俊德.运用小波变换对遥感FTIR光谱进行信息提取[J].光潜学与光谱分析,2004,24(8):946-949
    132. Csefalvayova L, Pelikan M, Kralj C. Use of genetic algorithms with multivariate regression for determination of gelatine in historic papers based on FT-IR and NIR spectral data[J]. Talanta,2010,82(5):1784-1790
    133. Paul G, Bruce K. Anal. Chim. Acta,1986,185:19-25.
    134. Julia A M. Anal. Chim. Acta,1997,339:63-69
    135. Depczynski U, Frost V J, Molt K. Genetic algorithms applied to the selection of factors in principal component regression[J]. Analytica Chimica Acta,2000,420: 217-227
    136. Avraham L, Bruce R, Kowalski. Alternatives to Cross-Validatory Estimation of the Number of Factors in Multivariate Calibration[J]. Applied Spectroscopy,1990,44(9): 1464-1470
    137. 苏越,郭寅龙.偏最小二乘法中主成分数确定的新方法[J].计算机与应用化学,2001,18(3):237-240
    138. 胡蓉,杨琼,张书然.偏最小二乘-同步荧光光谱法同时测定两种蒽环类抗生素[J].分析试验室,2009,28(8):62-65
    139. 李彦威,方慧文,梁素霞.偏最小二乘紫外分光光度法同时测定丁烯二酸的顺反异构体[J].分析化学,2008,36(1):95-98
    140. 蔡卓,赵静,杜良伟.偏最小二乘紫外分光光度法同时测定维C银翘片中的维生素C和扑热息痛[J].应用化工,2008,37(10):1235-1239
    141. Emilio M, Marco B, Elisa R, Marcello L. Hydroxyl and acid number prediction in polyester resins by near infrared spectroscopy and artificial neural networks[J]. Analytica Chimica Acta,2004,511(2):313-322
    142. 李伟,张书慧,张倩.近红外光谱法快速测定土壤碱解氮、速效磷和速效钾含量[J].农业工程学报,2007,23(1):55-59
    143. 彭帮柱,龙明华,岳田利.傅立叶变换近红外光谱法检测白酒总酸和总酯[J].农业工程学报,2006,22(12):216-219
    144. Liu B P, Li Y, Zhang L, Wang J D. Interpretation of FTIR Spectra try Principal components-Artificial Neural Networks[J]. Spectroscopy Letters,2006,39(4): 373-385
    145. 吉海彦,严衍禄.用人工神经网络处理谷物成分分析[J].高等学校化学学报,1993,14(5):618-620
    146. 吴新生,谢益民.主成分-BP算法在近红外光谱法纸浆卡伯值测量中的应用研究[J].分析测试学报,2005,24(4):10-12
    147. 胡兰萍,张琳,李燕,张黎明,王俊德.主成分提取在遥感FTIR谱图解析中的应用[J].光谱学与光谱分析,2007,27(11):2193-2196
    148. 刘波平,秦华俊,罗香,曹树稳,王俊德PLS-BP法近红外光谱同时检测饲料的四种组分[J].光谱学与光谱分析,2007,27(10):2005-2009
    149. 刘波平,秦华俊,罗香,曹树稳,王俊德.偏最小二乘-反向传播-近红外光谱技术同时测定饲料中4种氨基酸的含量[J].分析化学,2007,35(4):525-528
    150. 齐小明,张录达,杜晓林PLS-BP法近红外光谱定量分析研究[J].光谱学与光谱分析,2003,20(3):870-872
    151. 于晓辉,张卓勇,马群,范国强.径向基函数神经网络和近红外光谱用于大黄中有效成分的定量预测[J].光潜学与光谱分析,2007,27(3):481-485
    152. Svante W, Johan T, Anders B, Henrik A. Some recent developments in PLS Modeling[J]. Chemometrics and Intelligent Laboratory Systems,2001,58:131-150
    153. 杨晓丽,张运陶,程止军.基于遗传算法的径向基神经网络及其在同时测定Fe Mn Cu Zn中的应用[J].计算机与应用化学,2005,22(6):469-476
    154. 侯晋,陈国松,王镇浦.同时测定粮谷中痕量锰铁铜锌的人工神经网络辅助分光光度法[J].分析测试学报,2002,20(2):9-12
    155. Singh P, Deo M C. Suitability of different neural networks in daily flow forecasting[J]. Applied Soft Computing,2007,7(3):968-978
    156. 廖志伟,叶青华,王钢.基于GRNN的多故障自适应电力系统故障诊断水[J].华南理工大学学报(自然科学版),2005,33(9):6-9
    157. 赵亚鹏,丁以中.基于GRNN神经网络的长江干线港口集装箱吞吐量预测[J].中国航海,2006,4:90-92
    158. 孙立春,尚建丽,程多松.应用GRNN网络预测高强混凝土强度[J].低温建筑技术,2006,6:12-14
    159. Ghorbani R, Wu Q, Wang G G. Nearly optimal neural network stabiliza -tion of bipedal standing using genetic algorithm[J]. Engineering Applications of Artificial Intelligence,2007,20(4):473-480
    160. Adel M H, Derin U, Gokhan S. Neural network model for liquefaction potential in soil deposits using Turkey and Taiwan earthquake data[J]. Soil Dynamics and Earthquake Engineering,2007,27(6):521-540
    161. 孙蓉桦,张微GRNN和遗传算法在赤潮预报中的应用操作[J].农业工程学报,2005,21(4):485-490
    162. 周昊,郑立刚,樊建人.广义回归神经网络在煤灰熔点预测中的应用[J].浙江大学学报(工学版),2004,38(11):1479-1482
    163. 陈娇,王永泓,翁史烈.广义回归神经网络在燃气轮机排气温度传感器故障检测中的应用[J].中国电机工程学报,2009,29(32):92-97
    164. 高玲,李小平,任守信.小波包变换广义回归神经网络同时分辨三种有机化合物的重叠光谱[J].光谱学与光谱分析,2008,28(10):2392-2395
    165. 张荣标,冯俊.基于广义回归神经网络的COD在线检测方法研究[J].仪器仪表学报,2008,29(11):2357-2361
    166. 刘波平,秦华俊,罗香,曹树稳,王俊德.PLS-GRNN法近红外光谱多组分定量分析研究[J].光谱学与光谱分析,2007,27(11):2216-2220
    167. 刘波平,秦华俊,罗香,曹树稳,王俊德.基于偏最小二乘与广义回归神经网络的近红外光谱测定土豆中三种营养成分的研究[J].分析试验室,2007,26(9):38-41
    168. Liu J B, Dragan D, Ni J, Nicolas C, Lee J. Similarity based method for manufacturing process performance prediction and diagnosis[J]. Computers in Industry,2007,58(6): 558-566
    169. Brunelli U, Piazza V, Pignato L, Sorbello F, Vitabile S. Two-day ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in the urban area of Palermo [J]. Atmospheric Environment,2007,41(14):2967-2995
    170. Benaouda D, Murtagh F, Starck J L, Renaud O. Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting[J]. Neuro computing,2006, 70(1-3):139-154
    171. 王浩军,蒋建群,李富强.基于MATLAB的Elman神经网络在大坝位移预测中的应用[J].水力发电,2005,31(1):31-34
    172. 范燕,申东日,陈义俊.基于改进Elman神经网络的非线性预测控制[J].河南科技大学学报(自然科学版),2007,28(1):41-45
    173. 刘红梅,王少萍,欧阳平超.基于小波包和Elman神经网络的液压泵故障诊断[J].北京航空航天大学学报,2007,33(1):67-71
    174. Huang W, Yoshiteru N, Wang S Y. Forecasting stock market movement direction with support vector machine[J]. Computers & Operations Research,2005,32(10):2513-2522
    175. 徐留兴,梁川,王上辅Elman模型在黄河上游年径流预测中的应用[J].人民黄河,2006,28(11):24-26
    176. 丁刚,钟诗胜,栾圣罡.航空发动机滑油金属含量预测及其控制研究[J].润滑与密封,2006,(9):52-54
    177. 李春华,李宁,史培军.基于Elman神经网络模型的我国农业受灾面积预测研究[J].灾害学,2006,21(3):1-4
    178. 高玲,石俊仙,任守信Elman回归神经网络同时定量测定三种酚类化合物[J].光谱学与光谱分析,2006,26(1):117-120
    179. 高玲,任守信Elman回归神经网络研究同时定量分析紫外重叠光谱[J].石油化工,2004,33(3):266-269.
    180. 刘波平,秦华俊,罗香,曹树稳,王俊德.基于Elman网络的近红外光谱技术多组分定量分析研究[J].光谱学与光谱分析,2007,27(12):2456-2459
    181. 荣菡,刘波平,邓泽元,罗香Elman网络近红外光谱技术同时测定鲜乳中三种主成分含量[J].食品科技,2008,33(11):258-261
    182. 陈斌,邹贤勇,朱文静.PCA结合马氏距离法剔除近红外异常样品[J].江苏大学学报(自然科学版),2008,29(4):277-279
    183. 李建婷,邓兆智,郭新峰.主成分分析法结合马氏距离判别法在类风湿性关节炎中医证侯诊断中的应用[J].广州中医药大学学报,2008,25(2):153-156
    184. Isaksson T, Kowalski B. Piece-Wise Multiplicative Scatter Correction Applied to Near-Infrared Diffuse Transmittance Data from Meat Products[J]. Appl. Spectrosc., 1993,47:702-709
    185. 张琳,张黎明,李燕,刘内萍,王俊德.正交信号校正用于傅里叶变换红外光谱的模型传递[J].分析化学,2005,33(12):1709-1713
    186. Realini C E, Duckett S K, Windham W R. Effect of vitamin C addition to ground beef from grass-fed or grain-fed sources on color and lipid stability, and prediction of fatty acid composition by near-infrared reectance analysis[J]. Meat Science,2004,68(1): 35-43
    187. Sierraa V, Aldaia N, Castroa P, Osoroa K. Prediction of the fatty acid composition of beef by near infrared transmittance spectroscopy[J]. Meat Science,2008,78(3): 248-255
    188. Hernandez M P, Arino B, Ramirez J A, Isabel D. Prediction of fatty acid content in rabbit meat and discrimination between conventional and organic productionsystems by NIRS methodology[J]. Food Chemistry,2007,100:165-170
    189. 严衍禄.近红外光谱分析基础与应用[M].北京:中国轻工业出版社,2005
    190. Huang W, Liu Q, Zhu E Y, Li Y Q. Rapid simultaneous determination of protoporphyrin IX, uroporphyrin Ⅲ and coproporphyrin Ⅲ in human whole blood by non-linear variable-angle synchronous fluorescence technique coupled with partial least squares[J]. Talanta,2010,82(4):1516-1520
    191. Nakanishia J, Farrellc J A, Schaala S. Composite Adaptive Control with Locally Weighted Statistical Learning[J]. Neural Networks,2005,18:71-90
    192. GB/T8572-2001复合肥料中总氮含量的测定
    193. GB/T8573-1999复合肥料中有效磷含量的测定
    194. GB/T8574-1988复合肥料中钾含量的测定,四苯基硼酸钾重量法
    195. Elena V, Patrick L, Edmundo B, Richard J. France Reversat Evaluating soil quality in tropical agroecosystems of Colombia using NIRS[J]. Soil Biology & Biochemistry, 2005,37:889-898
    196. He Y, Huang M, Annia G, Antihus H, Song H Y. Prediction of Soil macronutrients content using Near-Infrared Spectroscopy[J]. Computers and Electromics in Agriculture,2007,25(4):120-128
    197. 孟洁,王惠文,黄海军,苏建宁.基于核函数变换的PLS回归的非线性结构分析[J].系统工程,2004,22(10):93-97
    198. Tenenhaus A, Giron A,Viennet E. Kernel logistic PLS A tool for supervised nonlinear dimensionalitv reduction and binary classification[J]. Computational Statistics & Data Analysis,2007,51(9):4083-4100
    199. 李燕,孙秀云,王俊德.人工神经网络法测定五组分红外光谱体系[J].光谱学与光谱分析,2000,20(6):773-776
    200. Abbas M, Morteza B. Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(2):246-253
    201. Eoja. A simplified neuron model as a principal component analyzer[J]. Math Binl, 1982,15:267-273
    202.. Sanger T D.Opinal unsupervised lesrning in a single layer linear feed-forw and neural network[J]. Neural network,1989,2:459-473
    203. Ryan H T, Linb C W, Huihua K C. Partial least-squares algorithm for weights initialization of backpropagation network[J]. Neurocomputing,2003,50:237-247
    204. Fernandez I V, Soldado A, Martinez F A. Application of near infrared spectroscopy for rapid detection of aflatoxin B1 in maize and barley as analytical quality assessment[J].Food Chemistry,2009,113(2):629-634
    205. Xiccato G, Trocino A, Deboever J L. Prediction of chemical composition, nutritive value and ingredient composition of European compound feeds for rabbits by near infrared reflectance spectroscopy (NIRS)[J]. Animal Feed Science and Technology, 2003,104:153-168
    206. Dolores C, Perez M, Ana G V, Guerrero G J, Gomez C A. Near-infrared reflectance spectroscopy (NIRS) for the mandatory labelling of compound feedingstuffs:chemical composition and open-declaration[J]. Animal Feed Science and Technology,2004, 116:333-349
    207. 卢利军,庄树华,李爱军.应用近红外光谱技术测定黄豆粕中水分、蛋白质和粗脂肪[J].分子科学学报,2001,17(2):115-120
    208. 张璐,郝永忱,刘桂宾.近红外光谱法测定豆粕中常规化学成分的研究[J].检验检疫科学,2003,13(1):25-27
    209. 苏敏,王丹红,郑能雄.近红外漫反射光谱法快速测定肉骨粉的成分[J].动物预防医学,2004,20(10):602-604
    210. 刘贤,韩鲁生.近红外漫反射光谱法快速测定秸秆青贮饲料成分含量[J].光谱学与光谱分析,2006,26(11):2016-2020
    211. 杨建刚.人工神经网络实用教程[M].杭州:浙江大学出版社,2001
    212. 王艳斌,刘伟,袁洪福.人工神经网络在近红外分析方法中的应用及深色油品的分析——人工神经网络-近红外分析方法快速测定原油馏程[J],石油炼制与化工2002,33(7):62-67
    213. Kenneth D C, Leonard F P, Tsai D H. Particle concentration measurement of virus samples using electrospray differential mobility analysis and quantitative amino acid analysis [J]. Journal of Chromatography A,2009,1216(30):5715-5722
    214. Huub W A, Jean L J, Marjon M J. Quantitative UPLC-MS/MS analysis of underivatised amino acids in body fluids is a reliable tool for the diagnosis and follow-up of patients with inborn errors of metabolism[J]. Clinica Chimica Acta,2009, 407(1-2):36-42
    215. Ana M G, Alfonso G B. HPLC-fluorimetric method for analysis of amino acids in products of the hive (honey and bee-pollen)[J]. Food Chemistry,2006,95(1):148-156
    216. Inmaculada G M, Noelia A G, Jose M G. Near infrared spectroscopy (NIRS) with a fibre-optic probe for the prediction of the amino acid composition in animal feeds[J].Talanta,2006,69(3):706-710
    217. Theovan K, Jean C B. Near-infrared reflectance spectroscopy (NIRS) appears to be superior to nitrogen-based regression as a rapid tool in predicting the poultry digestible amino acid content of commonly used feedstuffs[J]. Animal Feed Science and Technology,1998,76:139-147
    218. 任继平,黄苏西.应用近红外技术快速测定饲料原料氨基酸含量[J].中国饲料,2005,5:24-26
    219. 乔双,董智红.BP网络初始权值的选取方法[J].东北师大学报自然科学版,2004,36(3):25-30.
    220. Jim Y F, Tommy W S. A weigth initialization method for improving training speed in feedforward neural network[J]. Neurocomputing,2000,5:219-232
    221. 陈智军.基于改进遗传算法的前馈神经网络优化设计[J].计算机工程,2002,28(4):120-122
    222. 刘琼荪,张艳粉.基于偏最小二乘的BP网络模型及其应用[J].重庆大学学报(自然科学版),2007,30(7):148-151
    223. Krivoshiev G P, Chalucova R P, Moukarev M I, Lebensm Wiss. Technol.,2000, 133(5):344-353.
    224. Specht D F.General Regression Neural Network[J]. IEEE Trans Neural Networks, 1991,2(6):568-676
    225. 周教,李世玲.广义回归神经网络在非线性系统建模中的应用[J].计算机测量与控制,2007,15(9):1189-1191
    226. 俞明林,冬燕,孙国斌,黄榕清.基于广义回归神经网络的发动机排放预测[J].华南理工大学学报(自然科学版),2003,31(1):51-55
    227. 刘燕德,罗吉,陈兴苗.可见/近红外光谱的南丰蜜桔可溶性固形物含量定量分析[J].红外与毫米波学报,2008,27(2):119-122
    228. 刘燕德,罗吉,欧阳爱国.可见光光谱检测赣南脐橙糖度的研究[J].光谱学与光谱分析,2007,27(3):569-572
    229. Mohammadreza K, Amir B G. A novel technique based on diffuse reflectance near-infrared spectrometry and back-propagation artificial neural network for estimation of particle size in TiO2 nano particle samples[J]. Microchemical Journal, 2010,95(2):337-340
    230. Emilio M, Valentina L, Marco B.Butene concentration prediction in ethylene/propylene/1-butene terpolymers by FT-IR spectroscopy through multivariate statistical analysis and artificial neural networks[J]. Talanta,2009,77(3):1111-1119
    231. 张乃尧,阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,2000
    232. Andreas K, Dmitrij F. Prediction of β-turns and β-turn types by a novel bidirectional Elman-type recurrent neural network with multiple output layers (MOLEBRNN) [J].Gene,2008,422(1-2):22-29
    233. Sami E, Selcuk Y, Mustafa P. A transmission line fault locator based on Elman recurrent networks[J]. Applied Soft Computing,2009,9(1):341-347
    234. Ge H W, Qian F, Liang Y C, Du W L, Wang L. Identification and control of nonlinear systems by a dissimilation particle swarm optimization-based Elman neural network [J]. Nonlinear Analysis,2008,9(4):1345-1360
    235. Patrizia C, Umberto M. Wavelets and Elman Neural Networks for monitoring environmental variables[J]. Journal of Computational and Applied Mathematics,2008, 221(2):302-309
    236. Ni L J, Zhang L G, Xie J, Luo J Q. Pattern recognition of Chinese flue-cured tobaccos by an improved and simplified K-nearest neighbors classification algorithm on near infrared spectra[J]. Analytica Chimica Acta,2009,633(1):43-50
    237. Chen Q S, Zhao J W, Lin H. Study on discrimination of Roast green tea (Camellia sinensis L.) according to geographical origin by FT-NIR spectroscopy and supervised pattern recognition[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,72(4):845-850
    238. Ren L, Gao Y Z, Yin J H, Shi W X. The determination for the three genotypes of D16S539 locus based on near-infrared spectroscopy and chemical pattern recognition[J]. Analytica Chimica Acta,2009,638(2):202-208
    239. 韩东海,鲁超,刘毅.生鲜乳中还原乳的近红外光谱法鉴别[J].光谱学与光谱分析,2007,27(3):465-468
    240. 李凯歌,韩东海,孙明.纯牛奶中还原奶的及红外检测判别分析[J].农机化研究,2008,(8):145-147

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700