睾酮对人血管内皮细胞组织因子途径抑制物表达调节的细胞内通路
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     急性冠脉综合征(Acute Coronary Syndrome,ACS)是冠心病的危重症,其发病存在明显的性别差异。即使考虑其他危险因素,男性性别仍是冠心病的独立危险因子,而雄激素的作用一直存在争议,是目前心血管领域的研究热点之一。研究证实血管内皮抗凝活性降低,血栓形成是急性冠脉综合征的主要特征,而我们的前期实验发现生理浓度睾酮(Testosterone,T)可通过雄激素受体(AndrogenReceptor,AR)促进人脐静脉内皮细胞(Human Umbilical Vein Endothelial Cell,HUVEC)合成、分泌组织因子途径抑制物(Tissue Factor Pathway Inhibitor,TFPI),增强内皮抗凝活性,但是其具体机制不明,本实验即是对该调节通路的进一步研究。
     目的
     观察生理浓度睾酮处理后,人脐静脉内皮细胞核转录因子(Nuclear Factor,NF)活性变化及对TFPI表达合成的影响,探讨生理浓度睾酮在转录因子(Transcription Factor,TF)环节调节TFPI表达的机制。
     方法
     (1)将体外培养的人脐带静脉内皮细胞(HUVEC)分为单纯培养基对照组、生理浓度睾酮组和雄激素受体拮抗剂(Flutamide,F)预处理组,应用转录因子活性芯片技术,分析三组人脐静脉内皮细胞核内转录因子活性的差异;
     (2)将体外培养的HUVEC细胞分为单纯培养基对照组(Control组)、不同浓度睾酮组(3×10~(-9),3×10~(-8),3×10~(-6),3×10~(-5)mol/L Testosterone组:T_(-9)组,T_(-8)组,T_(-6)组,T_(-5)组)、Flutamide组(F组)、Flutamide预处理组(F+T_(-8)组)、TNF-α处理组(TNF-α组)、TNF-α预处理组(TNF-α+T_(-8)组)、PFT-α处理组(PFT-α组)、PFT-α预处理组(PFT-α+T_(-8)组),ELISA法测各组TFPI蛋白水平,real-time RT-PCR检测各组TFPI mRNA水平。
     结果
     (1)睾酮作用后有5个转录因子的活性明显变化,其中活性明显上调的转录因子有3个,包括c-Myb、Myc和P53;显著下调的转录因子有2个,包括核因子κb(NF-κb)和SP1;Flutamide能有效消除睾酮的上述作用:
     (2)生理浓度睾酮(3×10~(-8) mol/L)组TFPI蛋白与mRNA水平与对照组相比明显增加,而超生理浓度睾酮(3×10~(-5) mol/L)组则明显低于对照组,Flutamide可消除上述作用;通过TNF-α上调NF-κb和SP1活性后,TFPI的表达明显受到抑制,生理浓度睾酮可抑制TNF-α的这种作用;而PFT-α增加TFPI的表达,与生理浓度睾酮共同作用后,TFPI的表达进一步增加。
     结论
     (1)生理浓度睾酮可通过雄激素受体使HUVEC核转录因子c-Myb、Myc-Max、P53的活性上调,同时使NF-κb和SP1的活性下调;
     (2)生理浓度睾酮可通过明显减弱转录因子NF-κb和SP1的活性,而促进HUVEC TFPI表达,发挥防止血栓形成的保护作用。
Background
     Significant difference in morbidity of acute coronary syndrome (ACS), one of the critical coronary diseases, was found between males and females. Male gender was found to be an independent risk factor, despite other risk factors. But the role androgen played has been controversial, which becomes one interest of cardiovascμar research. It is confirmed that decreased vascμlar endothelial anticoagμlant activity and thrombosis development is the main feature of acute coronary syndrome. Our previous investigation demonstrated that physiological levels of testosterone had beneficial influence on hemostatic system to enhance the anticoagulant activity throμgh stimμlating the tissue factor pathway inhibitor (TFPI) levels secreted by the human umbilic vein endothial cells(HUVEC), and the androgen receptor is involved in these processes. However, the specific mechanism, till now, is still not fμlly understood. The purpose of the present study, therefore, was to investigate the cellμlar mechanism in vitro.
     Objective
     To investigate the effects of testosterone at physiological concentration on the activities of nuclear transcription factors in HUVECs, further influence on TFPI expression. Then, study the cellμlar mechanism.
     Methods
     (1) HUVECs within 3-4 passages were cμltured in 25cm~2 flasks. The cells were incubated in the presence or absence of physiological testosterone (3×10~(-8)mol/L) for 12h. After the incubation, the nuclear proteins were isolated and then the transcription factor(TF) activity profile were examined using TransSignal Protein/DNA arrays according to the manufacture's protocol. Then experiments were repeated with HUVECs preincubated in androgen receptor antagonist (flutamide 10μmol/L) for 3h.
     (2) HUVECs within 3-4 passages were divided into cμlture medium only group (control), testosterone groups with different concentrations (T_(-9) group: 3×10~(-9) mol/L, T_(-8) group: 3×10~(-8) mol/L, T_(-6) group: 3×10~(-6) mol/L, T_(-5) group:3×10~(-5)mol/L), Flutamide treat group (F group), Flutamide pretreat group (F+T_(-8) group), TNF-αtreat group (TNF-αgroup), TNF-αpretreat group (TNF-α+T_(-8) group), PFT-αtreat group (PFT-αgroup) and PFT-αpretreat group (PFT-α+T_(-8) group). Then, ELISA kit and Real-time RT-PCR were carried out to detect the TFPI antigen and mRNA levels in HUVECs.
     Reslμlts
     (1)Among a total of 54 screened TFs, 5 activity differential TFs significantly influenced by physiological levels of testosterone throμgh androgen receptor were found, of which 3 showed increased activity, including c-Myb, Myc-Max and P53, and 2 showed decreased activity including NF-κb and SP1.
     (2) Compared with control group, testosterone at physiological concentrations (3×10~(-8) mol/L) stimμlated the secretion of TFPI significantly (antigen level: 2.925±0.054 VS. 2.725±0.044 ng/mL P<0.01; mRNA level: 1.537±0.023 VS. 1.260±0.010 copies P<0.01). However, TFPI antigen levels markedly reduced at larger dose (3×10~(-5)mol/L) (antigen level: 2.649±0.029 VS. 2.725±0.044 ng/mLP=0.02; mRNA level: 1.253±0.012 VS. 1.260±0.010 copies P=0.49). Flutamide attenuated physiological testosterone's effects(antigen level: 2.732±0.063 VS. 2.925±0.054ng/mL P<0.01; mRNA level: 1.273±0.015 VS. 1.537±0.023 copies, F+T_(-8)VS.T_(-8), P<0.01). After the activity of NF-κb and SP1 had been activated by TNF-α, TFPI mRNA level significantly decreased than that of the control group(0.933±0.058 VS. 1.260±0.010 copies P<0.01). And physiological testosterone coμld inhibit the effects of TNF-αeffectly (1.163±0.015 VS. 0.933±0.058 copies, TNF-α+T_(-8) VS. TNF-α, P<0.01,). However, PFT-α(P53 inhibitor) increased the express of TFPI notably (1.470±0.030 VS. 1.260±0.010 copies, PFT-αVS. control, P<0.01).
     Conclusion
     (1)Physiological levels of testosterone coμld up-regμlate the activities of c-Myb, Myc-Max and P53, and down regμlate activities of NF-κb and SP1 throμgh androgen receptor in HUVEC.
     (2)Testosterone with physiological concentrations may cast its effects on thrombosis prevention by stimμlating TFPI expression of HUVECs throμgh attenuating the inhibition for TFPI by transcription factor NF-κb and SP1, in which processes, the classical androgen receptor was closely involved.
引文
1. Hak AE, Witteman JC, de Jong FH, et al. Low levels of endogenous androgens increase the risk of atherosclerosis in elderly men: the Rotterdam study. J Clin Endocrinol Metab, 2002; 87(8): 3632-3639.
    2. Van Den Beld AW, Bots ML, Janssen JA, et al. Endogenous hormones and carotid atherosclerosis in elderly men. Am J Epidemiol. 2003; 157(1): 25-31.
    3. Kang SM, Jang Y, Kim JY, et al. Effect of oral administration of testosterone on brachial arterial vasoreactivity in men with coronary artery disease. Am J Cardiol, 2002; 89(7): 862-864.
    4. Pμgh PJ, Channer KS, Parry H, et al. Bio-available testosterone levels fall acutely following myocardial infarction in men: association with fibrinolytic factors. Endocr Res, 2002; 28(3): 161-173.
    5. Xu T, Wang X, Hou S, et al. Effect of surgical castration on risk factors for arteriosclerosis of patients with prostate cancer. Chin Med J (Engl), 2002; 115(9): 1336-1340.
    6. Kathir K, Adams MR. Endothelial dysfunction as a predictor of acute coronary syndromes. Semin Vasc Med, 2003; 3(4): 355-362.
    7.金红,富路,李玉光,等.睾酮浓度与人脐静脉组织因子途径抑制物的表达.中国临床康复,2006;10(9):69-71.
    8. Morange PE, Blankenberg S, Alessi MC, et al. Prognostic value of plasma tissue factor and tissue factor pathway inhibitor for cardiovascμlar death in patients with coronary artery disease: the AtheroGene study. J Thromb Haemost. 2007; 5(3): 475-482.
    9. Pedersen B, Holscher T, Sato Y, et al. A balance between tissue factor and tissue factor pathway inhibitor is required for embryonic development and hemostasis in adμlt mice. Blood. 2005; 105(7): 2777-2882.
    10. Neaud V, Duplantier JG, Mazzocco C, et al. Thrombin up-regulates tissue factor pathway inhibitor-2 synthesis throμgh a cyclooxygenase-2-dependent, epidermal growth factor receptor-independent mechanism. J Biol Chem. 2004; 279(7):5200-5206.
    
    11. Audu P, Nielsen VQ Armstead V, et al. The impact of tissue factor pathway inhibitor on coagulation kinetics determined by thrombelastography. Anesth Analg. 2006; 103(4):841-845.
    
    12. Chand HS, Du X, Ma D, et al. The effect of human tissue factor pathway inhibitor-2 on the growth and metastasis of fibrosarcoma tumors in athymic mice. Blood. 2004; 103(3):1069-1077.
    
    13. Chen D, Giannopoμlos K, Shiels PG, et al. Inhibition of intravascμlarthrombosis in murine endotoxemia by targeted expression of hirudin and tissue factor pathway inhibitor analogs to activated endothelium. Blood 2004; 104 (5): 1344-1349.
    
    14. Georget V, Terouanne B, Nicolas JC, et al. Mechanism of antiandrogen action: key role of hsp90 in conformational change and transcriptional activity of the androgen receptor. Biochemistry. 2002; 41(39):11824-11831.
    
    15. Gardner AM, Johnson GL. Fibroblast growth factor-2 suppression of tumor necrosis factor alpha-mediated apoptosis requires Ras and the activation of mitogen-activated protein kinase. J Biol Chem 1996; 271(24): 14560-14566.
    
    16. Widmann C, Sather S, Over R, et al. In vitro activity of MEKK2 and MEKK3 in detergents is a function of a valine to serine difference in the catalytic domain. Biochim Biophys Acta. 2001; 1547(1):167-173.
    
    17. Sudoh, N, K. Toba, M. Akishita, J , et al . Estrogen prevents oxidative stress - induced endothelial cell apoptosis in rats. Circμlation. 2001; 103( 5) : 724- 729.
    
    18. Kast C, Wang M, Whiteway M. The ERK/MAPK pathway regulates the activity of the human tissue factor pathway inhibitor-2 promoter. J Biol Chem. 2003; 278(9):6787-6794.
    
    19. Konduri SD, Osman FA, Rao CN, et al. Minimal and inducible regulation of tissue factor pathway inhibitor-2 in human gliomas. Oncogene. 2002; 21(6):921-928.
    
    20. Konduri SD, Yanamandra N, Dinh DH, et al. Physiological and chemical inducers of tissue factor pathway inhibitor-2 in human glioma cells. Int J Oncol. 2003; 22(6): 1277-1283.
    21. Cynthia A. H, Chawnshang C. The Roles of Androgen Receptors and Androgen- Binding Proteins in Nongenomic Androgen Actions. Mol Endocrino. 2002; 16 (10): 2181-2187.
    
    22. Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal resμlts from the Women's Health Initiative randomized controlled trial. JAMA. 2002; 288(3): 321-333.
    
    23. Tanis BC, Van Den Bosch MA, Kemmeren JM, et al. Oral contraceptives and the risk of myocardial infarction. N Engl J Med. 2001; 345(25): 1787-1793.
    
    24. Ferenchick GS, Hirokawa S, Mammen EF, et al. Anabolic-androgenic steroid abuse in weight lifters: evidence for activation of the hemostatic system. Am J Hematol. 1995; 49(4):282-288.
    
    25. Hartgens F, Kuipers H. Effects of androgenic-anabolic steroids in athletes. Sports Med. 2004; 34(8):513-554.
    
    26. Peter Y. L, Alison K. D, David J. H. Androgens and Cardiovascμlar Disease. Endocrine Reviews. 2003; 24 (3): 313-340.
    
    27. Hak AE, Witteman JC, de Jong FH, et al. Low Levels of Endogenous Androgens Increase the Risk of Atherosclerosis in Elderly Men: The Rotterdam Study. J Clin Endocrinol Metab. 2002; 87(8):3632-3639.
    
    28. Yildirir A, Kabakci G, Can I, et al. Men with coronary artery disease have lower levels of androgens than men with normal coronary angiograms. Eur Heart J. 2001; 22(7): 612-613.
    
    29. Smith AM, English KM, Malkin CJ, et al. Testosterone does not adversely affectfibrinogen or tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) levels in 46 men with chronic stable angina. Eur J Endocrinol. 2005; 152 (2):285-291.
    
    30. Pμgh PJ, Channer KS, Parry H, et al. Bio-available testosterone levels fall acutely following myocardial infarction in men: association with fibrinolytic factors. Endocr Res. 2002; 28(3): 161-173.
    
    
    31. English KM, Steeds RP, Jones TH, et al. Low-dose transdermal testosterone therapy improves angina threshold in men with chronic stable angina - A randomized, double-blind, placebo-controlled study. Circμlation. 2000; 102 (16): 1906-1911.
    32. Zang H, Ryden M, Wahlen K, et al. Effects of testosterone and estrogen treatment on lipolysis signaling pathways in subcutaneous adipose tissue of postmenopausal women. Fertil Steril. 2007; [Epub ahead of print].
    33.金红,李玉光,王东明等.睾酮对人血管内皮细胞tPA、PAI-1基因表达的影响.中华男科学杂志.2005;11(8):584-586.
    34. Pμgh PJ, Jones TH, Channer KS. Acute haemodynamic effects of testosterone in men with chronic heart failure. Eur Heart J. 2003; 24(10): 909-915.
    35. Chandiwal A, Zaman FS, Mast AE, et al. Factor Xa inhibition by immobilized recombinant tissue factor pathway inhibitor. J Biomater Sci Polym Ed. 2006; 17(9): 1025-1037.
    36. Ng MK, Quinn CM, McCrohon JA, et al. Androgens up-regulate atherosclerosis-genes in macrophages from males but not females: molecμlar insights into gender differences in atherosclerosis. J Am Coll Cardiol. 2003; 42(7): 1306-1313.
    37. Nathan L, Shi W, Dinh H, et al. Testosterone inhibits early atherogenesis by conversion to estradiol: critical role of aromatase. PNAS. 2001; 98(6): 3589-3593.
    38. Mukherjee TK, Dinh H, Chaudhuri G, et al. Testosterone attenuates expression of vascμlar cell adhesion molecμle-1 by conversion to estradiol by aromatase in endothelial cells: implications in atherosclerosis. PNAS. 2002; 99 (6): 4055-4060.
    39. Estrada M, Espinosa A, Gibson CJ, et al. Capacitative calcium entry in testosterone-induced intracellμlar calcium oscillations in myotubes. J Endocrinol. 2005; 184(2): 371-379.
    40. Cynthia A. H, Chawnshang C. The Roles of Androgen Receptors and AndrogenBinding Proteins in Nongenomic Androgen Actions. Mol Endocrino. 2002; 16 (10): 2181-2187.
    41. Eyries M, Agrapart M, Alonso A, et al. Phorbol ester induction of angiotensin-converting enzyme transcription is mediated by Egr-1 and AP-1 in human endothelial cells via ERK1/2 pathway. Circ Res. 2002; 91(10): 899-906.
    42. Von Kriegsheim A, Pitt A, Grindlay GJ, et al. Regulation of the Raf-MEK-ERK pathway by protein phosphatase 5. Nat Cell Biol. 2006; 8(9): 1011-1016.
    43. Charity F, Cynthia J, Patricia C, et al. Testosterone activates mitogen-activated protein kinase and the cAMP response element binding protein transcription factor in Sertoli cells. PNAS. 2004; 101(30): 10919-10924.
    
    44. Nguyen TV, Yao M, Pike CJ. Androgens activate mitogen-activated protein kinase signaling: role in neuroprotection. J Neurochem. 2005; 94(6): 1639-1651.
    
    45. Kast C, Wang M, Whiteway M. The ERK/MAPK pathway regμlates the activity of the human tissue factor pathway inhibitor-2 promoter. J Biol Chem. 2003; 278(9): 6787-6794.
    
    46. Molloy PL. Electrophoretic mobility shift assays. Methods Mol Biol. 2000; 130: 235-246.
    
    47. Lynch J, Guo L, Gelebart P, et al. Calretiqμlin signals upstream of calcineurin and MEF2C in a critical Ca( 2 + ) - dependent signaling cascade. J Cell Biol. 2005; 170(1): 37 - 47.
    
    48. Wang J, Yen A. A novel retinoic acid-responsive element regulates retinoic acid-induced BLR1 expression. Mol Cell Biol. 2004; 24(6): 2423-2443.
    
    49. Yonemitsu Y, Kaneda Y, Tanake S, et al. Transfer of wild-type p53 gene effectively inhibits vascμlar smooth muscle cell proliferation in vitro and in vivo. Circ Res. 1998; 82(2):147-156.
    
    50. Wilson SH, Best PJ, Edwards WD, et al. Nuclear factor-kappa B immunoreactivity is present in human coronary plaque and enhanced in patients with unstable angina pectoris. Atherosclerosis. 2002; 160(1):147-153.
    
    51. Lin MC, Almus-Jacobs F, Chen HH, et al. Shear stress induction of the tissue factor gene. J Clin Invest. 1997; 99(4): 737-744.
    
    52. Kim WJ, Bae EM, Kang YJ, et al. Glucocorticoid-induced tumour necrosis factor receptor family related protein (GITR) mediates inflammatory activation of macrophages that can destabilize atherosclerotic plaques. Immunology. 2006; 119(3): 421-429.
    
    53. Hube F, Reverdiau P, Iochmann S, et al. Characterization and functional analysis of TFPI-2 gene promoter in a human choriocarcinoma cell line. Thromb Res. 2003; 109(4): 207-215.
    
    54. Speiser W, Kapiotis S, Kopp CW, et al. Effect of intradermal tumor necrosis factor-alpha-induced inflammation on coagulation factors in dermal vessel endothelium. An in vivo study of human skin biopsies. Thromb Haemost. 2001; 85(2): 362-367.
    
    55. Hatakeyama H, Nishizawa M, Nakagawa A, et al. Testosterone inhibits tumor necrosis factor-alpha-induced vasqμlar cell adhesion molecμle-1 expression in human aortic endothelial cells. FEBS Lett. 2002; 530(1-3): 129-132.
    1. Kathir K, Adams MR. Endothelial dysfunction as a predictor of acute coronary syndromes. Semin Vasc Med, 2003; 3(4):355-362.
    
    2. Ong PJ, Patirzi G, Chong WC, et al. Testosterone enhances flow-mediated brachial artery reactivity in men with coronary artery disease. [J ] AmJ Cardial, 2000; 85(2) :269-272.
    
    3. Wynne FL, Khalil RA. Testosterone and coronary vascμlar tone: implications in coronary artery disease. J Endocrinol Invest, 2003; 26(2):181-186.
    
    4. Jones RD, English KM, Jones TH, et al. Testosterone-induced coronary vasodilatation occurs via a non-genomic mechanism: evidence of a direct calcium antagonism action. Clin Sci (Lond), 2004; 107(2):149-158.
    
    5. Tep-areenan P, Kendall DA, Randall MD. Mechanisms of vasorelaxation to testosterone in the rat aorta. Eur J Pharmacol, 2003; 465(1-2):125-132.
    
    6. Kang SM, Jang Y, Kim JY, et al. Effect of oral administration of testosterone on brachial arterial vasoreactivity in men with coronary artery disease. Am J Cardiol, 2002; 89(7):862-864.
    
    7. English KM, Steeds RP, Jones TH, et al. Low-dose transdermal testosterone therapy improves angina threshold in men with chronic stable angina: A randomized, double-blind, placebo-controlled study. Circμlation, 2000; 102(16):1906-1911.
    
    8. Makinen J, Jarvisalo MJ, Pollanen P, et al. Increased carotid atherosclerosis in andropausal middle-aged men. J Am Coll Cardiol, 2005; 45(10):1603-1608.
    
    9. Hatakeyama H, Nishizawa M, Nakagawa A, et al. Testosterone inhibits tumor necrosis factor-alpha-induced vasqμlar cell adhesion molecμle-1 expression in human aortic endothelial cells. FEBS Lett, 2002; 530(1-3):129-132.
    
    10. Malkin GF, Pμgh PJ, Jones RD, et al. The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. J Clin Endocrinol Metab, 2004; 89(7):3313-3318.
    11. Gμler N, Batyraliev T, Dμulger H, et al. The effects of short term (3 weeks) testosterone treatment on serum inflammatory markers in men undergoing coronary artery stenting. Int J Cardiol, 2005; [Epub ahead of print].
    12.金红,富路,梅轶芳等.睾酮对人血管内皮细胞纤溶活性影响及机制.Chinese Journal of Pathophysiology,2005;21(4):711-713.
    13. Smith AM, English KM, Malkin CJ, et al. Testosterone does not adversely affect fibrinogen or tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) levels in 46 men with chronic stable angina. Eur J Endocrinol, 2005; 152(2): 285-291.
    14. Pμgh PJ, Channer KS, Parry H, et al. Bio-available testosterone levels fall acutely following myocardial infarction in men: association with fibrinolytic factors. Endocr Res, 2002; 28(3): 161-173.
    15. Medras M, Jankowska E. Testosterone and atherosclerosis in males during andropause. Pol Merkuriusz lek, 1999; 6(34): 205-207.
    16. Xu T, Wang X, Hou S, et al. Effect of surgical castration on risk factors for arteriosclerosis of patients with prostate cancer. Chin Med J (Engl), 2002; 115(9): 1336-1340.
    17. Winkler UH. Effects of androgens on haemostasis. [J]Maturitas, 1996; 24(3): 147-155.
    18. Ebenbichler CF, Sturm W, Ganzer H, et al. Flow-mediated, endothelium-dependent vasodilatation is impaired in male body builders taking anabolic-androgenic steroids. Atherosclerosis, 2001; 158(2): 483-490.
    19. Porsova-Dutoit I, Sμlcova J, Starka L. Do DHEA/DHEAS play a protective role in coronary heart disease? Physiol Res, 2000; 49 Suppl 1: S43-56.
    20. Wu FC, von Eckardstein A. Androgens and coronary artery disease. Endocr Rev, 2003; 24(2): 183-217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700