用户名: 密码: 验证码:
万瓦级光纤激光深熔焊接厚板金属蒸汽行为与缺陷控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光深熔焊接具有深宽比大、焊接速度快、热影响区小、焊接变形小等优点。随着高光束质量万瓦级光纤激光器的出现,厚板激光深熔焊接一次成形成为可能,可广泛应用到能源、造船、航空航天、装备制造、铁路等大厚度大结构件焊接制造中。然而,这些重大工程项目对焊接质量的稳定性和可靠性要求极高,只有对万瓦级激光深熔焊接过程机理进行深入而系统的研究,才能从根本上保证稳定可靠的焊接接头质量。基于上述应用背景,在国家自然科学基金项目的资助下,本文对万瓦级光纤激光深熔焊接厚板过程中孔外金属蒸汽/等离子体、小孔和熔池动态行为,相关焊接缺陷产生机理和控制方法进行试验和理论研究。本论文开展和完成了如下研究工作:
     (1)借助高速摄影和光谱分析手段,直观观测了万瓦级光纤激光深熔焊接厚板过程中孔外金属蒸汽/等离子体动态行为和光谱信号,并计算了孔外金属蒸汽/等离子体特征参数及对入射激光的散射吸收作用。结果表明,孔外金属蒸汽/等离子体由靠近小孔开口蓝光等离子体和位于上方的微红色的金属蒸汽组成,前者边缘形状锋利光滑,而后者边缘形状变化无常,高度高达20mm。发现孔外金属蒸汽喷射方向与小孔壁方位密切相关。光谱分析结果表明,孔外金属蒸汽汽/等离子体是弱电离等离子体。孔外金属蒸汽中凝结的微细金属颗粒对入射激光束的吸收和散射衰减强度是孔外等离子体中自由电子对激光逆轫致辐射吸收的数倍。
     (2)基于改进的“三明治”新方法,采用高速摄影手段,首次从侧面直接观测了万瓦级光纤激光深熔焊接超细长小孔内壁,小孔内壁充满皱褶,并沿小孔壁向下流动,同时熔融金属微滴直接从皱褶波峰脱离穿过小孔向后沿飞去。特别地,在小孔前沿壁面存在液体台阶,向下高速流动,速度可达8m/s-15m/s。
     在直观观测万瓦级光纤激光深熔焊接厚板缺陷产生时的超大金属蒸汽/等离子体团、超细长小孔和熔池动态变化过程的基础上,结合大量工艺试验研究,揭示了飞溅、表面塌陷与底部驼峰和钉子头焊缝缺陷的产生机理。焊接飞溅产生的主要驱动力是小孔内蒸发蒸汽反冲压力和高速喷射的金属蒸汽/等离子体对熔融金属的摩擦力。飞溅产生的基本过程为:局部蒸发——熔融金属加速向上(下)流动——垂直动量积累超出表面张力——熔融金属脱离熔池形成飞溅。孔外金属蒸汽/等离子体对熔融金属的剪切作用使得飞溅在穿过孔外金属蒸汽/等离子体云时有一个“加速过程”。焊缝塌陷和底部驼峰的产生是由于小孔前沿壁流动的液体台阶处局部蒸发导致的熔融金属高速向下流动,大量熔融金属聚集在底部熔池或直接喷出熔池,底部熔融金属不断积累形成熔滴,在重力作用下下掉而形成底部驼峰,焊缝上表面缺少熔融金属的补充而塌陷。钉子头焊缝的产生机理是小孔内部剧烈的蒸汽反冲压力和金属蒸汽/等离子体高速向上喷射对小孔壁的摩擦力驱动底部和周围熔融金属沿小孔壁向上流动,并聚集到小孔开口,然后在表面张力作用下形成由中心向外的Marangoni对流,从而增大熔池上部的熔化宽度,最终形成钉子头焊缝。
     (3)对万瓦级光纤激光深熔焊接厚板焊接缺陷的控制方法进行了研究。结果表明,离焦量是万瓦级光纤激光深熔焊接厚板过程中一个关键工艺参数。负离焦时,匹配优化离焦量和焊接速度可以获得稳定的金属蒸汽/等离子体、小孔和熔池的耦合效果,从而有效抑制缺陷获得成形良好的全熔透焊缝。背保护气体不仅改善了焊缝下表面成形,同时改善了焊缝上表面成形使整个焊缝截面呈“I”型。侧吹气体射流辅助激光深熔焊接,可以较好抑制钉子头焊缝和上表面飞溅的产生。当激光束沿焊接方向向前倾斜适当角度时,可以有效抑制上表面飞溅的产生。采用横焊焊接方位时,可以有效抑制焊缝塌陷与底部驼峰的产生。
     (4)对万瓦级光纤激光深熔焊接厚板焊缝接头组织性能进行了研究。结果表明,熔合区两侧边缘是柱状晶,且对称向焊缝中心生长。焊缝中心区主要是等轴树枝晶。焊缝组织仍为奥氏体组织,并在奥氏体基体上存在少量铁素体。焊缝接头拉伸断裂在母材,最大拉伸应力高达809MPa,最大应变为65%。断口呈典型的杯锥形,焊缝断口由纤维区和剪切唇组成。纤维区由细小而均匀一致的深蜂窝状韧窝组成,表明拉伸试件是承受拉伸载荷而韧性断裂。基于本文的研究成果,成功实现了15kW光纤激光自熔焊接核反应堆堆芯围筒厚板,焊接变形小,无需后续机加工,技术成果处于世界领先水平。良好的焊缝成形和力学性能表明万瓦级光纤激光深熔焊接不锈钢厚板可以进一步应用到工业生产,具有重要的实用价值和经济效益。
Compared to the traditional welding processes, deep penetration laser welding has many advantages, such as the larger aspect ratio (bead depth/bead width), the higher welding speed, the lower heat affected zone (HAZ) and the lower weld distortion. The advent of10-kW level fiber laser with high beam quality should now make it possible to join thick plate with single pass deep penetration laser welding. In this case, the10-kW level fiber laser can be used for joining of thick plate in the energy, ship-building, aerospace, equipment manufacturing and railway industries. However, these major engineering projects have strict requirements on the stability and reliability of the welded joint. Only a comprehensive investigation of processing mechanism of deep penetration high power laser welding can fundamentally guarantee reliability and stability of the welded joint. Under this background, supported by the National Natural Science Foundation of China, the dynamic behavior of metallic vapor plume, keyhole and welding pool, the formation mechanisms and control procedures of welding defects during deep penetration laser welding of thick plate with10-kW level high power fiber laser have been investigated experimentally and theoretically. As a result, the following studies are carried out in this dissertation:
     (1) The metallic vapor plume dynamics and spectra were observed directly using high-speed photography and spectrometer, and then the characteristic parameters of the plasma plume and the scattering and absorption effects of the metallic vapor were calculated. The results show that there are two parts of laser induced vapor plume outside the keyhole with different dynamics and geometries. The lower part is so-called laser induced plasma with blue emission and sharp boarders. The upper and outer part reddish emission, namely metallic vapor, has a changeful geometry wi th a height of more than20mm. The direction of vapor plume ejection is closely related to the position of the keyhole wall. The results of spectral analysis indicate that the vapor plume is weakly ionized plasma. The total attenuation (including scattering and absorption) of the incident laser beam by condensed metallic particles in the vapor plume is several times of the inverse bremsstrahlung absorption by free electrons in the vapor plume.
     (2) Based on a modified “sandwich” novel method, the inner keyhole wall with “gauffers” and “shelf” moving downwards into the keyhole depth and micro-droplets tearing-off from the peak of gauffer wave are directly observed for the first time via high speed camera. Significantly, the liquid shelf on the front keyhole wall moves downwards fast with flow velocity up to8m/s-15m/s.
     On the base of direct observation of the keyhole, vapor plume and welding pool dynamics with formation of welding defects and many technological experiments, the formation mechanisms of the welding defects, such as spatter, undercut and root humping, and nail-head-shaped weld cross section, are revealed. The main driving forces of spatter formation are evaporation recoil pressure inside the kehole and friction drag associated with the high-speed ejection of the energized vapor plume. Spatter generation can always be reduced to a fundamental sequence of phenomena: local boiling-acceleration of melt flow-accumulation of vertical momentum overcoming surface tension-droplet ejection to form spatter. Furthermore, the expanding stream of the directed vapor plume outside the keyhole could also exert a strong shear force on the melt column, inducing an “acceleration process” of the spatter through the directed vapor plume outside the keyhole. The formation of the undercut and root humping can be attributied to the downward melt flow caused by evaporation-induced recoil pressure acting on the liquid hump or shelf on the front keyhole wall. As a consequence, a substantial melt accumulates in the bottom melt pool, or ejects out of the melt pool directly. As the melt accumulated to form a droplet with a certain volume (and mass), it begins to sag below the bottom surface of the weld and from root humping under the action of gravity. At the same time, undercut is generated on the top surface of the weld without supplement of the melt. The evaporation recoil pressure inside the kehole and upward friction drag associated with the high-speed ejection of the energized vapor plume could also drive the melt around the keyhole to flow upwards and gather around the keyhole mouth, and then Marangoni convection occurs under the action of surface tension. As a consequence, the molten width of the top welding pool increases, resulting in a distinct nail-head shape of the weld cross section.
     (3) The suppression procedures of the above-mentioned welding defects during deep penetration laser welding of thick plate with10-kW level high power fiber laser are investigated. The results reveal that defocus is a key parameter in10-kW level high power fiber laser welding of thick plates. At a negative defocus, the match optimization of defocus and welding speed could achieve full penetration joint with a good appearance without defects. The application of a bottom shielding gas improves the weld appearances at both the top and bottom surfaces, resulting in an “I”-shaped cross section. The gas jet assisted deep penetration laser welding could suppress the formation of nail-head-shaped weld and top spatter. Inclining the laser beam forward with a proper angle is effective for the reduction of top spatter. The undercut and root humping could be inhibited by using welding position PC.
     (4) The microstructure and mechanical properties of the joint are investigated. The results demonstrate that the microstructures in the fusion zone are columnar dendrites growing from the interface to the center symmetrically and equiaxed dendrites in the center. Furthermore, the weld joint contains γ-Fe as the major phase and δ-Fe as the minor phase. The maximum tensile stress of the joint is809MPa at strain of65%. The joint fails at the base metal far from the weld seam with a typical cup–cone-shaped fracture surface, which consists of typical fibrous and shear lip regions. The fibrous region is invariably composed of fine, deep equiaxed dimples, indicating that the specimen fails in a ductile manner under the action of tensile loading. Based on the above research, the thick plate of the reactor core shroud is autogenously welded by15kW high power fiber laser with a small distortion and no subsequent machining. The technological achievements are pioneering in the worldwide. The excellent welding appearance and mechanical properties indicate that10-kW level high power fiber laser welding of stainless steel thick plate is feasible in industrial manufacture, and has an important practical value and economic benefit.
引文
[1]左铁钏等.21世纪的先进制造—激光技术与工程.北京市:科学出版社,2007:578.
    [2]左铁钏,陈虹.21世纪的绿色制造——激光制造技术及应用.机械工程学报.2009,(10):106-110.
    [3] Duley WW. Laser welding. New York: John Wiley Sons Inc.,1998.
    [4]李力钧.现代激光加工及其装备.北京市:北京理工大学出版社,1993:246.
    [5] Steen W M, Mazumder J. Laser Material processing [4th Edition], London:Springer,2010.
    [6]陈彦宾.现代激光焊接技术.北京市:科学出版社,2005:208.
    [7] Chan C, Mazumder J, Chen M M. A two-dimensional transient model forconvection in laser melted pool. Metallurgical Transactions A.1984,15(12):2175-2184.
    [8] Chen C L, Mazumder J, Chen M M. Effect of surface gradient driven convectionin a laser melt pool: three-dimensional perturbation mode. Journal of AppliedPhysics,1988,64(12):6166-6174.
    [9]金湘中.激光深溶焊接小孔效应的理论和试验研究.湖南大学博士学位论文,2002.
    [10]张屹.基于“三明治”新方法的激光深熔焊接小孔效应的模拟研究.湖南大学博士学位论文,2005.
    [11] Dowden J. The Theory of Laser Materials Processing--Heat and mass transfer inmodern technology. Berlin: Springer,2009.
    [12] Vollertsen F, Thomy C. Welding with fiber lasers from200to17000W. Miami,FL, United states: Laser Institute of America,2005.
    [13] Thomy C, Seefeld T, Vollertsen F, et al. Application of fiber lasers to pipelinegirth welding. Welding Journal (Miami, Fla).2006,85(7):30-33.
    [14] Katayama S, Kawahito Y, Mizutani M. Elucidation of laser welding phenomenaand factors affecting weld penetration and welding defects. Physics Procedia.2010,5:9-17.
    [15] Kawahito Y, Mizutani M, Katayama S. High quality welding of stainless steelwith10kW high power fibre laser. Science and Technology of Welding&Joining,2009,14:288-294.
    [16]川人洋介,水谷正海,片山聖二,ステンレス鋼の10kW高出力ファイバーレーザ溶接時の欠陥形成機構と防止法.溶接学会論文集,2008,26:203-209.
    [17]吴世凯,肖荣诗,陈铠.大厚度不锈钢板的激光焊接.中国激光.2009,(09):2422-2425.
    [18] Katayama S. Recent progress in laser welding technology. Journal of theVacuum Society of Japan.2012,55(11):471-480.
    [19] Goussain J C, Becker A, Chehaibou A, et al. Heavy sections welding with veryhigh power laser beams: The challenge. In: Proceeding of SPIE,1997,3097:118.
    [20] Ono, M, Shiozaki T, Shinbo Y, et al. Development of High Power Laser PipeWelding Process.溶接学会論文集: quarterly journal of the Japan WeldingSociety2001,19(2):233-240.
    [21] http://www.meyerwerft.de/en/meyerwerft_de/werft/produktionstechnik/laserzentrum/las erzentrum.jsp.
    [22] Webster S E. Hyblas: economical and safe laser hybrid welding of structuralsteel-final report.2009.
    [23]黄坚,李铸国,唐新华.中厚板的高功率激光焊接.航空制造技术.2010(02):26-29.
    [24]黄坚,高志国,蔡艳等.船用钢板的高功率CO2激光焊接.电焊机.2008,(03):7-11.
    [25]胡连海,黄坚,李铸国等.高功率CO2激光焊接管线钢接头的组织与性能.中国激光.2009,(12):3174-3178.
    [26]左铁钏,张冬云,祁俊峰等.关于大功率CO2激光器在船舶制造中应用的探讨.焊接.2007,(05):79-83.
    [27] Shimokusu Y, Fukumoto S, Nayama M, et al. Application of high-power YAGlaser welding to stainless containers. Technical Review,2000,38(1):1-5.
    [28] Hugel H. Laser beam welding–Recent developments in process technology andlasers. In: Proceedings of7th International Welding Symposium,2001.
    [29] Coste F, Janin F, Hamadou M, et al. Deep penetration laser welding with Nd:Yaglasers combination up to11kW laser power. In: Proceeding of SPIE,2002,4831:422-487.
    [30] Vollertsen F, Grunenwald S, Rethmeier M, et al. Welding thick steel plates withfibre lasers and GMAW. Welding in the World.2010,54(3-4): R62-R70.
    [31] Sokolov M, Salminen A, Kuznetsov M, et al. Laser welding and weld hardnessanalysis of thick section S355structural steel. Materials&Design.2011,32(10):5127-5131.
    [32] Avilov V V, Gumenyuk A, Lammers M, et al. PA position full penetration highpower laser beam welding of up to30mm thick AlMg3plates usingelectromagnetic weld pool support. Science and Technology of Welding&Joining.2012,17(2):128-133.
    [33] Kaplan A F H, Wiklund G. Advanced welding analysis methods applied to heavysection welding with a15kW fibre laser. Welding in the World,2009,53:295.
    [34] Kawahito Y, Mizutani M, Katayama S. Elucidation of high-power fibre laserwelding phenomena of stainless steel and effect of factors on weld geometry.Journal of Physics D: Applied Physics.2007,40(19):5854-5859.
    [35] Katayama S, Kawahito Y. Elucidation of phenomena in high power fiber laserwelding, and development of prevention procedures of welding defects. In:Proceeding of SPIE,2009,71951R(9pp.).
    [36] Kawahito Y, Matsumoto N, Mizutani M, et al. Characterisation of plasmainduced during high power fibre laser welding of stainless steel. Science andTechnology of Welding&Joining.2008,13(8):744-748.
    [37] Kawahito Y, Kinoshita K, Matsumoto N, et al. Effect of weakly ionised plasmaon penetration of stainless steel weld produced with ultra high power densityfibre laser. Science and Technology of Welding&Joining.2008,13(8):749-753.
    [38] Kawahito Y, Oiwa S, Mizutani M, et al. Effects of laser-induced plume inhigh-power fiber laser welding with long-focal-distance focusing optics.溶接学会論文集: Quarterly Journal of the Japan Welding Society.2011,29(1):18-23.
    [39] Zhang X, Ashida E, Katayama S, et al. Deep penetration welding of thicksection steels with10kW Fiber laser.溶接学会論文集: Quarterly Journal ofthe Japan Welding Society.2009,27(2):64s-68s.
    [40] Zhang X, Ashida E, Tarasawa S, et al. Welding of thick stainless steel plates upto50mm with high brightness lasers. Journal of Laser Applications.2011,23(2):022002(7pp.).
    [41] Todd A. GE Unveils Ultra Powerful High-Tech Laser Welding System.2011.http://www.genewscenter.com/Press-Releases/GE-Unveils-Ultra-Powerful-High-Tech-Laser-Welding-System-2ff6.aspx.
    [42] Katayama S, Kawahito Y, Mizutani M. Latest Progress in Performance andUnderstanding of Laser Welding. Physics Procedia.2012,39:8-16.
    [43] Haug P, Rominger V, Speker N, et al. Influence of Laser Wavelength on MeltBath Dynamics and Resulting Seam Quality at Welding of Thick Plates. PhysicsProcedia.2013,41:49-58.
    [44] Martin B, Loredo A, Pilloz M, et al. Characterisation of cw Nd:YAG laserkeyhole dynamics. Optics&Laser Technology.2001,33(4):201-207.
    [45]张旭东,陈武柱,刘春等. CO2激光焊接的同轴检测与熔透控制I.熔透状态特性及其同轴检测.焊接学报.2004,(04):1-4.
    [46] Chen W, Zhang X, Jia L. Penetration monitoring and control of CO2laserwelding with coaxial visual sensing system. In: Proceeding of SPIE,2004,5629:129-140.
    [47] Fabbro R, Slimani S, Doudet I, et al. Experimental study of the dynamicalcoupling between the induced vapour plume and the melt pool for Nd-Yag CWlaser welding. Journal of Physics D: Applied Physics.2006,39(2):394-400.
    [48] Fabbro R, Slimani S, Coste F, et al. Study of keyhole behavior for fullpenetration Nd-YAG CW laser welding. Journal of physics D: Applied physics,2005,38(12):1881.
    [49] Weberpals J, Dausinger F. Fundamental understanding of spatter behavior atlaser welding of steel. In: Proceedings of the ICALEO’2008Conference,Temecula CA, USA,2008,364:364-373.
    [50] Arata Y. Dynamic Behavior of Laser Welding and Cutting. In: Proceedings ofthe7th Intl. Conf. on Electron and Ion Beam Science and Technology.1976,7:111-128.
    [51] Arata Y, Miyamoto I. Laser Welding, Technocrat,1978,11(5):33-42.
    [52] Antonov A A. A steady-state crater formed as a result of interaction ofhigh-power CO2laser radiation with metals and liquids. Sov. J. QuantumElectron.1977,8(7):15.
    [53] Arata Y, Abe N, Oda T. Fundamental Phenomena in High Power CO2LaserWelding (Report II), Transactions of JWRI,1985,14(2):17-22.
    [54] Arata Y, Abe N, Oda T. Fundamental Phenomena in High Power CO2LaserWelding (Report I), Transactions of JWRI,1985,14(1):5-11.
    [55] Arata Y. Plasma, Electron and Laser Beam Technology (American Society ofMetals, Metals Park, OH,1986).
    [56] Mitkevich E A, Lopota V A, Gornyi S G. Dynamics of Seam Formation atWelding by CO2Laser. Avtomaticheskaya Svarka,1982,(2):22–26.
    [57] Matsunawa A, Kim J D, Seto N, et al. Dynamics of keyhole and molten pool inhigh power CO2laser welding. Journal of Laser Applications,1998,10(6):247-254.
    [58] Jin X, Li L, Zhang Y. A study on fresnel absorption and reflections in thekeyhole in deep penetration laser welding. Journal of Physics D: AppliedPhysics.2002,35(18):2304-2310.
    [59] Zhang Y, Chen G, Wei H, et al. A novel "sandwich" method for observation ofthe keyhole in deep penetration laser welding. Optics and Lasers in Engineering.2008,46(2):133-139.
    [60] Zhang Y, Li S, Chen G, et al. Characteristics of zinc behavior during laserwelding of zinc "sandwich" sample. Optics&Laser Technology.2012,44(8):2340-2346.
    [61] Zhang Y, Li L, Zhang G. Spectroscopic measurements of plasma inside thekeyhole in deep penetration laser welding. Journal of Physics D: AppliedPhysics.2005,38(5):703-710.
    [62] Chen G, Zhang M, Zhao Z, et al. Measurements of laser-induced plasmatemperature field in deep penetration laser welding. Optics&Laser Technology.2013,45(1):551-557.
    [63] Jin X, Zeng L, Cheng Y. Direct observation of keyhole plasma characteristics indeep penetration laser welding of aluminum alloy6016. Journal of Physics D:Applied Physics.2012,45(24):245205(10pp.).
    [64] Norman P. Monitoring undercut, blowouts and root sagging during laser beamwelding. In: Proceedings of the Fifth International WLT-Conference on Lasers inManufacturing,2009,5:355.
    [65] Kaplan A F H, Powell J. Spatter in laser welding. Journal of Laser Applications.2011,23(3):032005(7pp.).
    [66] Eriksson I, Gren P, Powell J, et al. New high-speed photography technique forobservation of fluid flow in laser welding. Optical Engineering.2010,49(10):100503-100503.
    [67] Eriksson I, Powell J, Kaplan A F H. Measurements of fluid flow on keyhole frontduring laser welding. Science and Technology of Welding&Joining.2011,16(7):636-641.
    [68] Kaplan, A F H. A mode of deep penetration laser welding based on calculation ofkeyhole profile. Journal of Physics D: Applied Physics,1994,27(9):1805.
    [69] Matsunawa, A, Semak, V. The simulation of front keyhole wall dynamics duringlaser welding. Journal of physics D: Applied physics,1997,30(5):798.
    [70] Fabbro R, Chouf K. Keyhole modeling during laser welding. Journal of AppliedPhysics.2000,87(9):4075-4083.
    [71] Fabbro R, Chouf K. Keyhole description in deep penetration laser welding. In:Proceeding of SPIE,2000,3888:104-112.
    [72] Lee J Y, Ko S H, Farson D F, et al. Mechanism of keyhole formation andstability in stationary laser welding. Journal of Physics D: Applied Physics.2002,35(13):1570-1576.
    [73] Ki H, Mohanty P S, Mazumder J. Modeling of laser keyhole welding: Part II.Simulation of keyhole evolution, velocity, temperature profile, and experimentalverification. Metallurgical and Materials Transactions A: Physical Metallurgyand Materials Science.2002,33(6):1831-1842.
    [74] Ki H, Mohanty P S, Mazumder J. Modeling of laser keyhole welding: Part I.Mathematical modeling, numerical methodology, role of recoil pressure,multiple reflections, and free surface evolution. Metallurgical and MaterialsTransactions A: Physical Metallurgy and Materials Science.2002,33(6):1817-1830.
    [75]左铁钏,肖荣诗,陈铠等.高强铝合金的激光加工(第一版).北京:国防工业出版社,2002.
    [76] Stegman R L, Schriempf J T, Hettche L R. Experimental studies of laser‐supported absorption waves with5ms pulses of10.6μm radiation. Journal ofApplied Physics,1973,44(8):3675-3681.
    [77] Mitchner M and Kruger C H. Partially Ionized Gases. New York: Wiley,1973.
    [78] Wernecke S.J. Maximum entropy image reconstruction. IEEE Trans Comput,1977,26:351-364
    [79] Matsunawa A, Ohnawa T. Beam-plume interaction in laser materials processing.Transactions of JWRI,1991,20(1):9-l5.
    [80]唐霞辉.高功率激光焊接光致等离子体的形成机理研究.华中理工大学博士论文,1996.
    [81] Giren B G. Absorption of laser radiation in an optical discharge plasma in a gasmixture stream. Journal of Physics D: Applied Physics.1991,24(7):1086-1087.
    [82] Fabbro. R. Beam-PIasma coupling in laser material processing. In: Proc.LAMP’92,1992:305-310.
    [83] Poueyo-Verwaerde A, Fabbro R, Deshors G, et al. Experimental study oflaser-induced plasma in welding conditions with continuous CO2laser. Journalof Applied Physics.1993,74(9):5773-5780.
    [84]张林杰,张建勋,王蕊等.侧吹气体对不锈钢薄板激光焊接焊缝成形的影响.稀有金属材料与工程,2006,35(A02):39-44
    [85]张林杰,张建勋,段爱琴.侧吹辅助气流对激光深熔焊接光致等离子体的影响.焊接学报,2006,27(10):37-41.
    [86] Zhang L J, Zhang J X, Duan A Q, et al. Numerical and experimental study of theeffect of side assisting gas during laser welding. Modelling and Simulation inMaterials Science and Engineering,2006,14(5):875-890.
    [87] Zhang L J, Zhang J X, Gong S L. Mechanism study on the effects of sideassisting gas velocity during CO2laser welding process. Journal of AppliedPhysics,2009,106:024912(8pp).
    [88]肖荣诗. CO2激光深熔焊接光致等离子体行为研究.北京工业大学博士学位论文,1997
    [89] Kim J D, Katayama, S, Mizutani, M, et al. Structure and composition ofevaporated particles and plume in laser welding. Review of Laser Engineering,1996,24(9):996-1005.
    [90] Lacroix D, Jeandel G, Boudot C. Solution of the Radiative Transfer Equation inan Absorbing and Scattering Nd: YAG Laser-induced Plume. Journal of appliedphysics,1998,84(5):2443-2449.
    [91] Greses J, Hilton P A, Barlow C Y, et al. Plume attenuation under high power Nd:yttritium-aluminum-garnet laser welding. Journal of Laser Applications.2004,16(1):9-15.
    [92] Kawahito Y, Matsumoto N, Katayama S. Visualization of refraction andattenuation of near-infrared laser beam due to laser induced plume. Journal ofLaser Applications,2009,21(2):96-101.
    [93] Gresev A N. Plasma formation during deep penetration laser welding (inRussian). Modern laser-information and laser technologies, collected articles ofIPLIT RAN ed. by V.Ya. Panchenko and V.S. Golubev,2004,228-235.
    [94] Kawahito Y, Matsumoto N, Mizutani M, et al. Characterisation of plasmainduced during high-power fiber laser welding of stainless steel. Science andTechnology of Welding&Joining,2008,13(8):744-748.
    [95] Smith D C and Brown R. Aerosol-induced air breakdown with CO2-laserradiation. Journal of applied physics,1975,46(3):1-6.
    [96] Krivtsun. I V. Simulation of thermal-and mass exchange processes in melt pool,keyhole and plasma plume during deep penetration laser welding (in Ukrainian).Project report No. F28.7/028, Paton Welding Institute NASU2009.
    [97] Turichin G, Zemlyakov E. Kinetics of condensed phase nano-cluster formation inplasma plume during hybrid laser-arc influence on metals (in Russian). In:Proceedings of the IV International Conference Beam Technologies and LaserApplication, Saint-Petersburg, Russia,2009.
    [98] Turichin G, Zemlyakov E, Pozdeeva E, et al. Volume condensation in plasmaplume (in Russian). Photonics,2009,(13):12-14.
    [99] Dowden J, Kapadia P, Clucas A, et al. On the relation between fluid dynamicpressure and the formation of pores in laser keyhole welding. Journal of LaserApplications.1996,8(4):183-190.
    [100] Beck M. Modellierung des Lasertiefschwei ens, Dissertation, Universit atStuttgart. Teubner Verlag, Stuttgart,1996.
    [101] Sudnik W, Radaj D, Breitschwerdt S, et al. Numerical simulation of weld poolgeometry in laser beam welding. Journal of Physics D: Applied Physics.2000,33(6):662-671.
    [102] Matsunawa A, Seto N, Kim J, et al. Dynamics of keyhole and molten pool inhigh power CO2laser welding. In: Proceedings of SPIE,2000,3888:34-45.
    [103] Fabbro R, Hamadou M, Coste F. Metallic vapor ejection effect on melt pool dynamics in deep penetration laser welding. Journal of Laser Applications.2004,16(1):16-19.
    [104] Amara E H, Fabbro R, Hamadi F. Modeling of the melted bath movement induced by the vapor flow in deep penetration laser welding. Journal of LaserApplications.2006,18(1):2-11.
    [105] Amara E H, Fabbro R. Modelling of gas jet effect on the melt pool movements during deep penetration laser welding. Journal of Physics D: Applied Physics.2008,41(5):055503(10pp.).
    [106] Fabbro R. Melt pool and keyhole behaviour analysis for deep penetration laserwelding. Journal of Physics D: Applied Physics.2010,43(44):445501(9pp.).
    [107] Zhang L J, Zhang L X, Zhang G F, et al. An investigation on the effects of sideassisting gas flow and metallic vapour jet on the stability of keyhole and moltenpool during laser full-penetration welding. Journal of Physics D: AppliedPhysics,2011,44(13):135201(13pp.).
    [108]印有胜.金属焊接缺陷及其防止.黑龙江:黑龙江科学技术出版社,1995.
    [109] Nguyen T C, Weckman D C, Johnson D A, et al. High speed fusion weld beaddefects. Science and Technology of Welding&Joining.2006,11(6):618-633.
    [110] Normana P M, Karlsson J, Kaplan A F H. Mechanisms forming undercutsduring laser hybrid arc welding. Physics Procedia,2011,12:201-207.
    [111]石玗,黄健康,樊丁等.电弧声信号与铝合金MIG焊缝塌陷的相关性.机械工程学报.2007,(10):32-35.
    [112]杨璟.铝合金激光深熔焊接过程行为与缺陷控制研究.北京工业大学博士学位论文,2011.
    [113] Ilar T, Eriksson I, Powell J, et al. Root Humping in Laser Welding–anInvestigation based on High Speed Imaging. Physics Procedia.2012,39:27-32.
    [114]唐霞辉,朱海红,朱国富等. CO2激光深熔焊接光致等离子体吸收及其控制.中国机械工程.2000,(07):29-31.
    [115] Tu J F, Inoue T, Miyamoto I. Quantitative characterization of keyholeabsorption mechanisms in20kW-class CO2laser welding processes. Journal ofPhysics D: Applied Physics.2003,36(2):192-203.
    [116] Dumord E, Jouvard J, Grevey D F. Modeling of high power cw Nd: YAG laserwelding. In: Proceeding of SPIE,1997,2889:26-33.
    [117] Semak V V, Damkroger B, Kempka S. Temporal evolution of the temperaturefield in the beam interaction zone during laser material processing. Journal ofPhysics D: Applied Physics.1999,32(15):1819-1825.
    [118] Oakley P J.2and5kW fast axial flow carbon dioxide laser material processing.In: ICALEO'82proceedings. LIA, Orlando,1982:121-128.
    [119] Kamimuki K, Inoue T, Yasuda K, et al. Prevention of welding defect by sidegas flow and its monitoring method in continuous wave Nd:YAG laser welding.Journal of Laser Applications.2002,14(3):136-145.
    [120] Naito Y, Mizutani M, Katayama S. Effect of oxygen in ambient atmosphere onpenetration characteristics in single yttrium-aluminum-garnet laser and hybridwelding. Journal of Laser Applications.2006,18(1):21-27.
    [121] Zhao C X, Kwakernaak C, Pan Y, et al. The effect of oxygen on transitionalMarangoni flow in laser spot welding. Acta Materialia.2010,58(19):6345-6357.
    [122] Ribic B, Tsukamoto S, Rai R, et al. Role of surface-active elements duringkeyhole-mode laser welding. Journal of Physics D: Applied Physics.2011,44(48):485203(10pp.).
    [123]马立彩,刘金合,谢耀征等.激光焊活性影响等离子体的初步研究.电焊机.2005,(07):35-38.
    [124] Kaul R, Ganesh P, Singh N, et al. Effect of active flux addition on laserwelding of austenitic stainless steel. Science and Technology of Welding&Joining.2007,12(2):127-137.
    [125]樊丁,林涛,黄勇等.不锈钢活性激光焊工艺研究.焊接.2007,(05):28-30.
    [126]南京三爱玻璃仪器有限公司. www.chinaglassware.com,2013-3.
    [127] Forsman T, Powell J, Magnusson C. Process instability in laser welding ofaluminum alloys at the boundary of complete penetration. Journal of LaserApplications.2001,13(5):193-198.
    [128]张刚.激光深熔焊接光致等离子体温度测量的试验研究.湖南大学硕士学位论文,2004.
    [129] Shcheglov P. Study of Vapour-Plasma Plume during High Power Fiber LaserBeam Influence on Metals. Bundesanstalt für Materialforschung und-prüfung(BAM),2012.
    [130] NIST Database, http://physics.nist.gov/PhysRefData/ASD/linesform.html.
    [131] Lacroix D, Jeandel G, Boudot C. Spectroscopic characterization oflaser-induced plasma created during welding with a pulsed Nd: YAG laser.Journal of Applied Physics.1997,81(10):6599-6606.
    [132] Allmen M V. Laser-Beam Interactions with Materials. Springer BerlinHeidelberg,1987.
    [133] Kim K R, Farson D F. CO2laser-plume interaction in materials processing.Journal of Applied Physics.2001,89(1):681-688.
    [134]赵智.基于光谱分析的激光深熔焊接孔内等离子体特性研究.湖南大学硕士学位论文,2009.
    [135] Kotake S. Formation of Metal and Non-Metal Clusters through Laser andElectron Beam Vaporisation. In: Heat and Mass Transfer in MaterialsProcessing, edited by I. Tanasawa and N. Lior (Hemisphere,1992).
    [136] Hulst H C and Van De Hulst H C. Light scattering: by small particles. CourierDover Publications.1957.
    [137] Bohren C E and Huffman D R. Absorption and Scattering of Light by SmallParticles. New York: John Wiley&sons,1988.
    [138] Mie G. Beitrage zur Optik trüber Medien speziell kolloidaler Metall sungen.Ann. Phys.,1908,25:377-445.
    [139]王小东,吴健,邱荣等. MIE散射系数的改进算法.光电工程.2006,(03):24-27.
    [140] Leksina I E and Penkina I V. Optical properties of iron in visible and infra-redspectral range (in Russian). FMM,1967,23:344.
    [141]朱士尧.等离子体诊断中的Abel逆变换.核聚变与等离子体物理,1987,7(2):102-107.
    [142] Born M and Wolf E. Principles of Optics.7th (expanded) edn. University Press,Cambridge, England.1999.
    [143] Klein T, Vicanek M, Simon G. Forced oscillations of the keyhole in penetrationlaser beam welding. Journal of Physics D: Applied Physics.1996,29(2):322-332.
    [144] Golubev V S. On possible models of hydrodynamical nostationary phenomenain processes of laser beam deep penetration into materials. In: Proceeding ofSPIE,1995,2713:219-230.
    [145] Brailovsky A B, Gaponov S V, Luchin V I. Mechanisms of melt droplets andsolid-particle ejection from a target surface by pulsed laser action. AppliedPhysics A: Materials Science&Processing.1995,61(1):81-86.
    [146] Golubev V S. Possible hydrodynamic phenomena in deep-penetration laserchannels. In: Proceeding of SPIE,2000,3888:244-255
    [147] Golubev V S. Laser welding and cutting: recent insights into fluid dynamicsmechanisms. In: Proceeding of SPIE,2003,5121:1-15
    [148]庞盛永.激光深熔焊接瞬态小孔和运动熔池行为及相关机理研究.华中科技大学博士学位论文,2011.
    [149] Taylor G. The instability of liquid surface when accelerated in a directionperpendicular to their planes. Proc. Roy. Soc.1949,202:192-196.
    [150] Kumar N. Hydrodynamical phenomena in the process of laser welding andcutting. Science and Technology of Welding&Joining.2007,12:540-548.
    [151] Johnson R L. Laser Burnthrough Time Reduction Due to TangentialAirflow-An Interpolation Formula. AIAA,1974,12:1106-1109.
    [152] Ang L K, Lau Y Y, Gilgenbach R M, et al. Surface instability of multipulselaser ablation on a metallic target. Journal of Applied Physics.1998,83(8):4466.
    [153] Semak V V, Hopkins J A, Mccay M H, et al. Melt pool dynamics during laserwelding. Journal of Physics D: Applied Physics.1995,28(12):2443-2450.
    [154] Denney P E and Metzbower E A. Synchronized laser-video camera systemstudy of high power laser material interactions. In: Proceeding of ICALEO,1991:84-93.
    [155] Musiol J, Luetke M, Schweier M, et al. Combining remote ablation cutting andremote welding: Opportunities and application areas. In: Proceeding of SPIE,2012,8239:82390Q-82390Q.
    [156] Metzbower E A. Temperatures in the keyhole. Metallurgical and MaterialsTransactions B: Process Metallurgy and Materials Processing Science.1995,26(5):1029-1033.
    [157] Rai R, Palmer T A, Elmer J W, et al. Heat transfer and fluid flow duringelectron beam welding of304L stainless steel alloy. Welding Journal (Miami,Fla).2009,88(3):54s-61s.
    [158]夏伯忠,韩嘉舜,王国生.正交试验法.长春:吉林人民出版社,1985.
    [159] Zhang M J, Chen G Y, Zhou Y, et al. Observation of spatter formationmechanisms in high-power fiber laser welding of thick plate. Applied SurfaceScience,2013,280:868-875.
    [160] Zhang M J, Chen G Y, Zhou Y, et al. Optimization of deep penetration laserwelding of thick stainless steel with a10kW fiber laser. Materials&Design,2014,53:568-576.
    [161]王振家,苏严,陈武柱.激光焊接侧吹工艺的研究.热加工工艺.2004,6:49-50.
    [162]李国华,贾时君,Douglas Steyer等.侧吹气流方向对大功率CO2激光焊缝成形的影响.热加工工艺.2007,(19):23-25.
    [163] Berger P, Hügel H, Hess A, et al. Understanding of Humping Based onConservation of Volume Flow. Physics Procedia.2011,12:232-240.
    [164] Chowdhury S M, Chen D L, Bhole S D, et al. Microstructure and mechanicalproperties of fiber-laser-welded and diode-laser-welded AZ31magnesium alloy.Metallurgical and Materials Transactions A: Physical Metallurgy and MaterialsScience.2011,42(7):1974-1989.
    [165] Cui C Y, Cui X G, Ren X D, et al. Microstructure and microhardness of fiberlaser butt welded joint of stainless steel plates. Materials&Design.2013,49:761-765.
    [166] Yan J, Gao M, Zeng X. Study on microstructure and mechanical properties of304stainless steel joints by TIG, laser and laser-TIG hybrid welding. Opticsand Lasers in Engineering.2010,48(4):512-517.
    [167]埃里希.福克哈德.不锈钢焊接冶金[M].栗卓新,朱学军译.北京:化学工业出版社,2004,4-11.
    [168] Silva C C, de Miranda H C, de Sant'Ana H B, et al. Microstructure, hardnessand petroleum corrosion evaluation of316L/AWS E309MoL-16weld metal.Materials Characterization.2009,60(4):346-352.
    [169]张文铖.焊接冶金学(基本原理).北京:机械工业出版社,1995.
    [170] Hunt J D. Steady state columnar and equiaxed growth of dendrites andeutectic. Materials Science and Engineering,1984,65(1):75-83.
    [171] Arivazhagan N, Singh S, Prakash S, et al. Investigation on AISI304austeniticstainless steel to AISI4140low alloy steel dissimilar joints by gas tungsten arc,electron beam and friction welding. Materials&Design.2011,32(5):3036-3050.
    [172]田燕.焊接区断口金相分析.北京:机械工业出版社,1991.
    [173]赵飞云,黄庆,朱焜等.基于热流固耦合效应的堆芯围筒温度分析方法研究.核动力工程,2011,32(S1):134-136.
    [174]王永峰,杜广波,李浩. AP1000核电关键设备的制造特点及国产化.能源技术,2010,31(1):28-33.
    [175]上海第一机床厂有限公司.堆芯围筒的激光焊接方法.中国发明专利,申请号:201310137430.3.
    [176]梁毅菲.一家创造了十二项“国内第一”的企业.中国机电工业,2013,(2):82-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700