红外探雷理论模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介绍了红外探雷技术和红外探雷系统的现状及发展,研究了红外探雷的热传导模型和雷场红外图像的处理方法。在分析红外探雷系统结构和影响红外探雷因素的基础上,提出了一种红外探雷的三维热传导模型,该模型通过分析地雷和掩埋环境之间不同的热量特性来对目标进行探测。在建立地雷的红外辐射特性模型的基础上,分别对该热传导模型的初始条件和边界条件进行了分析讨论,模拟仿真生成掩埋地雷区域地表的温度场分布,研究了掩埋有地雷区域和无地雷区域地表温度差变化,并分析了其温度场的分布特性和影响其为温度分布的因素。最后,分析了雷场红外图像特征,研究了有针对性的图像处理方法,总结出一般的处理规律。
In this paper, the application, status, development of infrared landmine detection and infrared landmine detection system are discussed. Infrared thermal conduction modelling of landmine detection and minefields infrared image processing methods are researched. After analyze infrared landmine detection system and factors affecting infrared landmine detection, propose a new three-dimensional thermal modelling of landmine detection. The detection principle of the landmine detection modelling relies on the difference between thermal characteristics of the landmines and those of the background. Based on thermal modelling for buried landmine detection, analyze the initial and boundary conditions. The temperature distribution around the district is generated by simulation. Surface temperature difference changes of the district is analyzed. The characteristic of the minefield infrared imaging is analyzed, the proper method of the image processing is researched, then generic regulation, method and process is summarized.
引文
[1]吴桑.外军核四极矩共振探雷技术发展现状.工兵装备研究. 2002,3. Vol.21(3):61-64.
    [2]房旭民.核四极矩共振探雷技术的发展与思考.工兵装备研究. 2002,6. Vol.21(6):1-5.
    [3]侯根算.战后探雷器材发展初探.工兵装备研究.2003, 2. Vol.21(2):2-6.
    [4]倪宏伟.房旭民.地雷探测技术.国防工业出版社. 2003.
    [5]周立军,梁连仲,史冉.国内外探雷新技术.地质装备.2003,11.Vol.3(4):3-6.
    [6] H. S. Carslaw and J. C. Jaeger. Conduction of Heat in Solids. Oxford University Press, Oxford, second edition. 1959.
    [7] D.H. Chen, I. K. Sendur, W.-J. Lion . Using Physical Models to Improve Thermal IR Detection of Buried Mines. Proc. SPIE.2001. Vol. 4394:207-218.
    [8]张建奇,方小平.红外物理.西安电子科技大学出版社.2000.
    [9] Thanh T Nguyen, Dinh N Hao, Paula Lopez .Thermal infrared identification of buried landmines. Proc. SPIE .2005.Vol. 5794:198-208.
    [10] Blanchard M B, et al. Use of visible, near infrared and thermal infrared remote sensing to study soil moisture. NASA Tech. Rep. 1974. TMX-62, 343.
    [11] Nguyen Trung Thμanh , Dinh Nho Hμao. Thermal modelling for landmine detection: efficient numerical methods and soil parameter estimation. Proc. 2006. SPIE Vol. 6217:143-164.
    [12] J C Jaeger. Conditions of heat in a solid with periodic boundary conditions with a application to the surface temperature of the Moon. Pro. Cambridge Philos. 1953.Vol.49: 355.
    [13] K Watson, et al. Periodic heating of a layer over a semi-infinite solid. J. Geophys. Res. 1973.Vol.78.
    [14] Tuccillo J J, et al. Modeling of physical processes in Nested CRid Model.Technical Procedures Bulletin No.36, 3, National Weather Service, Silver Spring, MD, 1986.
    [15] Philip J R, et al. Moisture movement in porous materials under temperature gradients. Eos. Trans. AGU. 1957.Vol.38, 222.
    [16] Rosema A. Simulation of the thermal behavior of bare soils for remote sensing purposes, in Heat and Mass Transfer in the Biosphere. Edited by D A Devries, N H Afgars, and Scripta, Washington D C, 1975.109.
    [17] Idso S B, et al. The utility of surface temperature measurements for the remote sensing of surface soil water status. J. Geophys. Res. 1975.Vol.80: 3044.
    [18] Kahle A B. A simple thermal model of the earth’s surface for geologic mapping by remote sensing. J. Geophys. Res. 1977. Vol.82, 1673.
    [19] Washington W M, et al. A description of the NCAR global circulation models, Methods Compute. 1977.Vol.7, 111.
    [20] Buettner K J K, et al. The determination of infrared emitting of terrestrial surfaces. J. Geophys. Res. 1965.Vol.70, 1329.
    [21] Wollenweber F G . The thermal behavior of natural backgrounds and its prediction by means of numerical models. AGARD conference proceedings. 1989. No.453.
    [22] Wollenweber F G .Weather impact on background temperature as predicted by an IR-background model. SPIE. 1990. Vol.1311, 119.
    [23] Rosema A. Simulation of the thermal behavior of bare soils for remote sensing purposes, in Heat and Mass Transfer in the Biosphere. Edited by D A Devries, and N H Afgars, Scripta, Washington D C. 1975.Vol.109.
    [24] Camillo P J. A soil and atmospheric boundary layer model for evapotanspiration and soil moisture studies, Water Resources Res. 1983.Vol.19, 371.
    [25] Gurneg R J, et al. Modeling daily evapotanspiration using remotely sensed data, J. Hydrol. 1984.Vol.69, 305.
    [26] A Van De Griend, et al. Discrimination of soil physical parameters, thermal inertia, and soil moisture from diurnal surface temperature fluctuations. Water Resources Res. 1985. Vol.21, 997.
    [27] Rosema A. A mathematical model for simulation of the thermal behavior of bare soils based heat and moisture transfer. Pub. 11, Neth. interdepartmental Work. Community for the App. of Remote Sensing Tech. Delft. Netherlands, 1975.
    [28]杨宜禾,岳敏,周维真.红外系统.北京:国防工业出版社.1995. 2-15.
    [29]陆金甫,关治.偏微分方程数值解法.北京:清华大学出版社. 2004. 25-40
    [30]姜健匪,胡良剑,唐俭.数值分析及其MATLAB实验.北京:科学出版社.2004. 55-60.
    [31]张平.MATLAB基础与应用简明教程.北京:北京航空航天大学出版社.2001.15-46.
    [32]王沫然. MATLAB与科学计算.北京:电子工业出版社(第二版).2003.1-40.
    [33]唐向宏,岳恒立,郑雪峰.MALAB及在电子信息类课程中的应用.北京:电子工业出版社.2006.87-96.
    [34] Wilhelmus A.C.M. Messelink, Klamer Schutte, Albert M. Vossepoel. Feature-based detection of landmines in infrared images. Proc. SPIE. 2002. Vol.4727:108-119.
    [35] Kevin Russel, John Mcfee, Wayne Sirovyak . Remote performance prediction for infrared imaging of buried mines. SPIE. 1997. Vol.3079.761.
    [36] J.A.亚当斯,D. F.罗杰斯.传热学计算机分析.北京:科学出版社. 1980.20-36.
    [37] W. K.普拉特.数字图像处理学.北京:科学出版社.1980.10-150.
    [38]章毓晋.图象处理和分析.北京:清华大学出版社. 1999.21-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700