阻断泛素—核因子-κβ信号通路防治慢性肾衰加速性动脉粥样硬化的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:
     心血管疾病是终末期肾病(end stage renal disease, ESRD)患者最常见的并发症和最主要的死亡原因。其中尿毒症动脉粥样硬化(atherosclerosis, AS)倍受关注。慢性肾衰竭患者发生AS与普通人群不同,具有发病率高、发病年龄早、病变累及广泛等自身特点,其发病机制尚不十分清楚。传统的危险因素如:高血压、糖尿病、血脂代谢紊乱等虽在CRF病人中也较为普遍,但并不能满意解释慢性肾衰竭(chronic renal failure, CRF)病人心血管疾病如此高的发病率和死亡率,提示慢性肾衰竭患者体内可能有其它因素加速了动脉粥样硬化的发生发展。已明确AS实质是血管壁细胞的慢性损伤性炎症反应,但目前仍缺乏有效的防治手段。ESRD患者具有严重的内环境紊乱,体内存在“微炎症状态”,这种微炎症状态可能和其动脉血管细胞慢性损伤性炎症反应有关,加速了动脉粥样硬化的进展。
     核因子-κB(NF-κB)是一种具有多向调控作用的转录因子,存在于多种不同的细胞类型中,处于炎症反应网络的中心位置,研究其生物学特性并通过药理学作用适当地进行调控,对于防治组织细胞炎症反应的发生发展具有重要的临床意义。近来的研究发现,泛素-蛋白酶体途径(ubiquitin-proteasome pathway, UPP)是一种广泛存在于真核细胞胞浆中非常重要的、依赖ATP的非溶酶体蛋白降解通路,可从多个环节参与调控NF-κB信号通路。且UPP组分具有明确的组织特异性,为靶向性地针对血管细胞NF-κB活化提供了可能。
     本课题通过建立慢性肾衰兔模型和体外细胞培养两层次观察UPP—NF-κB信号组份在慢性肾衰加速性动脉粥样硬化发生发展过程中的表达和活化规律,分析阻断泛素-蛋白酶体信号途径对慢性肾衰主动脉血管细胞炎症病理变化的影响,为临床有效防治慢性肾衰加速性动脉粥样硬化提供理论依据。
     方法:
     1.采用结扎左肾动脉分支并切除右肾的方法建立慢性肾衰竭兔模型,将动物随机分为假手术组(Sham)、慢性肾衰组(CRF)、假手术+MG132组(Sham +MG132)、慢性肾衰+MG132组(CRF+MG132)、假手术组+PDTC组(Sham+PDTC)、慢性肾衰+PDTC组(CRF+PDTC)。各组设术后4w、8w、12w三时相点,动态观察血压、肾功能、血脂、肾脏及主动脉病理变化情况。
     2.采用慢性肾衰模型12 w兔血清刺激体外培养的兔主动脉内皮细胞和平滑肌细胞,MTT、流式细胞仪及Hoechst33342染色检测内皮细胞和平滑肌细胞的形态增殖、凋亡的变化。并采用MG132和PDTC进行干预,观察其对细胞增殖的量效和时效情况。
     3.免疫组化检测主动脉中增殖细胞核抗原(PCNA)的表达变化。
     4.应用RT-PCR方法检测各组兔主动脉及体外培养细胞泛素(Ub)、泛素激活酶(E1)、NF-κBp65及IκBαmRNA表达变化.
     5.Western blot检测主动脉及体外培养细胞泛素化蛋白、E1、NF-κB、IκBα、PCNA及TNFα蛋白表达变化。
     6.免疫荧光检测培养细胞NF-κBp65核转位情况。
     7.EMSA检测NF-κB—DNA结合活性。
     8.特异性荧光底物反应检测蛋白酶体活性20s亚基活性。
     9.ELISA方法检测各组兔血清和细胞培养上清中炎症因子IL-6、TNFα浓度。
     结果:
     1.结扎新西兰白兔左肾动脉分支并切除右肾的方法建立了慢性肾衰竭动脉粥样硬化的模型:模型组兔术后出现明显的蛋白尿和血尿,并逐渐出现贫血;出现明显的高血压;血清BUN、SCr逐渐升高;肾脏病理出现明显的肾小球硬化和肾间质纤维化。兔主动脉逐渐出现脂纹、粥样斑块等动脉粥样硬化早中期的变化。使用MG132和PDTC干预后能明显减轻主动脉动脉粥样硬化的病理变化。
     2.慢性肾衰竭兔主动脉NF-κB信号通路组分表达及MG132和PDTC干预的效果:与Sham相比,NF-κBmRNA和蛋白水平表达均增加,NF-κB-DNA结合活性明显增强,随病程延长更为明显。其抑制因子IκBαmRNA和蛋白水平表达和NF-κB呈现相反的变化。MG132干预后能使NF-κBmRNA和蛋白水平表达降低;NF-κB-DNA结合活性明显下降;IκBαmRNA和蛋白水平表达上调。PDTC干预后和MG132作用类似,证实慢性肾衰竭兔主动脉内存在NF-κB信号通路的活化。
     3.慢性肾衰竭兔主动脉泛素-蛋白酶体信号通路组分表达及MG132和PDTC的干预作用:与Sham组相比,慢性肾衰竭兔主动脉中Ub mRNA表达逐渐上调、泛素化蛋白表达未见明显变化;E1 mRNA和蛋白表达逐渐增加;蛋白酶体活性明显增强,且随病程进展更为明显。MG132干预后,Ub mRNA表达下调,泛素化蛋白表达增加,E1 mRNA和蛋白表达下降;蛋白酶体活性下降。证实慢性肾衰竭兔主动脉内存在泛素蛋白酶体通路的活化。与MG132相比,PDTC干预后对Ub mRNA和E1mRNA和蛋白表达与MG132相仿,但对蛋白酶体活性影响较小,对泛素化蛋白表达无影响。
     4.慢性肾衰兔血清中的炎症因子TNFα、IL-6浓度和兔主动脉中TNFα的表达变化及MG132和PDTC的干预作用:与对照组相比,血清中的炎症因子TNFα、IL-6浓度逐渐升高,主动脉中TNFα的表达逐渐增加。MG132和PDTC干预后均能降低血清中的炎症因子TNFα、IL-6浓度和主动脉中TNFα的表达。证实慢性肾衰竭兔存在全身和主动脉局部的微炎症反应。
     5.慢性肾衰血清在较低浓度时(3%~10%)时呈浓度和时间依赖性促进内皮细胞和平滑肌细胞的增殖,较高浓度时(>10%),促增殖作用减弱,促细胞凋亡增强。MG132和PDTC均能抑制10%慢性肾衰血清诱导的内皮细胞和平滑肌细胞增殖。
     6.与正常血清相比,10%慢性肾衰血清能使内皮细胞和平滑肌细胞NF-κB mRNA和蛋白表达增加,IκBαmRNA和蛋白表达降低;10%慢性肾衰血清能使NF-κBp65发生核转位;不同浓度慢性肾衰血清(3%~10%)使内皮细胞和平滑肌细胞NF-κB DNA结合活性呈浓度依赖性增加,10%慢性肾衰血清使内皮细胞和平滑肌细胞NF-κB DNA结合活性24h持续增加。MG132和PDTC干预后,能抑制10%慢性肾衰血清刺激的内皮细胞和平滑肌细胞NF-κBmRNA和蛋白的表达,增加IκBαmRNA和蛋白表达,抑制NF-κB DNA结合活性。
     7.10%慢性肾衰血清使主动脉内皮细胞和平滑肌细胞培养上清IL-6和TNFα含量明显增加,刺激6小时后升高幅度最为明显,以后仍缓慢上升。同时内皮细胞和平滑肌细胞内TNFα蛋白表达也较对照明显增加。MG132和PDTC干预后,均能降低细胞炎症因子TNFα、IL-6的分泌和主动脉中TNFα的表达。
     8.10%慢性肾衰血清刺激后,主动脉内皮细胞和平滑肌细胞Ub和E1mRNA的表达上调,E1蛋白的表达增加,蛋白酶体活性较对照组明显升高。MG132干预后,能抑制主动脉内皮细胞和平滑肌细胞Ub和E1mRNA的表达,降低E1蛋白的表达,抑制蛋白酶体活性。与MG132相比,PDTC干预后对细胞Ub mRNA和E1mRNA和蛋白表达与MG132相仿,但对蛋白酶体活性影响较小。
     结论:
     1、慢性肾衰竭兔随病程的进展主动脉逐渐出现动脉粥样硬化的病理改变。
     2、慢性肾衰兔主动脉内存在NF-κB信号通路的活化和炎症细胞因子的表达,并随慢性肾衰病程进展呈现出加重的趋势。
     3、慢性肾衰兔主动脉内存在泛素-蛋白酶体信号通路的活化,阻断泛素-蛋白酶体途径可显著抑制慢性肾衰兔主动脉NF-κB信号通路的活化和炎症细胞因子的表达;明显减轻兔主动脉粥样硬化的病理改变。
     4、较低浓度的慢性肾衰兔血清(≤10%)能促进兔主动脉内皮细胞和平滑肌细胞异常增殖,呈一定浓度和时间依赖性;而高浓度的慢性肾衰兔血清对兔主动脉内皮细胞和平滑肌细胞增殖作用减弱,促凋亡作用增强。
     5、较低浓度的慢性肾衰兔血清(≤10%)能使兔主动脉内皮细胞和平滑肌细胞NF-κB信号通路的活化和炎症细胞因子的表达,呈一定的浓度和时间依赖性。
     6、较低浓度的慢性肾衰兔血清(≤10%)能使兔主动脉内皮细胞和平滑肌细胞泛素-蛋白酶体途径明显活化;阻断泛素-蛋白酶体途径可显著抑制慢性肾衰兔主动脉内皮细胞和平滑肌细胞NF-κB信号通路的活化和炎症细胞因子的表达,抑制细胞的炎症增殖反应。
Background and objective:
     Cardiovascular diseases are the most common complications and the main causes of death seen in patients with end-stage renal disease(ESRD), whose death rate were 10-20 fold as high as the general population. The uremic accelerated atherosclerosis is paid more attention to in recent years. The Characteristics of uremic accelerated atherosclerosis, which has high morbidity, small age and widely lesions, is different from that of the general population. The pathogenesis of which is not yet understood sufficiently. Most of the traditional CVD risk factors, such as older age, diabetes mellitus, systolic hypertension, metabolism disorder of lipid, left ventricular hypertrophy(LVH), are highly prevalent in ESRD, but which can not explain why such a high morbidity and mortality of CVD, suggesting that there are other factors in the patients of chronic renal failure accelerating the course of atherosclerosis. It is very important to further find what causes lead to promote the CVD development in uremia. It is definitely sure that atherosclerosis is a kind of chronic inflammatory response process of artery wall to the traumatic factors. However, the effective prevention is still the main problem to be solved. Persistent special pathophysiological state and various toxin form a serious internal milieu disorder, which triggers prolonged microinflammatory state in ESRD patients. The microinflammatory might be related to accelerated atherosclerosis of chronic renal failure.
     Nuclear factor of kappa B (NF-κB) is a kind of pleiotropic transcription factors, widely found in multiple cell types, regulating the transcriptions of multiple genes. involved in inflammatory response, cells proliferation and apoptosis. Investigating NF-κB biological characteristics and controlling it’s activity has important clinical significance for prevention of cell tissue inflammatory response. Currently intensive researches have founed that the ubiquitin-proteasome pathway(UPP) was an important protein regulation system in eukaryotic cells, which was involved in various cell processes such as the regulation of cell cycle, proliferation and differentiation of cells, and signal transduction. It has been demonstrated that the UPP are closely related to the regulation of activation and inactivation of NF-κB by different links. Especially, it has been found that the UPP components expression such as ubiquitin ligases enzymes(E3) displayed the characteristic of tissue and organ specialty. Then ,it was proposed that the inflammation of artery could be inhibited through blocking UPP directly using the artery -specialized UPP inhibitor.
     In the present study, we investigate the dynamic pathological changes and NF-κB activity of the aorta of rabbits with chronc renal failure in vivo and the proliferation, apoptosis and NF-κB activity of the rabbit aortic endothelial cells and smooth muscle cells induced by uremic serum in vitro and the regulatory role of ubiquitin-proteasome pathway.
     Methods:
     1. Rabbit models with chronic renal failure(CRF)were established by partial ligation of renal pedical artery and side nephroectomy. The rabbits were randomly divided into six groups:Sham group, CRF group, Sham+MG132 treatment group(Sham+MG132), CRF+ MG132 treatment group(CRF+MG132), Sham+PDTC treatment group(Sham+PDTC), CRF+ PDTC treatment group(CRF+PDTC). The time of all observation index was set at postorperation 4wk, 8wk and12wk. The life signs, renal function, blood lipid and the pathological changes of renal and aorta
     2. The proliferation and apoptosis of the rabbit aortic endothelial cells(AECs) and aortic smooth muscle cells(ASMCs) induced by uremic serum in vitro and the effect of MG132 treatment was measured by means of the 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay, flow cytometry analysis and Hoechst33342 staining
     3. The distribution of proliferating cell nuclear antigen (PCNA)in the rabbits aorta was measured by immunohistochemistry.
     4. The mRNA expression of ubiquitin(Ub), ubiquitin activating enzyme(E1), NF-κBp65 and IκBαin the rabbits’aortic and the cells in vitro was surveyed by using RT-PCR.
     5. The protein expression of ubiquitinative proteins, E1, NF-κB, IκBα, PCNA and TNFαdetected by western blot.
     6. NF-κB p65 nuclear translocation of the cells in vitro were analyzed by immunofluorescence.
     7. The activity of NF-κB were measured by EMSA.
     8. The three enzyme activities of 20S proteasomes in the total protein was examined using three special fluorogenic peptide substrate.
     9. The level of inflammatory factors IL-6, TNFαin the rabbit serum and the cellular supernatant were examined by ELISA method.
     Result:
     1.The establishment of rabbits model with atherosclerosis of chronic renal failure: Compared with Sham group , the rabbits of CRF group developed heavy proteinuria , high level of creatinine, anaemia and heavy hypertension. The remnant kidneys showed glomerular hypertrophy and extensive glomerular damage consisting of global or segmental sclerosis, tubular dilation, cast formation, tubular atrophy, interstitial fibrosis, as well as lymphocyte infiltration. The typical changes of artherosclerosis in rabbits aortic, such as foam cells, fatty streak and atheromatous plaque were gradually oberserved in CRF group. The pathological changes of the aortic tissues in CRF+MG132 group and CRF+PDTC group were improved significantly, It was different from CRF group
     2. The expression of NF-κB constituents and the effects of MG132 and PDTC tretment in the aorta of rabbits with chronic renal failure. Compared with Sham group, the mRNA and protein expression of NF-κB and the activity of NF-κB in the aorta of rabbits with chronic renal failure were significantly increased. It was more obvious followed the development of CRF. the mRNA and protein expression of IκBαwere just contrary to that of NF-κB. the mRNA and protein expression of NF-κB and the activity of NF-κB in the aorta with CRF rabbits treated with MG132 or PDTC were significantly decreased compared with CRF group, but the mRNA and protein expression of IκBαwas significantly increased at the same time. These data showed that the NF-κB signal pathway was activated in the aorta of rabbits with CRF and its activation was regulated by the ubiquitin-proteasome.
     3. The expression of UPP constituents and the effects of MG132 and PDTC tretment in the aorta of rabbits with chronic renal failure: Compared with Sham group, the mRNA expression of Ub and E1 and the protein expression of E1 in the aortic of rabbits with CRF were significantly increased. The activity of 20S proteasomes in the aorta of rabbits with CRF were significantly increased. It was more obvious followed the development of CRF. The ubiquitinative proteins of CRF group did not change obviously. The mRNA expression of Ub and E1 and the protein expression of E1 and the activity of 20S proteasomes in the aorta of rabbits with CRF treated with MG132 were significantly decreased compared with CRF group, but the expression of ubiquitinative proteins was significantly increased at the same time. The mRNA expression of Ub and E1 and the protein expression of E1 in the rabbits aorta with CRF treated with PDTC were similar to these in CRF+MG132 group. PDTC influenced the activity of 20S proteasomes lighty and did not changed the expressed of ubiquitinative proteins obviously compared with MG132.
     4. Compared with Sham group, the concentration of serum IL-6 and TNFαin the rabbits with CRF was significantly increased followed the development of CRF. The protein expression of TNFαin the aorta of rabbits with CRF was also increased markedly than that in Sham rabbits. Contrasted to CRF group, the level of serum IL-6 and TNFαwas markedly decreased in the CRF rabbits treated with MG132 or PDTC. The protein expression of TNFαin the aorta of CRF rabbits treated with MG132 or PDTC was also decreased significantly than that in CRF rabbits.
     5. Various lower concentrations serum of chronic renal failure(≤10%) could significantly promot the proliferation of AECs and ASMCs in a dose and time dependent manner. Higher concentrations of serum of chronic renal failure (>10%) could significantly inhibit the proliferation and induce apoptosis of AECs and ASMCs in dose dependent manne. MG132 and PDTC all could inhibit the proliferation of AECs and ASMCs induced by 10% serum of chronic renal failure.
     6. Under the stimulation of 10% serum of chronic renal failure, the mRNA and protein expression of NF-κB in AECs and ASMCs were increased significantly compared with 10% control serum, but the mRNA and protein expression of IκBαwere just contrary to that of NF-κB. The nuclear translocation of NF-κBp65 in AECs and ASMCs was taken place. The activity of NF-κB in AECs and ASMCs increased significantly in a dose dependent manner induced by various lower concentrations serum of chronic renal failure(3%~10%). The activity of NF-κB in AECs and ASMCs was resulted in a continuous increase within 24h induced by 10% serum of chronic renal failure. MG132 and PDTC all could inhibit the mRNA and protein expression and the activity of NF-κB and increase the mRNA and protein expression of IκBαof AECs and ASMCs induced by 10% serum of chronic renal failure.
     7. Under the stimulation of 10% serum of chronic renal failure, The level of inflammatory factors IL-6 and TNFαin the cellular supernatant of AECs and ASMCs were increased significantly compared with 10% control serum. After stimulated 6 hours, The increasing amplitude of the level of IL-6 and TNFαin the cellular supernatant of AECs and ASMCs was highest. At the same time, the protein expression of TNFαin AECs and ASMCs induced by 10% serum of chronic renal failure increased significantly compared with 10% control serum. MG132 and PDTC all could inhibit the IL-6 and TNFαSecretion and the TNFαprotein expression of AECs and ASMCs induced by 10% serum of chronic renal failure.
     8. Under the stimulation of 10% serum of chronic renal failure, the mRNA expression of Ub and E1, the protein expression of E1 and the activity of 20S proteasomes in AECs and ASMCs were increased significantly compared with 10% control serum. MG132 could inhibit the mRNA expression of Ub and E1, the protein expression of E1 and the activity of 20S proteasomes in AECs and ASMCs induced by 10% serum of CRF. PDTC could also inhibit the mRNA expression of Ub and E1 and the protein expression of E1 in AECs and ASMCs stimulated by 10% serum of CRF, but it influenced the activity of 20S proteasomes slightly.
     Conclusion:
     1. The pathological changes of artherosclerosis were gradually oberserved in the aortic of rabbits followed the development of CRF.
     2. The NF-κB signaling pathway and its downstream inflammatory cytokine expression was acticated in the rabbits with CRF, and the inflammatory reaction was aggrevated gradually with the progress of CRF.
     3. The ubiquitin-proteasome pathway was activated in the chronic renal failure rabbits. The activation of NF-κB and its downstream inflammatory cytokine expression was inhibited markedly by the inhibition of proteasome with MG132, and the pathological changes of the aortic tissues were improved significantly.
     4. Lower concentrations of serum of chronic renal failure(≤10%) could significantly promot the proliferation of AECs and ASMCs in a dose and time dependent manner. Higher concentrations of serum of chronic renal failure (>10%) could significantly inhibit the proliferation and induce apoptosis of AECs and ASMCs in dose dependent manne.
     5. The NF-κB signaling pathway and its downstream inflammatory cytokine expression of the AECs and ASMCs induced by 10% serum of CRF was activated in a dose and time dependent manner.
     6. The ubiquitin-proteasome pathway of the AECs and ASMCs induced by 10% serum of CRF was activated. The proliferation of AECs and ASMCs induced by 10% serum of chronic renal failure and the activation of NF-κB and its downstream inflammatory cytokine expression were inhibited markedly by the inhibition of proteasome with MG132.
引文
1. Foley RN, Parfrey PS, Sarnak MJ. Cardiovascular disease in chronic renal disease: clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis, 1998, 32(suppl3): 112-119
    2.中华医学会肾脏病分会透析移植登记工作组.1999年度全国透析移植登记报告.中华肾脏病杂志,2001,17(2):77-78
    3. Bostom AG, Lathrop L. hyperhomocysteinemia in end stage renal disease: prevalence etiology and potential relationship to artherosclerotic outcomes. Kidney Int, 1997, 52(1): 10-20
    4. Ma KW, Greene EL, Reij L. Cardiovascular risk factors in chronic renal failure and hemodialysis Populations. Am J Kid Dis, 1992, 19(6):505-513
    5. Ross R.The pathogenesis of atheroselerosis: a Perspective for 1990s. Nature, 1993: 362(6423): 801-809
    6.程翔,廖玉华,炎症与动脉粥样硬化.中华心血管病杂志,2004,32(5),475-477
    7. Cottone S, Lorito MC, Riccobene R, et al. Oxidative stress, inflammation and cardiovascular disease in chronic renal failure. J Nephrol. 2008, 21(2):175-179
    8. Bergstr?m J, Lindholm B, Lacson E Jr, et a1. What are the causes and consequences of the chronic inflammatory state in chronic dialysis patients? Semin Dial, 2000,13(3): 163-175
    9. Baptista AP, Cacdocar S, Palmeiro H, et al. Inflammation, homocysteine and carotid intima-media thickness. Rev Port Cardiol, 2008, 27(1): 39-48
    10.余月明,侯凡凡,张训,等.慢性肾衰竭患者高同型半胱氨酸血症、氧化应激和微炎症反应问的关系及其在动脉粥样硬化中的作用.中华内科杂志,2004,43(4):292-295
    11. Sigal LH. Basic science for the clinician: NF-kappaB-function, activation, control, and consequences. J Clin Rheumatol, 2006, 12(4): 207-211
    12. Takada Y, Ichikawa H, Badmaev V, et al. Acetyl-11-keto-beta-boswellic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis by suppressing NF-kappa B and NF-kappa B-regulated gene expression. J Immunol, 2006, 176(5): 3127-3140
    13. Ea CK, Sun L, Inoue J, et al. TIFA activates IkappaB kinase (IKK) by promoting oligomerization and ubiquitination of TRAF6. Proc Natl Acad Sci USA, 2004, 101(43): 15318-23
    14. Hay RT, Vuillard L, Desterro J M, et al. Control of NF-kappa B transcriptional activation by signal induced proteolysis of I kappa B alpha. Philos Trans R Soc Lond B Biol Sci, 1999, 354(1389): 1601-1609
    15. Sears C, Olesen J, Rubin D, et al. NF-kappa B p105 processing via the ubiquitin-proteasome pathway. J Biol Chem, 1998, 273(3): 1409-1419
    16. Amir RE, Haecker H, Karin M, et al. Mechanism of processing of the NF-kappa B2 p100 precursor: identification of the specific polyubiquitin chain-anchoring lysine residue and analysis of the role of NEDD8-modification on the SCF(beta-TrCP) ubiquitin ligase. Oncogene, 2004 , 23(14): 2540-2547
    17. Lakshmanan M, Bughani U, Duraisamy S, et al. Molecular targeting of E3 ligases a therapeutic approach for cancer. Expert Opin Ther Targets, 2008, 12(7): 855-870
    18.李琦,于颖彦,朱正纲,等.吡咯烷二硫代氨基甲酸盐对NF-κB调控基因血管内皮生长因子转录和表达的影响.中华实验外科杂志,2006,23(7):874
    19.王宇卉.泛素一蛋白酶体系统与神经系统疾病的治疗新靶点.世界临床药物,2006,27(3):139-144
    20. Alevy YG, Slavin RG, Hutcheson P. Immune response in experimentally induced uremia. I Suppression of mitogen responses by adherent cells in chronic uremia Clin Immnuol Immnunopathol, 1981, 19(1): 8-18
    21. Bas S, Bas A, Estepa JC, et al. Parathyroid gland function in the uremic rabbit. Domest Anim Endocrinol, 2004, 26(2): 99-110
    22.张耀全,袁发焕,陆琴芬.血清、尿胱抑素C浓度可判断肾纤维化病程.中国现代医学杂志,2004,14(7):39-43
    23.黄凤玲,石通元,汪承华.硫酸镁对失血性休克家兔的血压和心率的影响.湘潭师范学院学报(自然然抖学版),2001,23(4):34-37
    24.龚志锦,詹容洲.病理组织制片和染色技术.上海:上海科学技术出版社.1994
    25.杨念生,武庆庆,黄越芳,等.血管紧张素Ⅱ对大鼠残肾模型微血管的影响.中华肾脏病杂志,2003,19(6):344-348
    26.齐向明,吴永贵,吴国仲,等.依那普利联合霉酚酸酯对大鼠糖尿病肾脏协同保护作用及机制.中华肾脏病杂志,2005,21(9):538-542
    27.杨晓云,王琳,曾和松,等.辛伐他汀对兔动脉粥样硬化斑块中核因子κB-DNA结合活性和基质金属蛋白酶1及3表达的影响.中国动脉硬化杂志,2006,l4(4):277-280
    28.裘琳,郑恒,薛松,等.特拉唑嗪在动脉粥样硬化家兔模型中的调脂和抗动脉粥样硬化作用及其机制.中国医院药学杂志,2008,28(9):709-712
    29.吕琳,朱兴雷,罗静.氟伐他汀对实验性动脉粥样硬化家兔血管平滑肌细胞增殖的影响.中国医师杂志,2005,7(4):446-449
    30. Lindner A, Charra B, Sherrard DJ, et al. Accelerated atherosclerosis in prolonged maintenance hemodialysis. N Engl J Med, 1974, 290(13): 697-701
    31.肖炜,马云,傅江南.慢性肾衰动物模型方法学研究现状.中国实验动物学杂志,2002,12(3):176-179.
    32.杨旭,冯兵,叶自林,等.MG-132对慢性肾衰大鼠治疗作用的初步研究.重庆医学,2007,36(10):935-937
    33.毕增祺.慢性肾功能衰竭—临床防治与理论基础.北京:中国协和医科大学出版社,2003,29-34
    34. Jin YR, Han XH, Zhang YH, et al. Hesperetin, a bioflavonoid, inhibits rat aortic vascular smooth muscle cells proliferation by arresting cell cycle. J Cell Biochem, 2008, 104(1): 1-14
    35.杨旭,冯兵,叶自林,等.慢性肾功能衰竭大鼠主动脉核因子κB活化及泛素通路的调节作用.中华肾脏病杂志,2008,24(3):179-184
    36. Imanishi T, Kuroi A, Ikejima H, et al. Effects of pioglitazone on nitric oxide bioavailability measured using a catheter-type nitric oxide sensor in angiotensin II-infusion rabbit. Hypertens Res, 2008, 31(1):117-125
    37. Lopez-Salon M, Pasquini I, Besio-Moreno M, el at. Rclationship between G-amyloid degradation and the 26s proteasome in neural celts. Exp Neurology, 2003, 180(2):131-1 43
    38.蔡同建,陈景元,李妍,等.锰对PC12细胞增殖及蛋白酶体活性的抑制作用.现代预防医学,2006,33(3):257-260
    39.张怡,吴军,徐波,等.8-氯腺苷对HL60细胞中蛋白酶体活性的抑制作用.癌症,2004,23(2):l55-159
    40.黄丹翊,王涛,梁直厚,等.鱼藤酮帕金森病大鼠模型蛋白酶体活性的研究.中风与神经疾病杂志,2006,23(2):175-177
    41. Tan HW, Xing SS, Bi XP, et al. Felodipine attenuates vascular inflammation in a fructose-induced rat model of metabolic syndrome via the inhibition of NF-kappaB activation. Acta Pharmacol Sin, 2008, 29(9): 1051-1059
    42.杨晓云,王琳,周宁,等.辛伐他汀对动脉粥样硬化家兔血管壁NF-κB-DNA结合活性与MCP-1表达的影响.中国微循环,2006,l0(5):329-333
    43. Guarnieri G, Biolo G, Zanetti M, et al. Chronic systemic inflammation in uremia: potential therapeutic approaches. SeminNephrol, 2004, 24(5): 441-445
    44. Thanos D, Maniatis T. NF-κB: A lesson in family values. Cell, 1995, 80: 529-532
    45. Monaco C, Andreakos E, Kiriakides S, et al. Canonical pathway of nuclear factor kappa B activation selectively regulates proinflammatory and prothromotic responses in human atherosclerosis. Proc Natl Acad Sci USA, 2004, 101(15): 5634-5639.
    46. Legrand-Poels S, Kustermans G, Bex F, et al. Modulation of Nod2-dependent NF-kappaB signaling by the actin cytoskeleton, J Cell Sci, 2007, 120(Pt7): 1299-1310
    47.赵肖奕,张佳,韩梅.核因子KB与动脉粥样硬化之间的关系.河北医科大学学报,2007,28(6):453-456
    48. Drews O, Zong CG, Li XH. Proteasome heterogeneity in cardiac tissue. Journal of Molecular and Cellular Cardiology, 2007, 42(6): S123
    49. Drews O, Wildgruber R, Zong C. Mammalian proteasome subpopulations with distinct molecular compositions and proteolytic activities. Mol Cell Proteomics, 2007, 6(11): 2021-2031
    50. Hatakeyama S, Nakayama KI. U-box proteins as a new family of ubiquitin ligases. Biochem Bipphys Res Commun, 2003, 302(4): 635- 645
    51.王晓菊,崔速南,汪明明.泛素蛋白酶体通路与肝脏疾病的研究进展.临床肝胆病杂志,2008,24(3):237-239
    52. Groll M, Huber R. Substrate access and processing by the 20S proteasome core particle. Int J Biochem Cell Biol, 2003 , 35 (5) : 606-616
    53. Groll M, Ditzel L, Lowe J, et al. Structure of the 20S proteasome from yeast at resolution . Nature, 1997, 386 (6624) :463-471
    54. Meiners S, HocherB, Weller A, et a1. Downregulation of matrix metallopmteinases and collagens and suppression of cardiac fibrosis by inhibition of the pmteasome.Hypertension, 2004, 44(4): 471-477
    55. Rangan GK, Wang Y, Tay YC, et al. Early administration of PDTC in adriamycin nephropathy: effect on proteinuria, cortical tubulointerstitial injury, and NF-kappaB activation. Ren Fail, 2001, 23(6): 773-780
    56.丁鹤林,邓庆丽,徐明彤,等.抑制NF-κB活性对糖尿病大鼠肾组织血管紧张素Ⅱ及其Ⅰ型受体的作用.中华内分泌代谢杂志,2004,20(1):74-77
    57.费正华,姜藻.蛋白酶体抑制剂药理基础与临床应用进展.中华现代内科学杂志,2006,11(3):1244-1246
    58. Letoha T, Fehér LZ, Pecze L, et al. Therapeutic proteasome inhibition in experimental acute pancreatitis. World J Gastroenterol, 2007, 13(33): 4452-4457
    59. Crook ED, Thallapureddy A, Migdal S, et al. Lipid abnormalities and renal disease: Is dyslipidemia a predictor of progression of renal disease? Am J Med Sci, 2003, 325: 340–348
    60. Hayakawa M, Miyashita H, Sakamoto I, et al. Evidence that reactive oxygen species do not mediate NF-kappaB activation. EMBO J, 2003, 22(13):3356-3366
    61. Kim I, Kim CH, Kim JH, et al. Pyrrolidine dithiocarbamate and zinc inhibit proteasome-dependent proteolysis. Exp Cell Res. 2004 , 298(1): 229-238
    62. Yu Z, Wang F, Milacic V, et al. Evaluation of copper dependent proteasome inhibitory and apoptosis inducing activities of novel pyrrolidine dithiocarbamate analogues. Int J Mol Med, 2007, 20(6): 919-925
    63. Si X, McManus BM, Zhang J, et al. Pyrrolidine dithiocarbamate reduces coxsackievirus B3 replication through inhibition of the ubiquitin-proteasome pathway. J Virol, 2005, 79(13): 8014-8022
    64. Debigare R, Price SR. Proteolysis, the ubiquitin-proteasome system, and renal diseases. Am J Physiol Renal Physiol, 2003, 285(1): F1-8
    65. Kanters E, Pasparakis M, Gijbels MJ, et al. Inhibition of NF-kappaB activation in macrophages atherosclerosis in LDL receprot-deficient mice. J Clin Invest, 2003, 112(8): 1176-1185
    1. Stenvinkel P. Endothelial dysfunction and inflammationis there a link? Nephrol Dial Transplant, 2001; 16(10): 1968-1971
    2.蒋红梅.内皮细胞的免疫学功能.微生物学免疫学进展,2O01,29(3):80-82
    3. Campbell W, Gauthier K. What is new in endothelium-derived hyperpolarizing factors? Curt Opin Nephml Hypertens, 2002, 11(2):177-183
    4.刘国英,陈还珍,吴博威.改善血管内皮功能防治冠心病研究进展,心血管病学进展,2007,27(增刊):39-41
    5. Al-Qaisi M, Kharbanda RK, Mittal TK, et al. Measurement of endothelial function and its clinical utility for cardiovascular risk.. Vasc Health Risk Manag, 2008, 4(3): 647-652
    6. Mannarino E, Pirro M. Endothelial injury and repair: a novel theory for atherosclerosis. Angiology, 2008, 59(2 Suppl): 69S-72S
    7.武晓静,黄岚,周骐,等.紫杉醇联合骨髓基质干细胞种植体外修复内皮及对血管平滑肌增生的影响.中华心血管病杂志,2005,33(5):464-468
    8. Kipshidze N, Nikolaychik V, Muckerheidi M, et al. Effect of short pulsed nonablative infrared laser irradiation on vascular cells in vitro and neointimal hyperplasia in a rabbit balloon injury model. Circulation, 2001, 104(15): 1850-1855
    9. Kielstein JT, Zoccali C. Asymmetric dimethylarginine: a cardiovascular risk factor and a uremic toxin coming of age? Am J Kidney Dis. 2005, 46(2):186-202
    10. Baragetti I, Raselli S, Stucchi A, Improvement of endothelial function in uraemic patients on peritoneal dialysis: a possible role for 5-MTHF administration. Nephrol Dial Transplant, 2007, 22(11): 3292-3297
    11. Thornalley PJ. Advanced glycation end products in renal failure. J Ren Nutr. 2006, 16(3): 178-184
    12. Fasoli G, Esposito C, Cornacchia F, et al. Uremic serum induces proatherogenic changes in human endothelial cells. J Nephrol, 2006, 19(5): 599-604
    13. Serradell M, Diaz-Ricart M, Cases A, et al. Uraemic medium accelerates proliferation but does not induce apoptosis of endothelial cells in culture. Nephrol Dial Transplant,2003, 18(6): 1079-1085
    14.尚秀玲,朱鹏立.细胞凋亡在动脉粥样硬化发生发展中的作用.福建医药杂志,2008,30(3):80-82
    15. Jaber BL, Perianayagam MC, Balakrishnan VS, et al. Mechanisms of neutrophil apoptosis in uremia and relevance of the Fas (APO-1, CD95)/Fas ligand system. J Leukoc Biol, 2001, 69(6): 1006-1012
    16. Serradell M, Díaz-Ricart M, Cases A, Uremic medium causes expression, redistribution and shedding of adhesion molecules in cultured endothelial cells. Haematologica. 2002, 87(10):1053-1061
    17. Serradell M, Diaz-Ricart M, Cases A et al. Uremic medium disturbs the hemostatic balance of cultured human endothelial cells. Thromb Haemost, 2001, 86(4): 1099–1105
    18. Hinz M, Krappmann K, Eitchen A. NF-κB function in growth control: regulation of Cyclin Dl expression and G0/G1 to S phase transition. Mol Cell Biol. 1999, 19(4): 2690-2698
    19.陈兵,张燕,柳刚,等.缬沙坦联合霉酚酸酯对糖尿病大鼠肾脏TRAIL及NF-κB的影响.中华医学杂志,2008,88(8):540-545
    20. Kerekes G, Szekanecz Z, Der H. Endothelial dysfunction and atherosclerosis in rheumatoid arthritis: a multiparametric analysis using imaging techniques and laboratory markers of inflammation and autoimmunity. J Rheumatol. 2008, 35(3): 398-406
    21. Wang P, Ba ZF, Chaudry IH. Administration of tumour necrosis factor-alpha in vivo depress endothelium-dependent relaxation. Am J Physiol, 1994, 266 (6 Pt 2): H2535–H2541
    22. Yoshizumi M, Perrella MA, Burnett JC, et al. Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-live. Circ Res, 1993, 73(1): 205-209
    23. Bolton CH, Downs LG, Victory JG, et al. Endothelial dysfunction in chronic renal failure: roles of lipoprotein oxidation and pro-inflammatory. cytokines. Nephrol Dial Transplant, 2001, 16(6):1189-1197
    24. Murata T, Shimotohno K. Ubiquitination and proteasome-dependent degradation of human eukaryotic translation initiation factor 4E. J Biol Chem, 2006, 281(29):20788-20800
    25. Murray AW. Recycling the cell cycle: cyclins revisited. Cell, 2004, 116(2): 221-234
    26. Karin M, Ben-neriah Y. Phosphorylation meets ubiquitination: the control of NF-kappaB activity. Annu Rev Immunol, 2000,18: 621-663
    27. Kloetzel PM. The proteasome and MHC-class-Ⅰ-antigen proeessing. Bioehim BioPhys Aeta, 2004, 1695(1-3):225-233
    28. Ciechanover A, Iwai K. The ubiquitin proteolytic system: from an idea to the patient bed. Proc Am Thorac Soc, 2006, 3(1): 21-31
    29. CarbóC, Arderiu G, Escolar G, et al. Differential expression of proteins from cultured endothelial cells exposed to uremic versus normal serum. Am J Kidney Dis, 2008, 51(4): 603-612.
    30.钟敏,张广斌,余争平,等. 60Coγ射线照射后血管内皮细胞CD54表达变化及PDTC的干预作用.肿瘤防治研究,2004,3(3):129-132
    31. Meiners S, Heyken D, Weller A, et al. Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of mammalian proteasomes. J Biol Chem, 2003, 278(24): 21517-21525
    32. Meiners S, Hocher B, Weller A, et al. Downregulation of matrix metalloproteinases and collagens and suppression of cardiac fibrosis by inhibition of the proteasome. Hypertension, 2004, 44(4): 471-477
    1. Little PJ, Ivey ME, Osman N. Endothelin-1 actions on vascular smooth muscle cell functions as a target for the prevention of atherosclerosis. Curr Vasc Pharmacol. 2008, 6(3):195-203
    2.顾耘.动脉粥样硬化与巨噬细胞和血管平滑肌细胞相关因素研究述评.辽宁中医学院学报,2005,7(4):332-333
    3. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc Res, 2006, 69(3): 614-24
    4. Clarke MC, Figg N, Maguire JJ, et al. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat Med, 2006, 12(9): 1075-1780
    5. Clarke M, Bennett M The emerging role of vascular smooth muscle cell apoptosis in atherosclerosis and plaque stability. Am J Nephrol, 2006, 26(6): 531-535
    6. Jiang X, Yang F, Brailouiu E, et al. Differential Regulation of Homocysteine Transport in Vascular Endothelial and Smooth Muscle Cells. Arterioscler Thromb Vasc Biol. 2007, 27(9): 1976-1983
    7. Peng KF, Wu XF, Zhao HW, et al. Advanced oxidation protein products induce monocyte chemoattractant protein-1 expression via p38 mitogen-activated protein kinase activation in rat vascular smooth muscle cells. Chin Med J(Engl) 2006 Jul 5;119(13):1088-1093
    8. Yuan Q, Jiang DJ, Chen QQ,et al. Role of asymmetric dimethylarginine in homocysteine-induced apoptosis of vascular smooth muscle cells. Biochem Biophys Res Commun. 2007,356(4):880-885.
    9.郭征,熊燕.普伐他汀对非对称性二甲基精氨酸促血管平滑肌细胞增殖的影响.中国药理学与毒理学杂志,2004,18(6):421-426
    10. Hattori Y, Kakishita H, Akimoto K, et a1. Glyeated serum albumin-induced vascular smooth muscle cell proliferation through activation of the mitogen activated protein kinase/extracellular signal-regulated klnase pathway by protein kinase C. Biochem Biophys Res Commun, 2001, 281(4):891-896
    11. Hattori Y, Suzuki M, Hattori S,et a1. Vascular smooth muscule cell activation by glycated albumin (Amadori adducts).Hypertension, 2002,39(1):22-28
    12.狄柯坪.核因子κB血管增殖性疾病的中枢性信号分子.中固组织工程研究与临床康复,2007,11(2):348-351
    13.武晓静,黄岚,周骐,等.紫杉醇联合骨髓基质干细胞种植体外修复内皮及对血管平滑肌增生的影响.中华心血管病杂志,2005,33(5):464-468
    14. Kipshidze N, Nikolaychik V, Muckerheidi M, et al. Effect of short pulsed nonablative infrared laser irradiation on vascular cells in vitro and neointimal hyperplasia in a rabbit balloon injury model. Circulation, 2001, 104(15):1850-1855
    15.张卓然.实用细胞培养技术.北京:人民卫生出版社.1999
    16.薛庆善.体外培养的原理与技术.北京:科学出版社.2001,636-642
    17. Yamamoto H, Tsuruoka S, Ioka T, et al. Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells. Kidney Int, 2006 , 69(10):1780-1785
    18. Taki K, Tsuruta Y, Niwa T. Indoxyl sulfate and atherosclerotic risk factors in hemodialysis patients. Am J Nephrol, 2007, 27(1):30-35
    19. Li PF, Dietz R, von Harsdorf R. Differential effect of hydrogen peroxide and superoxide anion on apoptosis and proliferation of vascular smooth muscle cells. Griendling KK Circulation. 1997, 96(10):3602-3609
    20. Griendling KK.Harrison DG.Dual role of reactive oxygen species in vascular growth. Circ Res 1999, 85(6): 562-563
    21. Tea BS, Der Sarkissian S, Touyz RM, et al. Proapoptotic and growth-inhibitory role of angiotensin II type 2 receptor in vascular smooth muscle cells of spontaneously hypertensive rats in vivo.Hypertension. 2000, 35(5):1069-1073
    22. Cattaruzza M, Dimigen C, Ehrenreich H,et al. Stretch-induced endothelin B receptor-mediated apoptosis in vascular smooth muscle cells. FASEB J. 2000, 14(7): 991-998
    23. Shichiri M,Yokokura M, Marumo F,et al. Endothelin-1 inhibits apoptosis of vascular smooth muscle cells induced by nitric oxide and serum deprivation via MAP kinase pathway. Arterioscler Thromb Vasc Biol. 2000, 20(4):989-997
    24.苏华,杭海英.生理条件下的S期检查点.生物化学与生物物理进展,2006,33(2):122-126
    25.朱虹,缪泽鸿,丁健.ATM、ATR和DNA损伤介导的细胞周期阻滞.生命化学,2007,19(2):139-148
    26.司艳红,王家雷.动脉粥样硬化与平滑肌细胞凋亡的调控.中国临床康复,2005,9(47):118-120
    27. Rudijanto A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med Indones. 2007, 39(2):86-93
    28. Delafontaine P, Song YH, Li Y. Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels. Arterioscler Thromb Vasc Biol, 2004,24(3):435-444
    29. Clarke M, Bennett M Defining the role of vascular smooth muscle cell apoptosis in atherosclerosis. Cell-Cycle. 2006, 5(20): 2329-2331
    30. BarréB, Perkins ND. A cell cycle regulatory network controlling NF-kappaB subunit activity and function. EMBO J. 2007, 26(23):4841-4855
    31. Ma ZC, Gao Y, Wang YG, et al. Ginsenoside Rg1 inhibits proliferation of vascular smooth muscle cells stimulated by tumor necrosis factor-alpha. Acta Pharmacol Sin, 2006, 27(8):1000-1006
    32.关怀敏,王显,韩跃刚,等.炎症与冠心血病.上海:中医药大学出版社,1999.329
    33.钟敏,张广斌,余争平,等. 60Coγ射线照射后血管内皮细胞CD54表达变化及PDTC的干预作用.肿瘤防治研究,2004,3(3):129:132
    34. Meiners S, Heyken D, Weller A, et al. Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of mammalian proteasomes. J Biol Chem, 2003, 278(24): 21517-21525
    35. Meiners S, Hocher B, Weller A, et al. Downregulation of matrix metalloproteinases and collagens and suppression of cardiac fibrosis by inhibition of the proteasome. Hypertension, 2004, 44(4):471-477
    1. Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell, 1986, 46(5): 705-716
    2. Sears C, Olesen J, Rubin D, et al. NF-kappa B p105 processing via the ubiquitin-proteasome pathway. J Biol Chem, 1998, 273(3): 1409-1419
    3. Amir RE, Haecker H, Karin M, et al. Mechanism of processing of the NF-kappa B2 p100 precursor: identification of the specific polyubiquitin chain-anchoring lysine residue and analysis of the role of NEDD8-modification on the SCF(beta-TrCP) ubiquitin ligase. Oncogene, 2004 , 23(14): 2540-2547
    4. Caamano J, Hunter CA. NF-kappaB family of transcription factors:central regulators of innate and adaptive im mune functions.Clin Microbiol Rev, 2002, 15(3): 414-429.
    5. De Martin R, Hocth M, Hofer- Warbonek R, er al. The transcription factor NF kappa B and the regulation of vascular cell function. ArterioscIer Thromh Vasc BioI, 2000, 20(11): E83 -88
    6. Sasu S, Beasley D. Essential roles of I kappaB kinases alpha and beta in serum and IL-l induce humman VSMC Proliferation. Am J Physiol Heart Circ Physiol, 2000, 278(6): H1823 -H1831
    7. Viatour P, Merville MP, Bours V, et a1. Phosphorylation of NF-κB and IκB proteins, implications in cancer and inflammation. Trends Biochem Sci, 2005, 30(1): 43-52
    8. Dejardin E, Droin NM, Delhase M, et al. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity, 2002, 17(4): 525-535
    9. Claudio E, Brown K, Park S, et al. BAFF-induced NEMO-independent processing of NF-kappa B2 in maturing B cells. Nat Immunol, 2002, 3(10): 958-965
    10. Coope H J, Atkinson PG, Huhse B, et al. CD40 regulates the processing of NF-kappaB2 p100 to p52. EMBO J, 2002, 21(20): 5375-5385
    11. Xiao G, Cvijic ME, Fong A, et al. Retroviral oncoprotein Tax induces processing of NF-kappaB2/p100 in T cells: evidence for the involvement of IKKalpha. EMBO J, 2001, 20(23): 6805-6815
    12. Eliopoulos AG, Caamano JH, Flavell J, et al. Epstein-Barr virus-encoded latentinfection membrane protein 1 regulates the processing of p100 NF-kappaB2 to p52 via an IKKgamma/NEMO-independent signalling pathway. Oncogene, 2003, 22(48): 7557-7569
    13. Kempe S, Kestler H, Lasar A, et al. NF-kappaB controls the global pro-inflammatory response in endothelial cells: evidence for the regulation of a pro-atherogenic program. Nucleic Acids Res, 2005, 33(16): 5308-5319
    14. Ping D, Boekhoudt GH, Rogers EM, et a1. Nuclear factor-kappa B p65 mediates the assembly and activation of the TNF-responsive element of the murine monocyte chemoattractant-1 gene. J lmmunol, 1999, 162(2): 727-734
    15. Hoshi S.Goto M .Koyama N,et a1.Regulation of vascular smooth muscle cell proliferation by nuclear factor-kappaB and its inhihitor I-kappaB. J Biol Chem, 2000, 275(2): 883-889
    16. Pan SI, Huang YW, Guh JH. et Ai. Esculetin inhibits Rasmediated cell proliferation and attenuates vascular restenosis following angioplasty in rats. Biochem Pharmacol, 2003, 65(11): l897-l905
    17. Wang Z, Castresana MR, Newman WH. NF-kappaB is required for NF-alpha directed smooth muscle cell migration . FEBS Lett, 2001, 508(3): 360-364
    18.庞霞,李平.炎症与不稳定动脉粥样硬化斑块.医学综述,2005,11(2):107-109
    19. Ritchie ME. Nuclear factor-κB is selectively and markedly activated in humans with unstable angina pectoris. Circulation, 1998, 98(17): 1707-1717
    20. Chase AJ, Bond M, Crook MF, et al. Role of nuclear factor-kappa B activation in metalloproteinase-1, -3, and -9 secretion by human macrophages in vitro and rabbit foam cells produced in vivo. Arterioscler Thromb Vasc Biol, 2002, 22(5): 765-771
    21. Gomez-Hernandez A, Martin-Ventura JL, Sanchez-Galan E, et al. Overexpression of COX-2, Prostaglandin E synthase-1 and prostaglandin E receptors in blood mononuclear cells and plaque of patients wim carotid atherosclerosis: regulation by nuclear factor-kappaB. Atherosclerosis, 2006, 187(1): 139-149
    22. Lemarie CA, Tharaux PL, Esposito B, et a1. Transforming growth factor-alpha mediates nuclear factor kappaB activation in strained arteries. Circ Res, 2006, 99(4): 434-441
    23. Roy H, Bhardwaj S, Babu M, et al.VEGF-A, VEGF-D, VEGF receptor-1, VEGFreceptor-2, NF-kappaB, and RAGE in atherosclerotic lesions of diabetic Watanabe heritable hyperlipidemic rabbits. FASEB J, 2006, 20(12): 2159-2161
    24. Liuwantara D, Elliot M, Smith M W, et a1. Nuclear factorkappaB regulates beta-cell death: a critical role for A20 in beta-cell protection. Diabetes, 2006, 55(9): 2491-2501
    25. Ungvari Z, W olin MS, Csiszar A. Mechanisensitive production of reactive oxygen species in endothelial and smooth muscle cells:role in microvascular remodeling. Antioxid Redox Signal, 2006, 8(7-8): 1121-1129
    26. Chandrasekar B, Streitman JE, Colston JT, et a1. Inhibition of nuclear factor kappa B attenuates proinflammatory cytokine and inducible nitric-oxide synthase expression in post ischemic myocardium. Biochim Biophys Acta, 1998, 1406(1): 91-106
    27. Pelzer T, Schumann M, Neumann M, et al. 17beta-estradiol prevents programmed cell death in cardiac myocytes. Biochem Biophys Res Commun, 2000, 268(1): 192-200
    28. Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol, 2002, 3(3): 221-227
    29. Selzman CH, Shames BD, McIntyre RC, et al. The NF kappaB inhibitory peptide, IkappaB alpha, prevents human vascular smooth muscle proliferation. Ann Thorac Surg, 1999, 67(5):1227-1232
    30. Selzman CH, Shames BD, Reznikov LL, et al.Liposomal delivery of purified inhibitory-kappaBalpha inhibits tumor necrosis factor-alpha-induced human vascular smooth muscle proliferation. Circ Res, 1999, 84(8): 867-75
    31. OrtegoM, Bustos C, Hernandez-Presa, et al. Atorvastatin reduces NF-kappaB activation and chemokine expression in vascular smooth muscle cells and mononuclear cells. Atherosclerosis, 1999, 147(2): 253-261
    32. Yamasaki K, Asai T, Shimizu, M, et al. Inhibition of NF kappaB activation using cis-element 'decoy' of NF kappaB binding site reduces neointimal formation in porcine balloon-injured coronary artery model. Gene Ther, 2003, 10(4): 356-364
    33. Shintani T, Sawa Y, Takahashi T, et al. Intraoperative transfection of vein grafts with the NF kappaB decoy in a canine aortocoronary bypass model: a strategy to attenuate intimal hyperplasia. Ann Thorac Surg, 2002, 74(4): 1132-1138
    34. Takada, Y, Ichikawa H, Badmaev V, et al. Acetyl-11-keto-beta-boswellic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis bysuppressing NF-kappa B and NF-kappa B-regulated gene expression. J Immunol, 2006, 176(5): 3127-3140
    35. Marfella R, D'Amico M, Di Filippo C, et al. Increased activity of the ubiquitin-proteasome system in patients with symptomatic carotid disease is associated with enhanced inflammation and may destabilize the atherosclerotic plaque: effects of rosiglitazone treatment. J Am Coll Cardiol., 2006, 47(12): 2444-2455
    36. Lakshmanan M, Bughani U, Duraisamy S, et al. Molecular targeting of E3 ligases a therapeutic approach for cancer. Expert Opin Ther Targets, 2008, 12(7): 855-870
    37.王宇卉.泛素一蛋白酶体系统与神经系统疾病的治疗新靶点.世界临床药物,2006,27(3):139-144
    38. Kanters E, Pasparakis M, Gijbels MJ, et al. Inhibition of NF-kappaB activation in macrophages atherosclerosis in LDL receprot-deficient mice. J Clin Invest, 2003, 112(8): 1176-1185
    1. Murata T, Shimotohno K. Ubiquitination and proteasome-dependent degradation of human eukaryotic translation initiation factor 4E. J Biol Chem. 2006, 281(29): 20788-20800
    2. Weekes J, Morrison K, Mullen A, et al. Hyperuibiquitination of proteins in dilated cardiomyopathy. Proteomics. 2003, 3(2): 208-216
    3. Aguilar RC, Wendland B. Ubiquitin not just for proteasomes anymore. Curr Opin Cell Bio. 2003,15(2): 184-190
    4. Andersen PL, Zhou H, Pastushok L, et al. Distinct regulation of Ubc13 functions by the two ubiquitin-conjugating enzyme variants Mms2 and Uev1A. J Cell Biol. 2005,170(5): 745-755
    5. Hatakeyama S, Nakayama KI. U-box proteins as a new family of ubiquitin ligases. Biochem. Biophys. Res. Commun. 2003, 302(4): 635–645
    6. Liu Z, Oughtred R, Wing SS, et al. Characterization of E3Histone, a novel testis ubiquitin protein ligase which ubiquitinates histones. Mol Cell Biol. 2005, 25(7): 2819-2831
    7. Chade AR, Herrmann J, Zhu X, et al. Effects of proteasome inhibition on the kidney in experimental hypercholesterolemia. J Am Soc Nephrol 2005, 16(4): 1005-1012
    8. Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. science, 2001, 294(5547): 1704-1708
    9. Takaoka M, Ohkita M, Matsumura Y. Pathophysiological role of proteasome-dependent proteolytic pathway in endothelin-1-related cardiovascular diseases. Curr Vasc Pharmacol. 2003, 1(1): 19-26
    10. Umemura M, Ishigami T, Tamura K, et al. Transcriptional diversity and expression of NEDD4L gene in distal nephron. Biochem Biophys Res Commun. 2006, 339(4): 1129-1137
    11. Lott JS, Coddington-Lawson SJ, Teesdale-Spittle PH, et al. A single WW domain is the predominant mediator of the interaction between the human ubiquitin-protein ligase Nedd4 and the human epithelial sodium channel. Biochem J. 2002 , 361(Pt 3): 481-488
    12. Malbert-Colas L, Nicolas G, Galand C, et al. Identification of new partners of the epithelial sodium channel alpha subunit. C R Biol. 2003, 326(7): 615-624
    13. Snyder PM, Steines JC, Olson DR. Relative contribution of Nedd4 and Nedd4-2 toENaC regulation in epithelia determined by RNA interference. J Biol Chem. 2004, 279(6): 5042-5046
    14. Knight KK, Olson DR, Zhou R, et al. Liddle's syndrome mutations increase Na+ transport through dual effects on epithelial Na+ channel surface expression and proteolytic cleavage. Proc Natl Acad Sci USA. 2006, 103(8): 2805-2808
    15. Marshansky V, Ausiello DA, Brown D. Physiological importance of endosomal acidification: potential role in proximal tubulopathies. Curr Opin Nephrol Hypertens. 2002, 11(5): 527-537
    16. Hryciw DH, Ekberg J, Lee A, et al. Nedd4-2 functionally interacts with ClC-5 involvement in constitutive albumin endocytosis in proximal tubule cells. J. Biol. Chem. 2004, 279(53): 54996-55007
    17. Iturrioz X, Durgan J, Calleja V, et al. The von Hippel-Lindau tumour-suppressor protein interaction with protein kinase Cdelta. Biochem J. 2006 , 397(1): 109-120
    18. Maranchie JK, Zhan Y.Nox4 is critical for hypoxia-inducible factor 2-alpha transcriptional activity in von Hippel-Lindau-deficient renal cell carcinoma. Cancer Res. 2005, 65(20): 9190-9193
    19. Esteban MA, Tran MG, Harten SK,et al. Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res. 2006, 66(7): 3567-3575
    20. Atkins D, Ferrone S, Schmahl GE, et al. Down-regulation of HLA class I antigen processing molecules: an immune escape mechanism of renal cell carcinoma? J Urol. 2004, 171(2 Pt 1): 885-889
    21. Seliger B, Atkins D, Bock M, et al. Characterization of human lymphocyte antigen class I antigen-processing machinery defects in renal cell carcinoma lesions with special emphasis on transporter-associated with antigen-processing down-regulation. Clin Cancer Res. 2003, 9(5): 1721-1727
    22. Ishizawa J, Yoshida S, Oya M, et al. Inhibition of the ubiquitin-proteasome pathway activates stress kinases and induces apoptosis in renal cancer cells. Int J Oncol. 2004, 25(3): 697-702
    23. An J, Fisher M, Rettig MB.VHL expression in renal cell carcinoma sensitizes to bortezomib (PS-341) through an NF-kappaB-dependent mechanism. Oncogene. 2005, 24(9): 1563-1570

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700