甜椒胞质雄性不育系选育与分子标记筛选及败育的生化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辣椒(Capsicum annuum L.)原产中南美洲,属茄科辣椒属一年生或多年生植物。它现在已经成为我国第二大蔬菜作物,年种植面积大约在135万公顷。辣椒具有明显的杂种优势,生产上以蕾期人工去雄授粉生产一代杂交种为主,而利用雄性不育尤其核质互作雄性不育(CMS)生产杂交种子是迄今为止简化制种工序、降低制种成本、保证杂交种子纯度、预防亲本流失的最有效途径。利用甜辣椒CMS系配制杂交品种是当今世界甜辣椒育种的热点。本文通过研究甜椒CMS的遗传规律、恢复系的筛选、创制与利用、CMS花粉败育机理及与不育基因相关的分子标记,对于探讨甜椒CMS雄性不育机理和分子标记辅助育种以及杂种优势利用均具有重要的理论指导意义。主要研究结果如下:
     1.选育了甜椒CMST6A和CMSMCA
     以辣椒CMS21A为母本,高灯笼形甜椒T6和长灯笼形甜椒MC为轮回父本,采用“饱和回交”法,经过连续多代回交和轮回父本自交,选育新的甜椒胞质不育系CMST6A和CMSMCA及其相对应的保持系T6B和MCB。CMST6A的不育性受一对隐性基因控制。I_2-KI染色后镜检表明,CMST6A不育花粉率占98.4%;CMSMCA不育花粉率占97.8%。
     2.甜椒CMST6A育性恢复基因分布
     测交鉴定育性结果表明,被测甜椒和辣椒品种可以划分为三个类型:保持型、恢复型、育性分离类型。尖辣椒品种中容易找到甜椒CMS育性恢复基因;而甜椒品种中容易找到保持CMS育性的不育基因。84-1、匈奥804、湘紫13、伏_M、线椒、NT2M、牛-1、5-2R_1和5-2R_3这9个恢复系的恢复基因处于同一位点。
     3.甜椒CMS恢复系的创造及其杂种优势利用
     利用花丝和花柱为白色的南京苜蓿园早辣椒、花丝和花柱为紫色的北方扁灯笼形甜椒,花丝和花柱为白色的高灯笼形甜椒5-2和甜椒CMS8A、CMS17A、CMS延A、CMS金A及辣椒CMS21A、CMS阴早A为材料,采用杂交、回交、自交和测交手段,育成与父本5-2性状近似的甜椒恢复系5-2R_1、5-2R_2和5-2R_3以及“三系配套”品种江蔬5号甜椒(CMS8A×5-2R_1)、牛角椒组合“CMS21A×5-2R_1”、“CMS阴早A×5-2R_1”,“CMST6A×匈奥804”、“CMSMCA×匈奥804”。
     4.甜(辣)椒自交系的RAPD分析
     采用RAPD技术分析了来自国内外42份甜辣椒自交系的DNA多态性。筛选出的23个特异多态性好引物共扩增出133条带,其中111条为多态带。UPGMA树状图显示,遗传距离为0.124时可将这些甜辣椒划分为3组。育性恢复辣椒在Ⅰ,Ⅱ、Ⅲ组内均有分布,说明在分子水平上恢复基因在供试辣椒自交系中的分布是随机的。
     5.甜椒CMS不育基因的RAPD标记和ISSR标记
     运用RAPD和ISSR技术分析了甜椒CMST6A和保持系T6B的基因组DNA差异。获得了一个与甜椒CMS不育性相关的特异片断RAPDAO19_(1400)。序列测定结果表明,该片断序列全长为1378bp。根据序列测定结果,设计的一对特异引物将RAPDAO19_(1400)标记转化为更稳定的SCAR标记SCAO19_(498)。ISSR分析研究得到一个与甜椒CMS不育相关的特异片断ISSR-8_(840),该片段编码的氨基酸序列同源性检索发现与茄属番茄第4染色体上克隆的LE_HBa-20F17基因的序列有52%的同源性和67%的相似性。
     6.甜椒CMS系及其保持系的生化特性
     不育系中游离脯氨酸和游离赖氨酸含量均明显低于相应的保持系;不育花药中严重缺乏游离脯氨酸;不育花药中游离苏氨酸和精氨酸含量均明显高于相应的保持系;不育系中游离氨基酸总量则明显低于保持系。无论是在叶片中还是在花药中,不育系可溶性糖含量、可溶性蛋白质含量、CAT活性均低于其保持系;而SOD和POD活性则高于其保持系。说明上述物质含量和酶活性变化可能与甜椒CMS系的雄不育有关。
Capsicum annuum L.,an annual or perennial plant in capsicum genera of solanaceae originated from middle-south America.Up to now,pepper has become the second largest vegetable crop,planted about 1.35 million hectare area under cultivation in China.Pepper's heterosis is very obvious while the production of hybrid F_1 seeds is mainly propagated by man-emasculation in bud stage.But cytoplasmic male-sterility(CMS) of pepper is the most important way of utilization of heterosis.Using CMS pepper to produce hybrids can greatly decrease working procedures and costs,and guarantee hybrid seeds purity,and prevent parents to be stolen.So,using CMS pepper to select hybrids is one of the most intense popular in the present world pepper breeding.Studies mainly focus on the inheritance of male-sterile characters,creation and application of restorer lines,pollen abortive mechanism and molecular markers linked to CMS.Results were as follows:
     In the first part,it introduced the breeding of CMST6A and CMSMCA.Sweet pepper CMST6A and its maintainer line T6B,CMSMCA and its maintainer line MCB were successfully bred by hot pepper CMS21A crossed sweet pepper T6 or MC and backcrossed more than six generations.Heredity analyses showed that sterility of CMST6A was controlled by a pair of recessive genes.The observation with I_2-KI showed that sterile pollen percentage of CMST6A and CMSMCA were 98.4%and 97.8%respectively.
     In the second part,it studied the distribution of restorer genes of sweet pepper CMST6A.Identifying BC_1 fertility indicated that pepper cultivars can be divided into three groups:maintainers,restorers and segregations.CMS fertile restorer genes can be mainly found in long hot cultivars,while CMS maintainer genes easily found in sweet cultivars. Restorer genes of nine cultivars,84-1,Xiong ao 804,Xiangzi 13,Fu_M,Linear hot pepper, NT2M,horn.1,5-2R_1 and 5-2R_3,were located in the same gene site.
     In the third part,creation and heterosis application of CMS restorer lines in sweet pepper were studied.Sweet pepper restorer lines 5-2R_1,5-2R_2 and 5-2R_3 were developed by northem flat lantern sweet pepper,alfalfa garden early-maturing hot pepper in Nanjing and high lantern sweet pepper 5-2 by means of cross,backcross,self-pollination and testcross.CMS sweet pepper variety Jiangshu No.5 is bred by CMS8A crossed restorer line 5-2R_1,and other four new combinations were selected,Such as "CMS21A×5-2R_1", "CMSYinzaoA×5-2R_1","CMST6A×Xiong ao 804" and "CMSMCA×Xiong ao 804".
     In the fourth part,the RAPD analysis was conducted on 42 pepper inbred lines from China and overseas.Twenty-three primers selected from 340 random primers were used for 42 pepper samples.A total of 133 DNA bands were amplified,among which 111 were polymorphic.These 133 bands were analyzed using the UPGMA cluster software.The results showed that these inbred lines could be classified into 3 groups when the genetic distance was 0.124.Fertility restorer hot peppers were distributed in the groupⅠ,groupⅡand groupⅢ.It was observated that the restorer genes were random in these tested hot peppers in the molecular level.
     In the fifth part,RAPD and ISSR analysis were conducted on the genomic DNA of CMST6A and its maintainer T6B in sweet pepper.The specific fragment RAPDAO19_(1400) and ISSR-8_(840) in CMS line were found.Sequencing analysis of AO19_(1400) indicated that the length of the sequence was 1378 bp.According to the DNA sequence,one pair of primers was designed and the RAPD markers were transformed into SCAR marker SCAO19_(498). Sequencing analysis of ISSR-8 showed that the length of the sequence was 840bp,with 52%identities and 67%positives of its amino acid sequence with clone LE_HBa-20F17 on chromosome 4 from S.lycopersicum.
     In the last part,it studied biochemical characters in sweet pepper CMS Lines and its maintainer lines.Compared with maintainer lines,the contents of free proline and free lysine in sterile lines CMSZTA,CMS17A and CMS8A were obviously lower than maintainer lines ZTB,17B and 8B.Free threonine and arginine contents in sterile lines were obviously higher than maintainer lines.Total content of free amino acids in anther in sterile lines was significantly lower than maintainer lines.The content of soluble sugar and protein and the activity of CAT were low in both leaves and buds while the activities of SOD and POD were higher in CMS line than maintainer line.These results suggest that the variation of free amino acids,soluble sugar,protein content and enzyme activities were related to pollen abortion in CMS.
引文
1.Ballester J,de Vicente M C.Determination of F_1 hybrid seed purity in pepper using PCR-based markers[J].Euphytica,1998,103:223-226
    2.Ben Chaim A,Paran I,Grube RC,et al.QTL mapping offruit-related traits in pepper(Capsicum annum)[J].Theoretical and Applied Genetics,2001,102:1016-1028
    3.Bhargawa-YR.Microsporogenesis in pollen sterile Capsicum annuum L[J].Capsicum-Newsletter.1988,publ.1989,7,29
    4.Chauhan SVS.Histochemical localization of enzymic acid phosphatase in the anthers of the male sterile and fertile plants[J].Current Sci,1979,48(1):31-34
    5.C.H.M.Vijayakumar,谢国禄.水稻恢复系的培育和评价与其杂种优势的关系[J].国外作物育种,2004,5:10-11
    6.Csillery-G.Hybrid seed production in red pepper using a digenically male sterile maternal form[J].Zoldsegtermesztesi-Kutato-Tntezet-Bulletinje.1990,23:57-58
    7.Dash,Kumar,Singh.Cytomorphological Characterization of a Nuclear Male Sterile Line of Chilli Pepper(Capsicum annuum L.)[J].Cytologia,2001,66(4):365-371
    8.Daskalov S.A male sterile pepper(C.annuum L) mutant[J].Theor.Appl.Genet.1968,38:370-372
    9.Daskalov S.Male sterile mutant in sweet pepper[J].Mutant Breeding Newsletter,1974,3(13):571-579
    10.Daskalov S.Three new male sterile mutant in pepper[J].Agri Georgi Dimitrov,1973,6(1):39-41
    11.De Vries,A.PH.et al.,Electron-microscopy on anther tissue and pollen of male sterile and fertile wheat[J].Euphytica,1970,19:103-120
    12.Deviations of mictosporogenesis in male-sterile(CMS) sweet-pepper Capsicum annuum L.Fertilization and emtryogensis in ovulated plants.High Tatra(RackovaHendrychova-Tomkova,-J;Nguyen-Thi-Hoa-Binh(Nguyen-Thi,-HB);Rakousky,-S;et al dolina),June 14-17 1982[edited by Erdelska,O.]
    13. Dikii S P. Heterotic hybrid of red pepper bred using male sterility [J]. Referativnyi Zhurnal, 1976,5(55): 284-286
    
    14. Edwardson I R. Cytoplasmic male sterility [J]. Bot Rev., 1956,22: 696-738
    
    15. Frankel, O.H., Brown, A.H.D. Current plant genetic resourses- a critical appraisal [J]. In: Genetics:new frontiers (vol IV). Oxford and IBH Publishing. New Delhi, India, 1-13
    
    16. Fujushita U. On the amino acids with reference to pollen degeneration in male sterile vegetable crops [J]. J Jap Soc Hort Sci, 1964,33(2): 133-139
    
    17. Fukasawa H. On the free amino acids in anthers of male-sterile wheat and maize [J]. Japan. J. Gen.1954, 29: 135-137
    
    18. Gill-Bs. Effect of male: fermale row ration on fruit set and hybrid seed yield in chillies [J].Symposium ludhiana, 24-24, Februry, 1993
    
    19. Hernould M, Suharsono, Zabaleta E, et al. Impairment of tapetum and mitochondria in engineered male-sterile tobacco plant [J]. Plant Mol Biol, 1998,36: 499-508.
    
    20. Hinata K. Studies on a male sterile strain having the Brassica campestris nucleus and diplotaxis muralis cytoplasm [J]. Japan J Breed, 1979,29(4): 305-311
    
    21. Hirose T, Fujime Y. Studies on hybrid seed production using a new male sterility line in C. annuum [J]. J Jap Soc Hort Sci, 1981,50(1): 66-70
    
    22. Hirose T, Takashima shiro. Studies on male sterile pepper for use in producing F_1 hybrid seeds. I.:Morphological characters of male sterile plants (Agriculture) [J]. Kyoto Prefectural University.1963
    
    23. Horner, H. Microsporogenesis in normal and cytoplasmic male sterile pepper [J]. American Journal of Botany 1973,60(4 Supplement)
    
    24. Jain A, Apparanda C, Bhalla P L. Evaluation of genetic diversity and genome fingerprinting of Pandorea (Bignoniaceae) by RAPD and inter-SSR PRC [J]. Genome, 1999,42: 714-719
    
    25. Jones, H.A., and Clarke, A. E. Thheritance of male sterility in the onion and the production of hybrid seed [J]. Proc. Am. Soc. Hort. Sci. 1943, 43:189-194
    
    26. Koltunow, A. M., Truettner, J., Cox, K. H., et al. Different temporal and spatial gene expression patterns occur during anther development [J]. Plant Cell, 1990, 2:1201-1224
    27. Kual M L H. Male Sterility in high plants [M]. Berlin: Springer Verlag, 1998
    
    28. Levings CS. Molecular biology of plant mitochondria [J]. Cell, 1989, 56:171-179
    
    29. Linskens H F. Cell-free protein systhesis with polysomes from germinating petunia pollen grain [J].Planta, 1970,90:153-162
    
    30. Martin, J. A., Several types of sterility in Capsicum frutescens [J]. Proc. Amer. Soc. Mort. Sci. 1951,57:335-338
    
    31. Milkova L. Study of heterotic hybrids of red pepper using male sterility [J]. Genetica i selectsiya,1977,10(3): 238
    
    32. Moor-J; Csillery-G. Hybrid pepper seed production with male-sterile mother lines [J].Zoldsegtermesztesi-Kutato-Tntezet-Bulletinje. 1989,22:69-72
    
    33. Murty N R, Lakshmic Male Sterile mutant in Chilli [J]. Current Science, 1979,48(7): 312
    
    34. Nagaoka T&Ogihara Y. Applicability ofinter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers [J].Theoretical and Appued Genetics, 1997,94: 597-602
    
    35. Novak F J. CMS in chilli [J]. Genetica a slechteni. 1977,9(7): 155-162
    
    36. Ohmasa M. Biochemical studies of cytoplasmic male sterility of maize: relation between cytoplasmic male sterility and mitochondrial enzyme activities [J]. Bull Natl Inst Agri Sci., 1982,33:201-233
    
    37. Paran I, Aftergoot E, Shifriss C. Variation in Capsicum annuum revealed by RAPD and AFLP markers [J]. Euphytica, 1998, 99: 167-173
    
    38. Pckousky S. Deviation of microsporegenesis in Cytoplasmic chilli [J]. planta, 1978,90:173-175
    
    39. Pearson O H. Cytoplasmic inherited male sterility characters and flavar components from the species cross B. Nigra koch × B. Oleracea L [J]. J Amer Hort Sci, 1972,97(3): 397-402
    
    40. Pejic I, Ajmone, Marsan P, et al. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs [J]. Theoretical and Applied Genetics, 1998,97:1248-1255
    
    41. Peterson P A. Cytoplasmic inherited male sterility in Capsicum [J]. The American Naturalist, 1958,92:111-119
    42. Pradeepkumar T, Karihaloo J L, Archak S, et al. Analysis of genetic diversity in Piper nigrum L.using RAPD markers [J]. Genetic Resources and Crop Evolution, 2003,50:469-475
    
    43. Prakash. Male sterility and manipulation of yield in capsicum [J]. Capsicum Newsletter, 1987, (6):35
    
    44. Qiu J, Van Santen E&Tuzun S. Optimization of DNA amplification fingerprinting techniques to study genetic relationships of white lupin germplasm [J]. Plant Breeding, 1995,11: 525-529
    
    45. Sear E R. Genetics and farming [M]. USDA Yearbook, 1947, 245-255
    
    46. Shifriss C, and I. Rylsky. A male sterile (ms-2) gene in California Wonder pepper [J]. (C.annuum).Hort. Sci. 1972, 7(1): 36
    
    47. Shifriss C, Frankel R. New sources of CMS in cultivated peppers [J]. J Hered, 1968, 59: 254-258
    
    48. Shifriss C. Additional spontaneous male sterile mutant in Capsicum annuum L [J]. Euphytica. 1973,22: 527-529
    
    49. Shifriss C. and R Frankel. New sources of cytoplasmic male sterility in cultivated peppers [J]. The Journal of Heredity. 1971(62): 254-256
    
    50. Shifriss C. Frankel R. A new male sterile gene in pepper [J]. J Amer Soc Hort Sci, 1969, 94:385-387
    
    51. Shifriss C. Male sterility in pepper (Capsicum annuum L.) [J]. Euphytica, 1997,93: 83-88
    
    52. Tanksley S D, Bernatzky R, Lapitan N L, et al. Conservation of gene repertorire but not gene order in pepper and tomato [J]. Proccedings of the National Academy of Sciences of the United States of America, 1988, 85: 6419-6423
    
    53. Tanksley S D. Linkage relationships and chromosome library of pepper (Capsicuum annuum L.) [J].Ghromosoma, 1984, 89:352
    
    54. Won C Y, Young P D, Ho S K. Pepper (Capsicum annuum L.) cultivar identification and seed purity test by random amplified polymorphic DNAs (RAPDs) and phosphoglucomutase (PGM) isozyme [J]. RDA J. Hort. Sci., 1998, 40 (1): 15-23
    
    55. Zhang B, Huang S, Yang G, et al. Two RAPD markers linked to a major fertility restorer gene in pepper [J]. Euphutica, 2000,113:155-161
    
    56. Zuberi S, ahmad A, And zuber M. Male sterility in rapeseed, Brassica Campestris L. I. Development of male fertile and genic sterile anthers[J].Phytomorphology.1988,38(2,3):219-221
    57.曹必好,雷建军,陈国菊.甘蓝Ogura胞质雄性不育基因的RAPD标记筛选[J].农业生物技术学报,2003,11(6):648-649
    58.曹寿椿,李式军.大白菜“矮杂一号”及雄性不育两用系的选育[J].园艺学报,1981,8(3):35-42
    59.曹水良,胡开林,王得元.RAPD标记构建辣椒分子连锁图谱研究初报[J].广东农业科学,2005,(2):35-37
    60.常彩涛,孙振久,刘文明,等.辣椒雄性不育系及三系配套研究[J].天津农业科学,2000,6(2):5-7
    61.陈炳金,杨朝进.雄性不育系22A簇生朝天椒的选育[J].辣椒杂志,2007,(2):10,14
    62.陈晓斌,曹有龙,贾勇炯,等.白肋烟草雄性不育系的过氧化物酶同工酶和游离氨基酸分析[J].浙江农业学报,1999,11(2):76-79
    63.陈学军,陈劲枫,耿红,等.辣椒属5个栽培种部分种质亲缘关系的RAPD分析[J].园艺学报,2006,33(4):751-756
    64.陈学军,程志芳,陈劲枫,等.辣椒种质遗传多样性的RAPD和ISSR及其表型数据分析[J].西北植物学报,2007,27(4):662-670
    65.戴亮芳,罗向东,王述彬,等.辣椒细胞质雄性不育系和保持系过氧化物酶同工酶的比较分析[J].西北植物学报,2005,25(10):1960-1964
    66.戴雄泽,唐冬英,邹学校.辣椒雄性不育与花蕾内源激素含量变化的关系[J].辣椒杂志,2004,(1):10-13
    67.戴祖云,徐继萍.辣椒雄性不育三系配套研究[J].安徽农业科学,1996,24(2):173-174
    68.邓代信,汪隆植,龚义勤,等.萝卜雄性不育系内源激素及游离氨基酸分析[J].种子,2006,25(3):31-34
    69.邓明华,文锦芬,邹学校,等.辣椒细胞质雄性不育系的物质代谢和过氧化物酶分析[J].云南农业大学学报,2007,22(6):791-794
    70.丁犁平.辣椒杂种优势的利用[M].南京:江苏科学技术出版社.1983:1-2
    71.董庆华,利容千.菜薹细胞质不育系小孢子发生的细胞形态学研究[J].园艺学报,1997,24(2):150-154
    72.范研芹,刘云.甜椒雄性不育系AB91选育及研究初报[J].北京农业大学学报,1993,(19):20
    73.方智远,孙培田,刘玉梅,等.甘蓝显性雄性不育系的选育及其利用[J].园艺学报,1997,24(3):249-254
    74.符庆功,余小林,曹家树,等.白菜核雄性不育两用系AFLP扩增特异片段的克隆及序列分析[J].浙江大学学报(农业与生命科学版),2004,30(5):495-499
    75.盖树鹏,孟祥栋.大葱(Allium fistulosum L.)胞质雄性不育基因的RAPD标记[J].农业生物技术学报,2000,10(1):94-97
    76.盖树鹏,孟祥栋.国内大葱胞质雄性不育位点RAPD标记转化为SCAR标记的研究[J].莱阳农学院学报,2004,21(3):189-192
    77.盖树鹏,盂祥栋.大葱(Allium fistulosum L.)胞质雄性不育基因的RAPD标记[J].农业生物技术学报,2002,10(1):94-97
    78.高夕全,张子学,夏凯,等.雄性不育辣椒中几种内源植物激素的含量变化[J].植物生理学通讯,2001,37(1):31-32
    79.耿三省,王志源.辣椒雄性不育系小孢子发生细胞学观察[J].园艺学报,1994,21(2):165-169
    80.耿三省.辣椒雄性不育的研究.硕士学位论文.北京:北京农业大学,1992
    81.龚义勤,汪隆植,徐彦.萝卜雄性不育系和保持系的花蕾同工酶分析[J].园艺学进展(Ⅱ).南京:东南大学出版社,1998,563-566
    82.郭国强,郭民奇,尹明,等.两用核雄性不育新材料的发现与研究初报[J].种子科技,2004,2:94-96
    83.黄邦海,常绍东.辣椒雄性不育系32A的恢复系筛选研究[J].广东农业科技,1997,(5):15-17
    84.黄浩,柳李旺,程崇顺,等.萝卜CMS不育系与保持系小孢子发生的细胞学研究[J].植物研究,2004,24(3):305-308
    85.黄厚哲.植物生长激素亏损与雄性不育的发生[J].厦门大学学报,1984,23(1):82-96
    86.黄晋玲,杨鹏,李炳林,等.棉花晋A细胞质雄性不育系小孢子发生的显微和超显微结构观察[J].棉花学报,2001,13(5):259-263
    87.黄科,曹家树,余小林,等.CYP86MF反义基因转化获得青花菜雄性不育植株[J].中国农业科学,2005,38(1):122-127
    88.蒋伟明.青椒“雄18”的选育及应用[J].北京农业大学学报,1993,19:24
    89.景润春,何予卿,黄青扬,等.水稻野败型细胞质雄性不育恢复基因的ISSR和AFLP标记分析[J].中国农业科学,2000,33(2):10-15
    90.柯桂兰,赵稚雅,宋胭脂,等.大白菜异源胞质雄性不育系CMS 3411-7的选育[J].西北农业学报,1994,3(1):48
    91.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,199-200,184-185,167-169,165-167
    92.李俊丽,向长萍,张宏荣,等.南瓜种质资源遗传多样性的RAPD分析[J].园艺学报.2005,32(5):834-839
    93.李林初,沈敏健,李懋学.辣椒的核型研究[J].园艺学报,1984,11(2):119-121
    94.李佩华译.园艺和葡萄科学[M].1982,1:65-70
    95.历启腾,孟平红,吴跃勇.大白菜细胞质雄性不育系的选育[J].贵州农业科学,1995,23(3):1-4
    96.李莹莹,魏佑营,张瑞华,等.辣椒雄性不育“三系”花蕾中3种同工酶活性的动态变化[J].中国农学通报,2005,21(4):226-229
    97.李莹莹,魏佑营,张瑞华,等.辣椒雄性不育系与可育系小孢子发生的细胞学观察[J].植物研究,2006,26(4):411-415
    98.梁小红,仪治本,赵威军,等.高粱A2型细胞质雄性不育系小孢子发生的细胞学观察和减数分裂染色体行为分析[J].作物学报,2006,32(8):1107-1110
    99.栗翼玫.萝卜雄性不育系小孢子发生的细胞形态学研究[J].园艺学报,1995,22(4):348-352
    100.梁燕,赵稚雅,王鸣.OguCMS结球白菜雄性不育系研究[J].西北农业大学学报,1994,3(2):14-16
    101.凌杏元.植物保质雄性不育分子机理研究进展[J].植物学通报,2000,17(4):319-332
    102.刘秉华.作物显性雄性不育基因分类及起源的探讨[J].遗传,1993,15(6):32-34
    103.刘海河,侯喜林,张彦萍.西瓜核雄性不育育性基因的RAPD标记[J].果树学报,2004,21(5):491-493
    104.刘海河.西瓜G17AB核雄性不育两用系的不育机理研究[D].南京农业大学博士论文,江苏,南京,2005
    105.刘后利主编.油菜的遗传和育种[M].上海:上海科学技术出版社,1985
    106.刘惠吉,王华.同源四倍体白菜异源胞质雄性不育系的选育[J].南京农业大学学报,2004,27(2):30-33
    107.刘杰,崔成日,崔崇士,等.洋葱细胞质雄性不育系与相应保持系线粒体DNA的RAPD分析[J].东北农业大学学报,2004,35(3):322-324
    108.刘金兵,王述彬,潘宝贵,等.甜椒胞质雄性不育恢复系的创造及其杂种优势利用[J].江苏农业科学,2005,(6):81-83
    109.刘金兵,赵华仑.辣(甜)椒雄性不育恢复系的筛选研究[J].中国蔬菜,1999,(6):28
    110.刘玉梅,方智远,MichaelD McMullen,等.一个与甘蓝显性雄性不育基因连锁的RFLP标记[J].园艺学报,2003,30(5):549-553
    111.娄平,王晓武,Guusje.Bonnema,等.利用cDNA-AFLP技术鉴定甘蓝显性核不育基因相关表达序列[J].园艺学报,2003,30(6):668-672
    112.逯红栋,巩振辉,黄炜,等.19个辣椒雄性不育材料花蕾生理生化特性研究[J].西北植物学报,2006,26(4):832-835
    113.马艳青,刘志敏,邹学校.辣椒种质资源的RAPD分析[J].湖南农业大学学报(自然科学版),2003,29(2):120-123
    114.缪颖,陈林姣,陈德海,等.应用Bulked-DNA寻找白菜型油菜核雄性不育基因的RAPD标记[J].厦门大学学报(自然科学版),2000,39(5):682-685
    115.钮心恪,吴飞燕,钟惠宏,等.大白菜雄性不育两用系的选育与利用[J].园艺学报,1980,7(1):25-32
    116.潘敏,杨建平,曹德航,等.韭菜栽培品种遗传多样性的ISSR和RAPD研究[J].中国农学通报,2005,21(4):44-47,58
    117.任雪松,李成琼,宋洪元,等.甘蓝胞质雄性不育系和保持系花药同工酶分析[J].西南农业大学学报,2004,26(4):433-436
    118.沈火林,蒋健箴.辣椒雄性不育系选育及遗传研究[J].北京农业大学学报,1994,20(1):25-308
    119.沈火林,安岩,乔志霞.胞质雄性不育和核雄性不育辣椒内源激素含量的变化[J].华北农学报,2006,21(1):68-71
    120.孙立全,霍治军,常彩涛,等.辣椒雄性不育系小孢子发育及脯氨酸等含量的研究[J].华北农学报,2003,18(4):39-41
    121.孙日飞,方智远,张淑江.萝卜胞质大白菜雄性不育系的生化分析[J].园艺学报,2000,27(3):187-192
    122.孙晓勇,王志源.辣椒核不育小孢子发生的细胞学研究[J].中国农业大学学报,1999,4:增刊,26-29
    123.唐冬英,邹学校,刘志敏,等.辣椒胞质雄性不育恢复基因的RAPD标记[J].湖南农业大学学报,2004,30(4):307-309
    124.藤晓月,陈雪辉.小麦T型细胞质雄性不育系和保持系的比较研究[J].作物学报,1996,22(3):264-270
    125.万文鹏.番茄“农大土豆红”雄性不育两用系[J].农业科技通讯,1980,(4):18
    126.汪志伟,向长萍,梅时勇,等.萝卜细胞质雄性不育恢复基因的RAPD标记[J].植物遗传资源学报,2004,5(2):153-155
    127.王得元,王鸣,郑学勤.用RAPD分析辣椒细胞质雄性不育基因[J].核农学报,2005,19(2):99-101,87
    128.王虹.萝卜叶绿体DNA花粉育性特异性片断的定位[J].生物工程学报,1989,5(1):40-45
    129.王兰兰.辣椒雄性不育系的选育研究[J].甘肃农业科技,1998,(1):24-25
    130.王俐,祁新红,刘根齐,等.高粱雄性不育系热激前后线粒体的变化与育性的关系[J].遗传学报,2000,27(9):834-838
    131.王玲,郑金贵,赖钟雄,等.国辣椒遗传多样性的RAPD分析[J].福建农林大学学报(自然科学版),2003,32(2):213-216
    132.王培田.细胞质雄性不育性的能量供求学说[J].中国遗传学会二次大会论文摘要汇编.1983:236-237
    133.王瑞,李加纳,唐章林,等.甘蓝型油菜显性双重不育系的选育模式[J].西南大学学报:自然科学版,2007,29(8):60-63
    134.王述彬,罗向东,戴亮芳,等.甜椒胞质雄性不育雄配子发育的解剖学和超微结构研究[J].武汉植物学研究,2004,22(6):557-560
    135.王述彬,刘金兵,潘宝贵.辣椒细胞质雄性不育系与其保持系基因组DNA的RAPD分析[J].上海农业学报,2008,24(1):8-10
    136.王台,童哲,匡延云,等.光敏核不育水稻61KD特异性蛋白质的纯化和N-端序列分析[J].植 物学报,1996,38(10):772-776
    137.王晓武,方智远,孙培田,等.一个与甘蓝显性雄性不育基因连锁的RAPD标记[J].园艺学报,1998,25(2):197-198
    138.王晓武,方智远.利用分子标记EPT11 900辅助甘蓝显性雄性不育基因转育[J].中国蔬菜,1998,(6):1-14
    139.王学德,张天真,潘家驹.细胞质雄性不育棉花小孢子发生的细胞学观察和线粒体DNA的RAPD分析[J].中国农业科学,1998,31(2):70-75
    140.王亚馥,胡昌勤,林志刚,等.大白菜雄性不育两用系可育株与不育株的比较分析[J].园艺学报,1984,1(3):182-185
    141.王永飞,马三梅,张鲁刚,等.大白菜细胞质雄性不育系和其保持系的RAPID分析[J].西北植物学报,2003,23(4):554-560
    142.王永飞,马三梅,张鲁刚.大白菜细胞质雄性不育保持系3411-7 RAPD特异扩增片段的克隆测序[J].广西植物,2006,26(3):300-303
    143.王永勤,曹家树,虞慧芳,等.白菜核雄性不育两用系生理生化特征的分析[J].园艺学报,2003,30(2):212-214
    144.王玉刚,冯 辉,林桂荣,等.白菜核基因雄性不育系转育研究[J].园艺学报,2005,32(4):628-631
    145.吴鹤鸣.吖啶黄在组培过程中对甜椒雄蕊发育的影响[J].江苏农业学报,1986,2(3):34-38
    146.吴鹤鸣.羊角椒雄性不育系及保持系的细胞学观察[J].江苏农业学报,1985,4(2):35-38
    147.吴小丽.辣椒抗黄瓜花叶病毒(CMV)遗传分析及ISSR分子标记筛选[D].扬州大学硕士论文,江苏,扬州,2007
    148.西南农业大学主编.蔬菜育种学[M].北京:农业出版社,1987:128
    149.夏快飞,陈良碧.光温敏两用核不育水稻特异蛋白质的研究进展[J].湖南师范大学自然科学学报,2001,24(4):81-84
    150.夏涛,刘纪麟.生长素和玉米素与玉米雄性不育关系的研究[J].作物学报,1994,20(1):26-30
    151.夏涛,刘纪麟.玉米细胞质雄性不育系物质代谢系统的研究[J].华中农业大学学报,1993,12(1):1-6
    152.夏涛,刘纪麟.玉米细胞质雄性不育性与组织抗氰呼吸关系的研究[J].中国农业科学,1988, 21(5):39-43
    153.谢彬,王志源.辣椒雄性不育系小孢子发生阶段生化特性[J].中国农业大学学报,1999,4(5):103-106
    154.熊延,刘翠敏,王淑芳,等.叶绿体基因组与叶绿体基因表达的调节[J].植物生理学通报,2002,38(3):264-269
    155.徐毅.辣椒雄性不育三系选育初报[J].湖南农业科学.1985(5):22-25
    156.杨朝进,陈炳金,刘建国,等.利用雄性不育选育辣椒新品种川椒香辣妃[J].辣椒杂志,2006,(3):17-19
    157.杨凤梅,杨世周.辣椒AB92雄性不育两用系选育及利用[J].中国蔬菜,1994,(6):15-18
    158.杨景成,于元杰,齐延芳,等.小麦D型细胞质雄性不育系和保持系小孢子发育的超微结构观察[J].作物学报,2001,27(1):91-96
    159.杨若林,孔俊,吴鑫,等.ISSR标记在辣椒资源遗传多态性分析中的初步应用[J].上海大学学报(自然科学版),2005,11(4):423-426,435
    160.杨世周,杨凤梅.辣椒雄性不育两用系的选育及利用[J].园艺学报,1981,8(3):49-53
    161.杨世周.辣椒8021A雄性不育系的选育及三系配套[J].中国蔬菜.1984,(3):9-13
    162.袁建玉,候喜林,李萍芳.不结球白菜胞质雄性不育新种质花蕾和叶片中活性氧代谢的变化[J].南京农业大学学报,2006,29(1):18-22
    163.张宝玺,王立浩,郭家珍,等.辣椒雄性育性调查方法研究[J].中国辣椒,2002(4):6-9
    164.张宝玺,王立浩,黄三文,等.辣椒分子遗传图谱的构建和胞质雄性不育恢复性的QTL分析[J].中国农业科学,2003,36(7):818-822
    165.张德双,张凤兰,王永健,等.与大白菜细胞质不育相关RAPD特征片段的克隆和序列分析[J].中国农学通报,2006,22(2):44-50
    166.张立荣,徐大庆,杨文香,等.小麦抗叶锈基因Lr37 ISSR分子标记[J].农业生物技术学报,2004,12(1):86-89
    167.张丽,宫国义,李霄燕,等.萝卜雄性不育系及其保持系个体发育中5种同工酶比较[J].西北农业学报,2006,15(3):116-120
    168.张鲁刚,柯桂兰.大白菜胞质雄性不育系和保持系同工酶及可溶性蛋白质分析[J].西北农业学报,1999,8(4):67-70
    169.张璐,杨若林,刘文轩,等.辣椒部分栽培种遗传相似性的RAPD分析[J].上海大学学报(自然科学版),2003,9(5):433-437,444
    170.张书芳,赵雪云,周邦福.大白菜核基因互作雄性不育系选育及其应用模式[J].中国主要蔬菜抗病育种进展.北京:科学出版社,1995,142-148
    171.张书芳,赵雪云,周邦福.大白菜细胞核基因互作雄性不育系选育及应用模式[J].园艺学报,1990,17(2):22-25
    172.张显,王鸣,张进升,等.西瓜隐性核雄性不育基因的RAPD标记[J].园艺学报,2005,32(3):438-442
    173.张子学,罗育淮.辣椒质—核互作雄性不育与叶、蕾中内源激素含量的关系[J].安徽技术师范学院学报,2002,16(2):5-7
    174.张子学,隋益虎,崔广荣,等.辣椒雄性不育RAPD体系优化及标记的筛选[J].种子,2005,24(2):24-26
    175.赵华仑,丁犁平,孙洁波,等.辣(甜)椒雄性不育系的选育及其应用[J].中国主要蔬菜抗病育种进展[M].科学出版社,1995:555-558
    176.赵华仑,刘金兵,孙洁波,等.甜椒雄性不育系一代杂种碧玉椒选育[J].中国蔬菜,1998,(4):25-26
    177.钟小仙,顾洪如,向阳海,等.狼尾草属牧草资源的RAPD分析[J].江苏农业学报,2003,19(2):109-113
    178.周长久,张友良.萝卜雄性不育性的几种特性研究[J].园艺学报,1994,21(1):65-70
    179.朱汉如,吴玫君.仙居雄性不育大麦的研究:发现和鉴定及保持[J].浙江农业大学学报,1991,17(3):237-242
    180.朱广廉.花粉中的游离脯氨酸及其生理功能[J].植物生理通讯,1985,(4):7-12
    181.朱广廉.太谷核不育小麦不育株和可育株花药内游离氨基酸成分的比较分析[J].植物生理学报,1984,10(2):185-189
    182.朱广廉.太谷核不育小麦花药内游离脯氨酸的来源及不育花败育的关系[J].植物生理学报,1985,11(2):122-129
    183.庄木,方智远,孙培田,等.用显性雄性不育系配制的甘蓝新品种‘中甘16'、‘中甘17'[J].园艺学报,2001,28(2):183
    184.邹奇.植物生理生化实验指导[M].北京:中国农业出版社,2000,110-113
    185.邹学校,侯喜林,刘荣云,等.辣椒细胞质雄性不育基因对不育系及杂交一代农艺性状和生化特性的影响[J].园艺学报,2004,31(6):732-736
    186.邹学校,周群初,戴雄泽,等.辣椒三系雄性不育组合湘研14号的选育[J].中国辣椒,2001,1(1):13-16
    187.邹学校.中国辣椒[M].北京:中国农业出版社,2002:15-17,157-167

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700